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Abstract: This work presents the development of a classification method that can contribute to precise
and increased awareness of the situational context of vehicles, for it to be used in autonomous driving
applications. This work aims to obtain a method for machine-learning-based driving environment
classification that does not involve computer vision but instead makes use of dynamics variables from
Inertial-Measurement-Unit (IMU) sensors and instantaneous energy consumption measurements.
This article includes details about the data acquisition, the electric vehicle used for the experiments,
and the pre-processing methods employed. This explores the viability of a method for classifying
a vehicle’s driving environment. The results of such a system can potentially be used to provide
precise information for path planning, energy optimization, or safety purposes. Information about
the driving context could be also used to decide if the conditions are safe for autonomous driving or
if human intervention is recommended or required. In this work, the feature selection process and
statistical data pre-processing methods are evaluated. The pre-processed data are used to compare
13 different classification algorithms and then the best three are selected for further testing and data
dimensionality reduction. Two approaches for feature selection based on feature importance and final
classification scores are tested, achieving a classification mean accuracy of 93 percent with a real testing
dataset that included three driving scenarios and eight different drivers. The obtained results and high
classification accuracy represent a first approach for the further development of such classification
systems and the potential for direct implementation into autonomous driving technology.

Keywords: electric vehicles; driving environment classification; machine learning; electromobility;
energy consumption

1. Introduction

As transport technology evolves, new opportunities arise. Formerly, the efficiency
of energy usage in street vehicles was close to being maxed out up to a point limited by
the physical principles of the internal combustion engine. With the renewed interest in
electric vehicles (EVs) and the mass production of them, a vast new field for improvement
is to be worked on by research engineers, physicists, and designers of many areas, ranging
from batteries technology, charging stations, power train mechanics, and of course vehicle
energy management. This era in vehicle technology has seen the advent of two major
paradigm changes, the electrification of street vehicles and the implementation of higher
levels of autonomous driving, thanks to the increased availability of high computational
power on board in the vehicles and cloud computing connectivity.

There is interest in increasing vehicle energy efficiency for environmental, technical,
and economic reasons. Environmentally, all energy taken from the power grid contains
a portion that comes from fossil fuels with the consequential undesired contamination.
These proportions in the energy origin varies greatly from one country to another. The
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technical and economic reasons come together as car manufacturers want to improve the
mileage per unit of energy of their vehicles through technological development and to offer
a better option to customers. Besides, there are also governmental regulation policies in
many countries aimed to directly stimulate the development of these technologies and
reduce emissions.

The development of autonomous, intelligent, and connected vehicles and its integra-
tion with eco-driving technics have the potential to further increase the energy efficiency.
The integration of all the aforementioned methods comprises a synergy of great interest
for studying, evaluating, and implementing, taking energy usage optimization to new
high possibilities.

This document explains the procedure and method employed to formulate, develop,
and test an ML Classification Algorithm for an effective real-time driving environment
classification. The data was collected from three hundred tests consisting of driving
in an electric vehicle in a 1.5 km route inside our university campus while recording
energy and vehicle dynamics data using specialized instrumentation (Dewesoft’s SIRIUS
Data acquisition System). The tests included eight different drivers and three different
“driving styles”. The collected data was then analyzed and processed to obtain composite
variables that provided more information to the algorithm. Several ML technics were
tested on the pre-processed dataset and evaluated based on training time, prediction
time, and classification scores. The main contributions of this work include the proposal
and assessment of a methodology, the identification of key features for driving scenario
classification tasks, and the evaluation of results for determining if such a system can be
useful for intelligent driving systems.

This paper is organized as follows: Section 2 describes the previous works, and the
state of the art is presented in Section 3. Section 4 presents the methodology employed
in this work and details of the experimental data acquisition including the EV used for
the tests, the route, and the sensors. Section 5 presents the features used and the data
pre-processing. Section 6 describes the data analysis and the initial classification with
Machine learning algorithms. Section 7 presents further classification tasks while also
discussing its results. Finally, the work’s conclusions are drawn in Section 8 and future
work is proposed in the last section.

2. Previous Works

The improvement of vehicles’ energy consumption is a recurring subject of research.
The motivations are extensive and so are the works that propose their own approach to
achieve this objective. The development and convergence of technologies for automotive
applications offer a great deal of opportunities for addressing this matter. Concepts such as
automated, connected, electrified, and shared vehicles offer their own set of advantages,
but by combining these concepts, the resulting synergy can greatly enhance the achievable
results. Qi [1] describe these four concepts: (i) vehicle automation includes automated
vehicle dynamics control such as adaptive cruise control (ACC), and automated powertrain
functions such as power-split control for PHEVs; (ii) connected vehicle technology includes
vehicle to vehicle V2V, vehicle to infrastructure V2I and V2X connectivity for applications
such as reducing traffic congestion and optimized stop-and-go maneuvers at signalized
intersections; (iii) electrification is the migration from the fossil fuel energy source in the
vehicle to the use of electric powertrain architectures, including variations such as plug-in
PEVs, battery electric vehicles, and Hybrid EVs (hydrogen fuel cells or extended range ICE
vehicles); (iv) shared vehicle technologies provide the possibility of sharing a single car
among several users, reducing the total travel distance of many vehicles, therefore reducing
the net vehicle energy consumption. Simulation results by Qi, implementing the combined
four concepts, reported average energy savings of 12% and 22% for ADAS and partially
automated driving, respectively.

This section presents a short summary of research in electric vehicles power-efficiency
improvements by means of power train control and autonomous driving.
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2.1. Synergy Opportunities of New Technologies

The electrification of transport provides new opportunities for improving energy
efficiency; vehicle connectivity together with the implementation of onboard intelligent
system can take these improvements to higher new levels. The synergy of these systems is
thoroughly explained by Asher [2].

Asher identified and defined three approaches for improving the energy efficiency of
fully electric vehicles (EVs), Hybrid Electric Vehicles (HEVs), and Plug-in Hybrid Electric
Vehicles (PHEVs). The first approach is the intervention of the power train system, in what
he calls “Optimal Energy Management Strategy” or Optimal EMS, reducing energy losses
on the physical components of the power train or reprograming and tweaking the motors
controller software. The second approach is the implementation of Eco-driving strategies
on the autonomous driving algorithm of the vehicle. The third approach is the combination
of Optimal EMS and Eco-driving. Asher tested the three approaches through simulations
on a validated PHEV model using four different driving cycles: the city-focused Urban
Dynamometer Driving Schedule (UDDS), the highway-focused Highway Fuel Economy
Test (HWFET), the aggressive US06 drive cycle, and the New York City Cycle (NYCC).
According to the results of his work, the third approach achieved the highest energy
efficiency improvements with 40% for the city drive cycle.

Connectivity between vehicles also allows the gathering of information and the eval-
uation of the vehicles’ performance in novel ways, such as sending data in real time to
laboratories that can monitor and evaluate the vehicle powertrain for research and improve-
ment purposes [3]. V2I communication can also be used to give preferential treatment to
emergency or special vehicles at intersections by calling the phase required by them [4].

2.2. Road Perception

Path, maneuver, and trajectory planning components of autonomous on-road driving
(often combined as one) take vehicular dynamics, obstacles, road geometry, and traffic
interactions into account [5]. Road geometry has a great impact on the energy used by a
vehicle to travel it [6,7]. The slope can demand a great amount of energy during ascending
but can also help the vehicle to regenerate energy during descending if a regenerative
braking system is available and used correctly. But road geometry can affect vehicle energy
efficiency in other situations, for example in horizontal curves. During turning maneuvers,
the average driver tends to decelerate before the curve and then accelerate again after
leaving it, while the optimum use of energy would imply to maintain a constant speed
during the curve and planning ahead the optimum speed profile before arriving to it [8].

3. State of the Art

Automated learning allows for a great amount of information to be processed, classi-
fied, and correlated. Autonomous driving systems rely on data from several sensors being
delivered at a high rate; this information is filtered, processed, and used by the autonomous
driving system for real-time decision making. A high processing capacity onboard vehicles
and the volume of data acquired by autonomous driving systems can be used for corre-
lating energy consumption with driving and road data, which is valuable information for
improving the energetic efficiency of the vehicle. Vehicle connectivity can greatly expand
the impact of vehicles collecting data by allowing them to share this information with other
vehicles and central data servers for it to be used for system improvements that can then be
downloaded back to all vehicles as system enhancement updates.

The use of ML algorithms for processing vehicle data and classifying driving informa-
tion has been reviewed by Elassad et al. [9]. The authors reviewed and grouped 86 works
from 46 different journals and conferences according to the ML technics employed in each
one (See Figure 1). The review provided an insight in the extended capabilities of ML tools,
comparing the results of each work according to metrics such as accuracy, precision, and
recall. The review of Elassad et al. concluded that the selection of the best ML technic
in automotive data classification applications depends on the particularities of the task
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to perform, the conditions of the experiments conducted, and the characteristics of the
available data.
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The tendency of cars innovations aims toward the realization of the holistic view of its
role in the modern society, where the vehicle is not only an element to move from one point
to another, but it is fully integrated in human daily experiences and its environment [10].

MPC is a powerful method for vehicle control, but its computing performance can be
improved by integrating machine learning technics into its functioning [11].

ACC is a useful functionality that allows for increased comfort and as an additional
safety measure during driving. As ACC corresponds to level one autonomous driving, its
functionality is closely affected by human interaction in the context of the vehicle itself,
beside the interactions with exterior agents such as pedestrians and drivers of other vehicles.
So, the driver is a key factor that weighs into the ACC performance. Quantifying the effect
of the driver is of utter importance as stated in other works regarding the research of ACC
technology [12].

Driver behavior can account for up to 30% more energy consumed when comparing
aggressive and moderate driving styles [13]. Additionally, the operating characteristics of
the individual drivers require an ACC that best adapts to them, for a safer, more comfortable,
and more efficient driving experience [12]. Eco-driving involves applying a set of strategies
to reduce the vehicles total energy consumption for a given displacement. As seen in the
previous section, there are many approaches for improving the energy consumption of a
vehicle. Ajanović et al. [14] groups the driving behavior-related approaches for improving
energy efficiency into: Eco-routing, using road slope information, traffic light assistance,
platooning, and overtaking.

Real-time awareness of the driving environment is a valuable input for an online
energy management optimization system in a vehicle. Planning ahead for a specific route
could ideally allow a minimized energy consumption driving strategy to be prepared, but
there are always changing factors along the route, such as traffic and red lights at inter-
sections that need to be accounted for by means of probabilistic calculations or real-time
adaptation [15]. Artificial Intelligence can be a suitable tool for improving the energy
efficiency of vehicles in complex scenarios and ever-changing roadway and traffic condi-
tions [16].

The “road slope” energy improving strategies normally involves knowing the road
topography of the route beforehand, and performing optimization using this information,
together with vehicle dynamics models [17]. Ajanović et al. also state in their work that the
optimized speed trajectories are rarely used directly to provide a reference value for low-
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level controllers such as cruise control, nonetheless, that is the path in which automotive
technology is advancing.

The energy consumption of an electric vehicle can be predicted with a precise model
of the powertrain that includes all sub-components [18], but an individual model must be
developed for each car variation. Some works on the field of energy efficiency create macro
models of the whole transportation sector using artificial neural networks for long-term
prediction of energy demand [19,20]. The computation of EVs energy consumption in
real-time and short-range predictions have been also studied by other authors while other
works study energy performance by considering particular segments of a predefined route
or focus on the effect of single variables such as the vehicle weight [21,22].

Many shortcomings of traditional systems can be overcome by implementing data
approaches such as deep learning methods, taking advantage of their ability to find cor-
relations between the given inputs automatically (unsupervised learning) and share this
acquired knowledge with other systems [23]. Deep learning algorithms are especially
useful for image recognition and classification [24].

The implementation of deep learning in autonomous vehicle applications generally
uses deep-neural-network-based controllers, together with perception modules. Sensors
provide the input information to the controller algorithm and it outputs the actuation
for driving the vehicle safely under predefined rules [5,25]. Other uses of deep learning
for vehicle applications includes the prediction of specific driver speed profiles [26], the
prediction of optimal speed profiles for a specific sector on a route, and the prediction-
classification of road, traffic, and driving environments with the objective of improving
the vehicle energy efficiency [27]. A summary of the reviewed state-of-the-art and the
comparison of characteristics with this work is presented in Table 1.

Table 1. State-of-the-art summary.

Article Authors Functions Model Methods Evaluation

Increasing the Fuel
Economy of Connected

and Autonomous
Lithium-Ion

Electrified Vehicles

Asher et al., 2018 [2]
Energy Management,

V2V, environment
Perception

Vehicle Dynamics
Model, Energy
Management

Model

Dynamic programming
and Pontryagin’s

Minimization Principle

SIMULATION using
models to compare
results of different
control strategies

On the Optimal Speed
Profile for Eco-Driving on

Curved Roads
Ding et al., 2019 [8]

Velocity profile
optimization for

curved roads

Vehicle Dynamics
Model, Fuel

Consumption
Model

Dynamic programming
Optimization

Algorithm verification
using co-simulation of

CarSim and
Matlab/Simulink

Design and
Implementation of

Ecological Adaptive
Cruise Control for

Autonomous Driving with
Communication to

Traffic Lights

Bae et al., 2018 [15]
V2I, EAD *,

Surrounding traffic
consideration

Vehicle
Dynamics Model

Robust Model
Predictive Control

ACC ** tested in a
Hardware in the Loop

setup with SPaT ***
information

Vehicle Deceleration
Prediction Based on Deep

Neural Network at
Braking Conditions

Min et al., 2020 [26] Decelerations
predictions Deep learning

Deep neural network
(RNN, LSTM,

conventional neural
network), K means
clustering method

Vehicle velocity,
relative distance

between the vehicle
and the traffic light,

reference acceleration

Quantifying the Impact of
Traffic on Electric
Vehicle Efficiency

Jonas et al., 2022 [27]
Impact of traffic on

Electric Vehicle
efficiency

Statistical models Regression models,
ANOVA

Total energy
consumption, total
distance, Average

consumption per mile,
Mean variation in

speed, Mean variation
in acceleration, Mean

variation in jerk

Road surface real-time
detection based on

Raspberry Pi and recurrent
neural networks

Wang et al., 2021 [28] Road surface detection Recurrent Neural
Network

Allan variance, Machine
learning algorithms
(KNN, L2 logistic

regression, Decision tree,
SVM cross validation),

Deep learning
Algorithms

(LSTM, RNN)

Three axis
accelerometer (x, y, z)

and three axis
gyroscope (x, y, z)
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Table 1. Cont.

Article Authors Functions Model Methods Evaluation

An IMU-based traffic and
road condition

monitoring system
Lei et al., 2018 [29]

Traffic and road
condition

monitoring system
Fast Fourier
Transform

Least squares
optimization for speed
estimation considering
sensor bias, DCM filter

for attitude angle
estimation

Relation between
vertical acceleration

and Present
Serviceability
Rating (PSR)

Map Matching and Lane
Detection Based on

Markovian Behavior, GIS,
and IMU Data

Trogh et al., 2020 [30] Map matching and
lane detection

Markovian
behavior

Viterbi (hidden
Markov model)

Direction of road
segments, maximum

allowed speed per
road segment, and
driving behavior

Safe and Ecological Speed
Profile Planning Algorithm
for Autonomous Vehicles

Using a Parametric
Multi-objective

Optimization Procedure

Orfila et al., 2019 [31]
Velocity profile
optimization for
predefined route

Data-driven
approach

Global Optimization
using Simulated

Annealing

Velocity profile data
comparison—

Algorithm results Vs
human drivers

experimental data

Energy Management
Strategy for a Hybrid

Electric Vehicle Based on
Deep Reinforcement

Learning

Hu et al., 2018 [32] Energy Management HEV Model Deep Reinforcement
Learning

Trained control
Algorithm tested in

MATHLAB and
ADVISOR

Co-simulation

Methodology for Finding
Maximum Performance

and Improvement
Possibility of Rule-Based

Control for Parallel Type-2
Hybrid Electric Vehicles

Jeoung et al., 2019 [33] Rule based controller,
Energy Management

Parallel Type 2
HEV Model

Dynamic programming
and Pontryagin’s

Minimization Principle

Controller algorithm
evaluation in

SIMULATION
HEV MODEL

A Learning-Based
Stochastic MPC Design for

Cooperative Adaptive
Cruise Control to Handle

Interfering Vehicles

Kazemi et al., 2018 [34]
CACC,

Surrounding traffic
consideration, V2V

Data-driven
approach

Artificial Neural
Network

Model Predictive
Controller evaluated
in SIMULATED test

runs from a real
driving tests dataset

Cooperative Adaptive
Cruise Control with Fuel

Efficiency Using
PMP Technique

Rasool et al., 2019 [35] CACC, Surrounding
traffic consideration

Platoon model,
ICE power
train Model

Pontryagin’s
Minimization Principle

Validation of the
controller with the

models in a
SIMULATION

On combining Big Data
and machine learning to

support eco-driving
behaviors

Delnevo et al., 2019 [36] HMI, ADAS Data-driven
approach Machine Learning

Algorithm testing in
SIMULATION using

real data

Real-Time Optimal
Eco-Driving for

Hybrid-Electric Vehicles
Zhu et al., 2019 [37] ADAS, HEV Data-driven

approach

Dynamic programming
Optimization/Artificial

Neural Network

Mutual Validation of
the obtained speed
profiles using DPO
and ANN methods

Environment
classification using
machine learning

methods for eco-driving
strategies in

intelligent vehicles.

(THIS PROPOSED
WORK)

Driving Environment
classification

Machine
learning models

Machine Learning
algorithms (KNN, SVM,

Decision tree)

Linear velocity, three
axis acceleration,

energy consumption,
jerk, roll, pitch

* EAD: Eco Approach and Departure, ** ACC: Adaptative Cruise Control, *** SPaT: Signal Phase and Timing,
V2I: Vehicle to Interface communication, EMS: Energy Management System, CACC: Cooperative Adaptative
Cruise Control, ANN: Artificial Neural Networks, DP: Dynamic programing optimization HEV: Hybrid Electric
Vehicle, ADAS: Advanced Driving Assistance System, SoC: State of charge.

The works reviewed in the State-of-the-Art section cover a wide range of applications
of ML in automotive technology, mainly in the creation of models to predict and act upon
vehicle states or, in other cases, to classify the driver according to pre-defined categories
of driving styles. These works approach the environment assessment as a computer
vision problem or as a historic modeling of roads based on pre-registered information.
The real-time assessment and classification into categories are the key points for the new
approach proposed in this document. This work proposes a procedure for classifying
driving scenarios based on vehicle dynamics and energy sensors data, describing the
suitable pre-processing for the raw data and the recommended input variables that should
be included to get the maximum amount of information from the data, while minimizing the
processing load and processing time in the classification system. The results of this work can
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be used to further research the implementation of subsystems that may help autonomous
driving systems or a human driver (through ADAS) to select the best driving strategy in real
time, for energy-optimization, safety, and/or general performance improvement purposes.

4. Methodology

The methodology for this work develops from the idea that intelligent vehicle’s
awareness of the driving environment can help to improve safety and energy efficiency
of the vehicle, among other possible applications. After the formulation of the idea, the
objective was to use an inertial measurement unit (IMU) and energy sensors for registering
data that could be processed and adapted so that an automated system could use it
to achieve the ability to accurately classify its instantaneous driving environment. The
classification performed by the automated system can be later used by other systems for
energy optimization, safety recommendations, or adjusting the driving strategy to any
specific goals.

The requirement of the system to be able to learn from data, clearly suggested the
need for developing a classification system based on machine learning tools. So, the next
step was to review the available ML technics and to select the most suitable for testing on
the actual datasets.

The data collection consisted of equipping an electric vehicle with sensors and per-
forming real route tests on a predefined circuit. The data collected was then exported and
pre-processed as explained in Section 5. The pre-processed datasets were then used to
train and evaluate the ML algorithms as explained in Sections 6 and 7. Finally, the results
analysis allowed us to draw the work’s conclusions, its possible application, and future
work. A summary of the methodology is presented in Figure 2.
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4.1. Work Process Overview

A general overview of this work is presented in Figure 3, including the Data-acquisition
phase and the design process of the ML classifier. Furthermore, the context in which such a
system could be used is presented as future work.

4.2. Experimentation and Test Route

The experimentation consisted of real driving within the Tecnológico de Monterrey
University Campus in the city of Toluca, Mexico. The defined route was selected so that it
included various differentiable scenarios. For this series of experiments, the selected route
had three different zones that were defined as class elements for the classification task.
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The acquisition of data was performed by using a Dewesoft’s SIRIUS data acquisition
system, which included the DS-IMU/GYRO modules and sensors. The test circuit was
divided in three zones: “Transit”, “Flatland”, and “Cobblestone”. These zones are shown
in Figure 4 and are described as follows:
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Figure 4. Test route with defined zones.

Transit: This is the default classification of the parts of the route that do not belong to
the other two classes. This zone is characterized for having a top speed restriction of 10 km
for pedestrian safety; also, there are several crossings and intersections, and it is expected
that pedestrians or other vehicles may roam, so the driver should always be careful and
especially attentive.

Flatland: This zone is a 150 m by 50 m open-space parking lot that was totally empty
while the testing was being conducted. It is considered flat because there is no significative
difference in the height of the area within the Flatland zone and there are also no obstacles.
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After measuring the height on several points inside the area, the maximum slope registered
was 0.007. The route within this zone includes a series of close radius and successive
turning maneuvers.

Cobblestone: This is a small zone of about 70 m long, located inside the “Transit”
zone; this means that both zones share some characteristics. The difference is the terrain
roughness of this area due to it not being asphalted but rather covered with cobblestone.
Figure 5 presents a photography of this zone.
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In the transit and cobblestone zones, it is recommended that the vehicle speed is
moderated, but it is possible to observe a range of speeds in the gathered data. In the
Cobblestone zone, it is expected that the IMU sensors register high values of vibration in
all axes, but mostly on the z axis, and a possible decrease in longitudinal velocity as an
effort of the driver to reduce the effects of the road roughness on the passenger comfort.

In the Flatland zone, the closed turning maneuvers will induce lateral acceleration
and yaw-rates that should be characteristic of the zone, both in magnitude and frequency.
In addition, the roll angle (rotation around the vehicle’s x axis) is expected to have a
distinctive behavior.

4.3. Test Vehicle

The vehicle used for this work is a custom Battery Electric Vehicle (BEV) available at
the Research Center for Automotive Mechatronics (CIMA) (Figure 6) at the Tecnológico de
Monterrey University in Toluca, México. This test vehicle is a FAW-G60 that features an
electric powertrain. The powertrain consists of a three-phase 72 volts induction motor, a
5 velocities gearbox, and a mechanical differential. Details of the motor and the battery are
shown in Table 2. Furthermore, the powertrain’s architecture is displayed in Figure 7.
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Table 2. Specifications of the test EV’s motor and battery.

Motor

Power 15 HP
Nominal Voltage 76 V
Nominal current 115 A

Peak current 132 A
Max speed 3000 RPM

Battery

Total voltage 96 V
Number of cells 32

Total Energy Capacity 28,800 Wh
Discharge rating 2C 0.5
Discharge current 150 A
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The test vehicle was subjected to an evaluation protocol at CIMA facilities to obtain all
the relevant vehicle characteristics, including aerodynamic coefficients, acceleration capac-
ity, output of mechanical power, and torque. The summary of these results is presented in
Table 3.

Table 3. Test vehicle physical and performance characteristics.

Vehicle brute mass 1370 kg
Wheels’ dynamic radius 0.25019 m

Rolling resistance coefficient 0.014984
Aerodynamic drag coefficient 0.436

Vehicle frontal Area 2.15 m2

Gearbox efficiency 0.95
Axle differential efficiency 0.95

Top Speed 100 km/h

After obtaining the critical characteristics of the vehicle dynamics, the next step was to
perform the tests on the pre-defined route as described in the previous section and to register
the driving data that includes both vehicle dynamics and energy consumption information.

5. Features and Data Preparation
5.1. Data Pre-Processing

The collected data was then analyzed and processed for it to be later used in training
and testing datasets for machine-learning algorithms. The three zones to be classified were
first labeled by using GNSS coordinates associated to each data sample. Then, the GNSS
information was removed before training the classification algorithm so that it relied on
the vehicle’s dynamics and energy consumption information as the only available features.
This information can be pre-processed to enhance the ML algorithm performance. This
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pre-processing includes the selection of the best input features and the combination of
them, followed by statistical values calculation.

5.2. Variable’s Information and Features Analysis

The gathered information includes vehicle dynamics data such as linear acceleration
on x, y, and z axis, linear speeds on x, y, and z axis. Moreover, angular velocity and angular
acceleration around the x, y, and z axis are measured.

The measurements of lateral velocity and acceleration can provide information of
movements that are being performed on the y axis, such as lane changing and other
characteristic maneuvers of certain environments, e.g., low-speed collision avoidance and
continuous lane changing, both characteristics of high traffic urban environments. Another
variable related to the change of the vehicle direction is the angular displacement around
the z axis, also known as heading. The heading provides information on the vehicle’s turning
maneuvers in angular magnitudes. Differentiation of the heading variable in time produces
a well-known magnitude, the yaw rate. The yaw rate provides information on the vehicle-
rotation velocity around its z axis, and it is a valuable factor in vehicle stability assessment.
The heading was not directly used as a feature in this work due to it acting as a “compass”
that precisely gives away the vehicles’ orientation relative to that at the starting position
and can be considered data leakage.

The rotation of the vehicle around its x axis is referred to as the rolling angle. The rolling
angle of the vehicle is affected by vehicle characteristics and by the vehicle’s dynamics.
The suspension subsystem of the vehicle can influence the rolling ranges during turning
maneuvers and, in some cases, the effect of the wind in the laterals of the vehicle can induce
rolling if the suspension is not rigid enough. After performing a characterization of the
rolling behavior of a vehicle, it is possible to use this variable to obtain useful information
of the driving environment.

Together with the Heading and Rolling, there is the Pitch angle, which represents the
rotation of the vehicle around its lateral axis (y axis). This measurement is useful to measure
the vehicle’s inclination and can be used to monitor the effect of acceleration and braking
maneuvers and as an indicator of the road grade.

The slip angle is a variable that corelates the direction of the movement of a vehicle
with the direction of its longitudinal axis. When the vehicle is moving on a straight line,
the slip angle is zero, and its absolute value increases as the vehicle takes a curve. The slip
angle is greater for higher vehicle speeds and for a smaller instantaneous turning radius.

5.2.1. Driver Effect in the Driving Environment Classification

The classifier should be robust enough so that accurate classification can still be
possible for different drivers. Although different driving styles may affect the dynamics
parameters of the vehicle such as longitudinal speed, lateral jerk, and braking frequency
and intensity, the system must assess these differences and correctly classify the current
driving environment based on the combined behavior of the available features. To include
the effect of different drivers as a noise input to the system, the tests carried out for this
work included eight different drivers.

5.2.2. Electric Power Variables

Energy consumption profiles are of a great interest for assessing the vehicle’s battery
range and energy efficiency. Instantaneous energy data also provides valuable information
of many aspects of the driving, including the driving strategy. In addition, some particu-
larities of the current driving environment can be inferred from this data. The electrical
current between the battery and the electric motor is directly related with the mechanical
energy required to accelerate/decelerate the vehicle. When complemented with additional
information from other sensors, it is possible to create a comprehensive model of the in-
stantaneous situation of the vehicle and use it to optimize energy use through driving
strategy adjustment.
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In this work, the electric energy was measured at the vehicle’s motor controller, which
manages the power delivery and regeneration between the motor and the battery pack. The
variables measured were current and voltage, which are directly related with the electric
motor torque and speed. An instantaneous high current demand can cause momentary
battery voltage drops. This information can help in characterizing both the electric power
demand profiles and the battery response to them.

5.3. Data Processing and Environment Parameters

The raw data comes from samples taken by Dewesoft’s real-time inertial measurement
unit (IMU) and subsequently exported at a frequency of 100 (Hz) to be processed through
Python. The signals that were extracted for processing were: linear speed in (m/s), lin-
ear acceleration (m/s2), lateral acceleration (m/s2), vertical acceleration (m/s2), time (s),
distance (m), electric power (w), roll and pitch.

An example of linear acceleration and linear velocity data over time is shown in
Figure 8.
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To synthesize these signals into values that serve as test characteristics, the mean
and standard deviation has been calculated. Another compounded variable calculated
is the relative positive acceleration (RPA) that is defined as a fundamental measure for
the characterization of routes [38]. RPA is a parameter introduced in 1997 by C. Van
de Weijer [39] for characterizing vehicles in emission testing cycles of Diesel Internal
Combustion Engines.

In this study, RPA is defined as the sum for a given time delta of the product of the
instantaneous speed times the instantaneous positive instant acceleration divided by the
traveled distance during the given time interval. This definition is mathematically defined
in Equation (1).

RPA =
1
X

∫ T

0
v(t) ∗ a+(t)·dt (1)

where v(t) is the instantaneous velocity at time t, a+(t) is the instantaneous acceleration of
positive magnitude, X is the total distance traveled, and T is the total duration. RPA can also
be interpreted as a measurement of the total energy required for the instantaneous positive
longitudinal accelerations performed by the powertrain while traveling a given distance.

The jerk is defined as the coefficient of variation between the standard deviation and
the mean of the derivative of the linear acceleration in time [40]. The calculation method
for the jerk is presented in Equation (2).

γ =
SDJ

J
(2)
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where SDJ is the standard deviation of the jerk, and J is the mean value.

6. Data Analysis

For the analysis and construction of the initial dataset that relates all the tests and with
which the machine learning algorithms were trained, 21 characteristics were considered.
The complete list can be seen in Table A2 in the Appendix A.

For the classification of the road, three previously defined labels were used, which are
“Transit”, “Cobblestone”, and “Flatland”, which correspond to the distinguishable zones of
a route inside the Toluca campus of the Tecnológico de Monterrey. Eight different drivers
aged between 22 and 30 years participated in these tests. The total number of samples
collected from the three classes was 476, which consisted of complete travels around the
defined test route.

For the creation of the data table with which the machine learning algorithms were later
trained, two main approaches were taken. The first method was to process the information
of each complete class gathering the global characteristics of each analyzed sector, thus
obtaining a dataset of 476 samples. The second approach consisted of partitioning the
original data by using two-second windows and then calculating the statistical values for
these subsamples, which contained 200 entries each (100 (Hz) data recording). The total of
the samples processed after the partition of each of the tests was 34,137.

As a method of analyzing the information contained in the dataset, different artificial
intelligence algorithms such as the k-nearest-neighbors (KNN), support vectors machine
(SVM), and the decision tree were tested, the latter being mainly used as a method for
feature selection and reduction of the dataset’s dimensionality. As mentioned in the
previous section, a study was initially carried out in which the samples without partitioning
were considered; that is, statistical values of the data were recorded for each zone of the
complete test route separately. After that first approach, the data set was statistically
processed again, this time in 2-s intervals, which contained 200 subsamples each.

6.1. Analysis of Samples from Pure Datasets

As stated in the previous section, the dataset that contains the recorded data per travel,
is a matrix of 476 rows by 25 columns. The analysis of this dataset starts by exploring
the behavior of the K-nearest-neighbors algorithm (KNN) against all dimensions. Table 3
presents the evaluation metrics of the KNN algorithm; the accuracy in the test and in the
training is 80% in both cases. The Precision, Recall, and F1-score are also shown; these
values are a direct measurement of the algorithm’s performance.

The same training and testing procedures were performed for a second-degree poly-
nomial kernel support vector machine, the results were much better than those of the KNN
algorithm. The results of this preliminary analysis are also presented in Table 4.

Table 4. KNN performance metrics.

KNN F1-Score SVM F1-Score Support Samples

Flatland 0.8 0.99 45
Cobblestone 0.7 1.0 36

Transit 0.88 0.99 38
Accuracy 0.8 0.99 119

Macro avg. 0.8 0.99 119

However, seeking to improve these metrics and the general processing performance,
a dimensional reduction is proposed for the dataset used with the ML algorithms. This
reduction of the dimensions was carried out by exploring the importance that each one
of the characteristics has when a decision tree is trained. This dimensional reduction also
served as a method to avoid data leakage that leads to overfitting of the decision tree
and to increase training and prediction time for different algorithms, without significant
improvement in the tests results scores.
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This process consisted of obtaining the contribution that each characteristic made
to the decision tree at the time of being trained. Then, the following step was training
and evaluating KNN and SVM algorithms with metrics against the different data tables
obtained after eliminating the dimensions that led to overfitting or poor performance of
the classification algorithms.

Finally, after different tests and evaluations, it was found that the best performance of
the classification task occurs in front of three-dimensions that are the standard deviation of
the pitch (Pitchsd), the standard deviation of the Roll (Rollsd), and the average lateral or
Y-axis acceleration (Aymn).

Figure 9 presents the relationship that exists between each of these dimensions and
how the data from the different samples are located within these point clouds. It can be
seen that there are regions in which only the values of the same class are located and, thus,
a good classification with these features can be achieved.
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After reducing the number of features in the dataset, the next step was to train and
evaluate the nearest neighbor algorithms and the SVM again. This time, the result for the
test accuracy of the KNN algorithm was 99.2%.

Although the reduction of the characteristics improved the performance of the KNN
going from an accuracy of 80% to one of 99.2%, the same did not happen with the SVM
algorithm with the second-degree polynomial kernel function; it remained the same.

6.2. Data Segmentation into Subsamples

In the previous section, results of the ML algorithm’s training were obtained by using
the dataset with statistical values of the samples analyzed in their entirety. In this section,
the data is sub-divided by creating and analyzing partitions of 2-s durations.

The future application of this work is achieving that the driving environment can
be accurately classified in almost real-time; the information generated is relevant for
automated driving systems only if it is available and updated during real-time decision
making, along with other information that is being processed from the vehicle’s state.

With this premise, the data from the original dataset was divided using discrete time-
windows that contained information from 2 s of sampling and was subsequently processed
with the statistical methods described in the beginning of this section to generate a new
dataset. The division into small windows allowed for information of more events to be
maintained; for example, if a driver maintains a constant speed for 20 s and then suddenly
speeds up for another 10 s, a time-window of size 30 s will not be able to capture the two
different events that took place in it (Murphey et al., 2009) [40].

The graph in Figure 10 presents this analysis of division in windows, where the
x-axis is divided into segments of 2 s. It can be seen how the average speed value of the
entire sample (green line) differs from each of the average speed values of the subsamples
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(red line), which is why it was decided for each test to be analyzed as a succession of
discrete events.
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7. Results and Discussion

This section presents the results from the data processing and the classification algo-
rithms performance. The results from pre-processing stages, such as feature selection, are
also included in this section. The considered information includes the classification scores
(accuracy, precision, recall, and F1-score) as well as training and prediction time. This
metrics allow for comparisons to be made between the different pre-processing methods
and Classifiers.

The first results presented correspond to the ones obtained with the original 21 features,
that include the composite features RPA and Jerk (Section 5.3).

7.1. Feature Importance Results based on Mean Decrease in Impurity

“Feature importance are computed as the mean and standard deviation of accumulation of the
impurity decrease within each tree” (“MATLAB Documentation”, n.d.) [41]. This automated
feature selection allows us to identify the contribution to the class separation in each level
of a decision tree classifier. It is a straightforward method to identify notable contributions
to the classification task among all the features.

7.2. Classifiers Benchmark

The pre-processed dataset was then split in a 75-25 proportion for training and testing,
respectively. In addition, the trained classifier was later evaluated with data from a driving
test that was not included in the original dataset. The results for this new dataset were
consistent with the previous results, achieving an average F1-Score of 93%.

In this work, 14 classification algorithms were tested in a benchmark evaluation using
the pre-processed data. As it is explained further in this document, the analysis then pro-
ceeded with only the three algorithms with the highest scores in the benchmark: Random
Forest, KNN, and SVM-RBF. The other classification algorithms initially tested were: Ridge
Classifier, Perceptron, Passive-Aggressive, Stochastic gradient descent, Nearest Centroid
(Rocchio classifier), and Naive Bayes. For each one of those, extensive documentation can
be found [42]. In this work, the default configuration parameters of these algorithms in
python scikit-learn were used [43].

The benchmark allowed us to compare 14 different classifiers’ performance, by using
the same dataset in all of them. The results showed that Random Forest, KNN, and SVM
classifiers provided consistently the best classification scores (Figure 11). In attention to the
former, subsequent analyses were carried on with these three classifiers only.
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7.3. Processing and Analysis of Samples in 2-s Windows

By dividing each of the tests into 2-s subsamples and obtaining their statistical values,
a new dataset is generated. It contains all the tests performed with 34,137 rows and
21 columns, with which the RF, KNN, and SVM algorithms are trained and evaluated.

The obtained performance of the KNN classifier with the aforementioned approach
was quite poor (57.3% test accuracy), a dimensional reduction was performed in the same
way that it was done for the set of 476 samples. Then, the behavior of the three algorithms
could be checked again with this new reduced dimensionality dataset. After performing the
steps described in Section 7.1, dimensions are reduced from 21 to 8, as shown in Figure 12,
to reduce processing time and to evaluate the classification score again.
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With this new data set of 34,137 rows and eight dimensions, the RF, KNN, and SVM
algorithms were trained and evaluated again; the results are presented in Table 5, where it
can be seen that the performance of the k nearest neighbors improved when considering
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only six neighbors. On the contrary, the SVM decreased its performance according to the
precision, recall, and F1-score metrics. However, its accuracy in the test was not highly
affected. Random Forest scores also decreased when reducing the features dimensionality.

Table 5. Evaluation metrics for KNN and SVM after dimensional reduction.

KNN k = 19 SVM (RBF) Random Forest

Test accuracy 93.2% 88.9% 90.7%
Precision 93% 89% 91%

Recall 94% 89% 91%
F1-score 93% 89% 91%

Support samples 8535 8535 8535

The Figure 13 table presents the resultant confusion matrices of the three classifica-
tion algorithms and an example of classification area graphs created by them for a pair
of features.
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The separation is more visible at higher dimensions (Figure 14). Considering that the
selected features were eight, the high-dimensional classification allows us to achieve better
classification scores.
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8. Conclusions

From the 23 originally proposed features, only some of the mean and standard devia-
tion features were found to be important for this work’s classification problem. This does
not mean that the RPA and Jerk could not be of use in these kinds of problems, but rather
that the particular characteristics of the three driving scenarios that were considered in this
work were more easily classified by the other available features. The former affirmation
can also be applied to the energy features that were not selected in the end.

Although the classification result scores of the driving scenarios were high (99%),
when analyzing datasets of each pure class (Section 6.1), this was not the objective of the
work, and it only served the purpose of providing a baseline of the ideal scenario in which
only the pure data of each class were grouped and statistically processed together. After
that, the discretization of the data into 2-s samples was closer to the actual purpose of
analyzing the driving environment continuously and to make continuous predictions of
the current driving environment. In this case, the classification results were over 93.2% and
90.7% accurate for KNN and RF, respectively, while using only eight features to do so.

Although the SVM:RBF classifier also achieved high scores (89%), the elevated calcu-
lation time to perform predictions and classifications makes it not suitable for real-time
applications. It could be used for off-line training and vehicle data analysis, but not directly
in real-time decision making.

9. Future Work

There is still plenty of research to be conducted to help autonomous driving systems to
better perceive and process their environment and trying new approaches will help to bring
the next improvements. Some propositions on this matter that can be studied further are:

• The integration of ML classifiers into intelligent driving systems for real-time aware-
ness in pre-defined scenarios and the use of this information for calculating optimal
energy-use strategies (Figure 15).

• The automatic classification of new scenarios, using ML strategies such as unsuper-
vised learning for the clustering of classes with common characteristics in terms of
drivability and energetic-related driving-style requirements.

• The same methodology exposed in this work can be tested again and improved by
including more driving scenarios and routes with more complex characteristics and
interactions with other players of the driving environment.
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Appendix A

Table A1. List of acronyms.

Acronym Definition

ML Machine Learning
KNN k-nearest neighbors

RF Random Forest
SVC Support Vector Classifier
SVM Support Vector Machine
RBF Radial Base Function
IMU Inertial Measurement Unit

Table A2. List of features.

Feature Name Description

Vmn [m/s] Mean Longitudinal Velocity [44]
Vsd [m/s] Standard deviation of longitudinal velocity [44]

Amn(+) [m/s2] Mean of the positive acceleration in X. It is related to the use of the throttle [44]
Asd(+) Standard deviation of positive acceleration at X [44]

Axsd [m/s2] Standard deviation of longitudinal acceleration [44]
Axmn [m/s2] Mean longitudinal acceleration [44]
Aymn [m/s2] Mean of vertical acceleration
Aysd [m/s2] Standard deviation of vertical acceleration
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Table A2. Cont.

Feature Name Description

Azmn [m/s2] Average lateral acceleration
Azsd [m/s2] Standard deviation of lateral acceleration

Abrmn [m/s2] Mean of braking acceleration (negative values of longitudinal acceleration) [44]
Abrsd Standard deviation of braking acceleration [44]
RPA Relative positive acceleration [38]

Potmn Average power during the test, measured from batteries
Potsd Standard deviation of electrical power

Jerk (X, Y, Z)
[m/s3]

Statistical value for comfort, relates the standard deviation and the average of
the signal derived from the acceleration in each of the coordinate axes [40]

Rollmn Roll average
Rollsd Roll standard deviation

Pitchmn Pitch average
Pitchsd Pitch standard deviation
Energy

[Wh/km] Electric energy measured at the motor, given for each kilometer travelled
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