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Abstract: We are currently experiencing a revolution in data production and artificial intelligence (AI)
applications. Data are produced much faster than they can be consumed. Thus, there is an urgent
need to develop AI algorithms for all aspects of modern life. Furthermore, the medical field is a fertile
field in which to apply AI techniques. Breast cancer is one of the most common cancers and a leading
cause of death around the world. Early detection is critical to treating the disease effectively. Breast
density plays a significant role in determining the likelihood and risk of breast cancer. Breast density
describes the amount of fibrous and glandular tissue compared with the amount of fatty tissue in the
breast. Breast density is categorized using a system called the ACR BI-RADS. The ACR assigns breast
density to one of four classes. In class A, breasts are almost entirely fatty. In class B, scattered areas of
fibroglandular density appear in the breasts. In class C, the breasts are heterogeneously dense. In class
D, the breasts are extremely dense. This paper applies pre-trained Convolutional Neural Network
(CNN) on a local mammogram dataset to classify breast density. Several transfer learning models
were tested on a dataset consisting of more than 800 mammogram screenings from King Abdulaziz
Medical City (KAMC). Inception V3, EfficientNet 2B0, and Xception gave the highest accuracy for
both four- and two-class classification. To enhance the accuracy of density classification, we applied
weighted average ensembles, and performance was visibly improved. The overall accuracy of ACR
classification with weighted average ensembles was 78.11%.

Keywords: deep learning; mammography; breast density; breast cancer; CAD systems

1. Introduction

Artificial intelligence (AI) algorithms have improved and affected every aspect of
modern life. In the last two decades, machine learning techniques and computer power
have experienced momentous development, leading to an enormous increase in digital
data in different fields. These advances have enabled researchers to solve real-world
problems in many areas, including the medical image analysis field. Medical imaging
was first used in 1895 [1]. Since that time, the devices and quality of medical imaging
have continued to evolve. Today, medical imaging is an essential tool for diagnosing and
detecting diseases such as cancer [2]. Cancer is a significant public health concern that
affects people around the world, and it is the second leading cause of death in the US [3].
Breast cancer is one of the most prevalent cancers that affect women [4], but it can also arise
in men [5]. In Saudi Arabia, in 2018, breast cancer was the most common type of cancer,
with an incidence rate of 14.8% and a mortality rate of 8.5% [6]. In 2020, breast cancer
remained the most common type of cancer in Saudi Arabia. Breast cancer is a disease
caused by the abnormal growth of breast cells. Usually, somatic cells divide to produce
new cells in an orderly manner. When the cells of a specific part of the body grow and
divide out of control, a mass of tissue called a tumor is created. A tumor that consists
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of normal cells is benign. When the cells are abnormal and exhibit irregular behavior, it
is a malignant or cancerous tumor [7]. Three distinct types of medical imaging are used
to diagnose breast cancer. These are mammograms, ultrasound,and magnetic resonance
imaging (MRI) [8]. Among the breast imaging techniques, the mammogram is considered
the gold standard for detecting and diagnosis [9,10]. A mammogram is a type of medical
imaging that uses a low-dose x-ray system to see inside the tissues of the breast [11]. There
are two mammogram imaging modalities: digital and screen-film mammography. Screen-
film mammography (SFM) consists of conventional analog mammographic films. SFM
often contains various background objects, such as labels and markers, that need to be
removed. Digital mammograms are also referred to as FFDM images; FFDM stands for
full-field digital mammography. FFDM is the approved version in hospitals today [11].
Moreover, mammogram images can be found in several formats, including LJPG, DICOM,
PGM, and TIFF. In the standard view for each breast, two X-ray images must be taken on
both sides. Therefore, four images of both breasts must be examined. These four images
are called: LEFT_CC, LEFT_MLO, RIGHT_CC, RIGHT_MLO [12,13]. The craniocaudal
(CC) view is taken from above a horizontally compressed breast (head-to-foot picture). The
CC view captures the medial portion and as much of the breast’s outer lateral region as
possible. MedioLateralOblique (MLO) view captures the entire breast and often includes
the lymph nodes and the pectoral muscle. Figure 1a,b show examples of the CC and MLO
views, and Figure 2 illustrates the angle of each view [14]. Among the breast imaging
techniques, the mammogram is considered the gold standard [9,10].

(a) (CC view) (b) (MLO view)

Figure 1. FFDM view for right breast.

Figure 2. The difference between CC and MLO views.
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1.1. Breast Density

Breast density describes the amount of fibrous and glandular tissue in a breast com-
pared with the amount of fatty tissue. The breast density is assigned to one of four classes
in the mammogram report based on the ACR BI-RADS standard. In class A, the breasts
are almost entirely fatty. A few areas of dense tissue scattered within the breasts indicate
class B. In class C, the breasts are heterogeneously dense. Finally, in class D, breasts are
extremely dense [8,15]. Breast density plays a significant role in detecting breast cancer and
on the risk of developing breast cancer. The clinicians must identify breast density from
a mammogram for each patient and write it in their reports. Usually, dense breasts—i.e.,
breasts categorized into class C or D—are more likely to be affected by breast cancer [16].
In [17], the authors studied the relationship between mammographic densities and breast
cancer risk. The results showed that the ratio of positive cancer cases for the different ACR
classes were as follows: D (13.7%), C (3.3%), B (2.7%), and A (2.2%). Table 1 illustrates the
difference between ACR classes.

Table 1. Breast density classes.

ACR Class Feature Tissues Proportion Example

A Fatty Less than 25% dense tissue

B Fibro-glandular 25–50% dense tissue

C Heterogeneously dense 50–75% dense tissue

D Extremely dense More than 75% dense tissue
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Breast density is important and must be specified in breast screening medical reports.
Determining breast density can be challenging and mostly subjective, especially if they
have been affected by treatment such as chemotherapy [18].

1.2. Convolutional Neural Network (CNN

CNNs are a type of artificial neural network usually used for classification and com-
puter vision tasks. Therefore, CNNs are considered efficient tools for medical imaging
classification. In addition to input and output layers, CNNs include three main types of
layers: convolutional, pooling, and fully connected. The convolutional layer is the main
part of the CNN; it incorporates input data, a filter, and a feature map. The pooling layer or
down-sampling layer seeks to reduce the number of parameters in the input. In the fully
connected layer, a neuron applies a linear transformation to the input vector through a
weight matrix [19]. Figure 3 illustrates the general structure of the CNN, assuming an input
image size is 28 by 28, and a target task is classifying images into one of 10 classes [20].

1 
 

 
Figure 3. The general structure of a CNN .

The CNN model is affected by many factors, including the number of layers, layer
parameters, and other hyperparameters of the model, such as the optimizer and loss
function. The loss function is used to calculate the difference between the predicted value
and the actual value. An optimizer is a function that modifies the weights and learning rate
of the DL model to reduce the loss value and increase accuracy. With classification problems,
especially when there are more than two classes, the categorical_crossentropy function is
the best choice to calculate loss value [21]. Root mean square propagation (RMSProp), and
adaptive moment estimation(Adam), are the most commonly used optimizers [22,23].

1.3. Transfer Learning and Pre-Trained CNNs

Transfer learning reuses the knowledge gained from a previous task in a new deep
learning model. Usually, deep learning requires a large amount of data to achieve good
results. However, it is often difficult to gather enough data, especially in the medical field.
Therefore, transfer learning enhances the learning process when the dataset has limited
samples [24]. A pre-trained model is a model that was created and trained to solve a
problem that is related to the target task. For example, in image classification tasks, such as
flower image classification, we can use VGG19, which is a pre-trained CNN used to classify
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images that was trained on a huge image dataset called ImageNet [25]. Table 2, presents
the main information about the pre-trained CNN that was used in this paper [26,27]. This
information includes the model name, the number of layers, the top-1 accuracy of the model
in classifying ImageNet data, and the year the model was established. The top-1 accuracy
checks if the class with the highest probability is the same as the target label [28]. All of the
models were trained on ImageNet. The ImageNet is a large dataset of 14,197,122 annotated
images belonging to more than 1000 categories [29].

Table 2. Pre-trained CNNs.

CNN Model Model Name Origin Number of Layers Top-1 Accuracy Year Established/Updated

VGG16 Visual Geometry Group 16 71.3% 2015

VGG19 Visual Geometry Group 19 71.3% 2015

ResNet50V2 Residual Neural Network 103 76.0% 2016

InceptionV3 Inception 189 77.9% 2016

Xception Extrem Inception 81 79% 2017

InceptionResNetV2 Inveption-Residual Neural
Network 449 80.3% 2017

DenseNet121 Densely Connected
Convolutional Networks 242 75.0% 2017

MobileNetV2 MobileNet 105 71.3% 2018

EfficientNetB0 EfficientNet 132 77.1% 2019

Many studies on applying machine learning and deep learning to classify breast
density from mammogram have been conducted. However, we could not find a study
that used local data from Saudi Arabia. Moreover, according to [30,31], breast density and
ethnicity are associated. Therefore, an automated model to classify breast density trained
on local mammogram datasets would be valuable. The main contribution of this paper is
developing a breast density classification model that is suited for the local population in
Saudi Arabia. The model is based on pre-trained CNNs and weighted average ensembles
and applied to the KAMC dataset. The rest of this paper is divided as following, Section 2
explores recent related works that classify breast density from mammogram using deep
learning techniques. Section 3 outlines our methodology. Section 4 presents and discusses
our results. Finally, a conclusion is offered in Section 5.

2. Related Works

Recently, many studies have sought to develop deep learning models to assess breast
density. Some of these studies target two classes of density (fatty or dense), while other
studies classify the breast as fatty, glandular, or dense. However, most studies classify
breast density into four classes according to the BI-RADS system. Here we mention only
recent works related to ACR classification, as it is a standard in medical reporting. In [32],
the authors proposed a breast density classification model based on convolutional neural
networks (CNNs). They applied two techniques to 200,000 breast screenings. They called
the first technique a baseline and the second a deep convolutional neural network (deep
CNN). In the baseline, they used pixel intensity histograms of screening as input features.
Then, softmax regression was used as a classifier. In deep CNN, the inputs were the four
screening views, while the fully connected layer consisted of 1024 hidden units and the
output layer used the softmax activation function. Additionally, they used the weights
of the previously trained model of breast cancer detection to initialize the parameters of
their network. Both techniques were measured by computing the area under the ROC
curve (AUC), the accuracy of super-classes (dense or non-dense), and the ACR accuracy.
For the baseline with 20 bins, AUC = 0.832, ACR accuracy = 67.9%, and super-classes
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accuracy = 81.1%. For deep CNN, AUC = 0.916, ACR accuracy = 76.7%, and super-classes
accuracy = 86.5%. Another CNN was then applied to the MAIS dataset to classify breast
density in [33]. Different preprocessing techniques were used, including pectoral muscle
segmentation, image augmentation, and image resizing. The CNN consists of three convo-
lutional layers, followed by two fully connected layers, and, finally, the output layer. The
dataset was divided, with 20% used for testing and 80% for training, before five-fold cross-
validation was applied. The overall accuracy of ACR classification was 83.6%. Moreover,
in [34] the CNNs were applied with a squeeze-and-excitation network (SE-Net) mechanism
to classify breast density from mammograms. The three CNN models used with SE-Net
were Inception-V4, ResNeXt, and DenseNet. A 10-fold cross-validation was used to obtain
better results. The dataset consisted of 18,157 images. The preprocessing entailed removing
the background, grayscale transformation, augmentation by cropping and rotating images,
and normalizing the images into a normal distribution. The classification accuracy was
measured for each model with and without SE-Attention. The accuracy of Inception-V4
and Inception-V4-SE-Attention was 89.97% and 92.17%, respectively, while for ResNeXt50
and ResNeXt50-SE-Attention, the accuracy was 89.64% and 91.57%, respectively. Finally,
the accuracy of DenseNet121 was 89.20%, and for DenseNet121-SE-Attention it was 91.79%.
Furthermore, in [35], a fine-tuned model based on InceptionV3 was used to classify breast
density. The dataset consists of 3813 mammogram screenings. The accuracy obtained by the
model for the BI-RADS classification based on 150 screenings was 83.33%. Meanwhile, in [36],
a deep learning model based on vgg16 was proposed to predict breast density class. The
central idea of this work is to compute the amount of fibroglandular tissue in each image. The
dataset consists of 1602 images, 70% of which were used for training, and 30% for testing. The
accuracy of the model 79.6%. In [37], a deep CNN based on ResNet-18 was applied. The ex-
periment was performed on a dataset with 41,479 digital screening mammograms for training
and 8677 mammograms for testing. The accuracy of dense or non-dense classification was
86.88%. On the other hand, the accuracy of classification into the four BI-RADS categories was
76.78%. The authors in [38] used another deep learning-based approach for fully automated
breast density classification. This approach comprised three main stages. In the first stage,
the breast area is isolated from the mammogram by removing the background and pectoral
muscles. In the second stage, a binary mask containing the dense tissue is created by a
generative adversarial network (cGAN). Then, in the third stage, breast density is classified
by feeding the binary mask into a multi-class CNN. The INbreast dataset was used for
training and testing. The overall accuracy of density classification was 98.75%. In [39], a
range of deep CNN architectures with different numbers of filters, layers, dropout rates,
and epochs were evaluated. The database used included 20,578 images, which were then
reduced to 12,932 images to avoid over-representing ACR densities B and C, before being
divided into 70% for training and 30% for testing. The chosen CNN architecture consists
of 13 convolutional layers followed by max-pooling and dropout at a rate of 50%. The
number of epochs was 120 and the patch size was 40. The performance was measured for
MLO and CC views separately and the ACR classification accuracy was 90.9% and 90.1%,
respectively. Authors in [40], meanwhile, proposed a multi-path deep convolutional neural
network (multi-path DCNN) in order to classify breast density. The proposed DCNN takes
four inputs including subsamples of digital mammograms, largest square region of interest, a
mask of dense area, and the percentage of breast density. They used ten-fold cross validation,
resulting in an overall accuracy of 80.7%. In [41,42], a residual neural network was used to
classify breast density according to two classes (fatty and dense), and BI-RADS classification.
The collected dataset in this work consists of 7848 images. After excluding badly exposed
images and cases involving one breast, the total number of images was reduced to 1962. The
proposed model consists of 41 convolutional layers. The model was tested with different
image sizes and the size 250 × 250 gave the highest accuracy with BI-RADS classification.
The obtained accuracy for two classes classification and BI-RADS classification was 86.3%
and 76.0%, respectively. In [43], the author proposed an artificial neural net- work called
DualViewNet as a means to classifying breast density. The structure of this model was based
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on MobileNetV2. In this model, a joint classification on MLO and CC mammograms cor-
responding to the same breast was performed. They used CBIS-DDSM and applied image
enhancement techniques and image augmentation during the preprocessing stage. Moreover,
they excluded the images with suspect labels. The performance measurement was carried out
by computing AUC equal to 0.9882. In [44], the authors collected a dataset from 33 different
clinics. The aim of this study was to test deep learning in classifying breast density from a
large mammogram dataset that was collected from a range of multi-institutions. The dataset
consists of 108,230 images. They used VGG16, ResNet, InceptionV3, and DenseNet121. The
overall accuracy of the model was 66.7%. Authors in [45], employed federated learning
(FL) to classify breast density across seven clinical institutions. They applied a pre-trained
model based on DensNet12, achieving an overall accuracy of 77%. Several residual nets
were used in [46] to classify breast density, including ResNet43, ResNet50, and ResNet101.
The models applied on a clinical dataset consisted of 1985 mammograms, in addition to
the INbreast dataset. During the preprocessing stage, images were resized to 224 × 224,
the background was removed, and augmentation was applied. During the training stage,
5-fold cross validation was applied. The best performance was obtained from ResNet50,
with an overall accuracy of 87.1% for the clinical dataset and 70% for INbreast. In [47],
bilateral adaptive spatial and channel attention network (BASCNet) was used to classify
breast density. The backbone of this model was ResNet. The training dataset that was used
is a subset of DDSM consisting of 250 cases of each ACR class to handle the class imbalance
problem. Various preprocessing stages were applied, including removing the background,
image resizing to 224 × 224, and augmentation. In addition, 5-fold cross validation was
applied during the training process. The testing was performed on both the DDSM and
INbreast datasets, and the overall accuracy was 85.10% and 90.51%, respectively. Table 3,
summarizes the deep learning classification techniques mentioned above.
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Table 3. Classifying breast density using deep learning.

Work Title Dataset Included Pre-Processing Data Splitting Deep Learning Two Classes ACR AUC
Cases Techniques Model Accuracy Accuracy

Deep 200,000 All
Augmentation

80% training, Baseline 81.1% 67.9% 0.832
CNN [32] mammograms cases 10% testing,

10% validation CNN 86.5% 76.7% 0.916

Deep MIAS All 1- Segment 80% training,

CNN — 83.6% —
Learning pectoral (apply
from cases muscle five-fold
Small and breast cross-
Dataset 2-Augmentation validation)
[33] 3- Resize images 20% testing,

DENSITY 1602
All cases

Augmentation 70% training
VGG16 — —QUANTI- images 30% 79.6%

FICATION [36] testing

Neural 1-Remove ten-fold InceptionV4

—

89.97%

—

background
Networks 18,157 All 2- Grayscale Inception-SE 92.17%

transformation cross- ResNeXt50 89.64%
based on images cases 3-Augmentation validation ResNeXt-SE 91.57%
SE-Attention 4-Normalized into a DenseNet121 89.20%
[34] Gauss distribution DenseNet-SE 91.79%

Density 41,479 All
Augmentation

41,479
ResNet-18 86.88% 76.78% —Assessment mammograms train-images

Using Deep cases 8677
Learning [37] test-images

BI-RADS 3813

—

1- Remove

— InceptionV3 — 83.33% —density mammograms background
categorization [35] 2- Augmentation

Automated

INbreast

All 1- Remove 80% training, cGAN for

— 98.75% —Density pectoral (holdout segmentation
Segmentation cases muscles cross- and
and 2- Resize images validation) CNN for
Classification [38] 3- Augmentation 20% testing, classification



Appl. Sci. 2022, 12, 5599 9 of 23

Table 3. Cont.

Work Title Dataset Included Pre-Processing Data Splitting Deep Learning Two Classes ACR AUC
Cases Techniques Model Accuracy Accuracy

Determination 20,578 12,932

Augmentation

70% training, Deep

—

MLO: MLO:
of breast images images 30% testing, CNN 90.9% 0.98
density [39] CC: CC:

90.1% 0.97

Residual 7848 1962

—

cross-
CNN 86.3% 76.0% —Convolutional images images validation

Neural
Networks [42]

DualViewNet CBIS-DDSM Exclude Augmentation — MobileNetv2
— —

0.988
[43] suspect

labels

Multi- 108,230 All

Augmentation

ResNet

—

66.6%

—Institutional images cases InceptionV3 64.4%
Assessment DenseNet201 65%
[44] VGG16 66.7%

Residual 1985 All 1- Remove five fold ResNet50

—

87.1% 97.2
Learning mammograms cases background cross-
[46] 2- Resize images validation)

INbreast 3- Augmentation 70% 84.7

BASCNet DDSM 250 cases 1-Remove five fold ResNet

—

85.1%
from each background cross-

[47] INbreast ACR class 2-Resize images validation) 90.51%
3-Augmentation
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3. Methodology

In this paper, we developed a model to classify breast density from mammograms
based on pre-trained CNNs and weighted average ensembles. The key steps of our method-
ology are illustrate in Figure 4. The first stage entailed collecting the dataset from KAMC.
Next, we prepared the data. Then, several pre-trained models were applied to classify
breast density. Finally, a weighted average ensemble was employed to enhance the CNN
performance. Below, we describe each of the steps in sequence.

Figure 4. Methodology.

3.1. Dataset

The dataset was collected from King Abdulaziz Medical City, and it consists of 879
mammogram screenings taken between 1 January 2020 and 12 January 2021. The data
collection took around three months, from 3 December 2020 to 28 February 2021, because
the system allows only one record to be downloaded at a time, and we could not access
the system when the radiologists were using it. Each case is associated with a medical
report written by a radiologist. Patients’ private information, such as their names and IDs,
was hidden from the reports. Only data that relates to the research and statistics were
included. These data include the diagnosis, BI-RADS stage, ACR class, age, and gender.
Most of the screenings were diagnosed as BI-RADS 2, but the data include all BI-RADS
categories. As each screening included two or more images, there were 3083 images in total.
The majority of cases were for women, with just a few cases for men. Figure 5 shows the
gender distribution.

Figure 5. Gender distribution.

The dataset includes people between the ages of 28 and 89. The majority were above
40 years. Patients younger than 40 years of age had their mammograms done for specified
indications. Figure 6 shows the age distribution chart. The four density classes in the ACR
standard are represented in this dataset: 36.9% of the cases are in class B, 34.9% in class C,
21.6% in class A, and 6.6% in class D. This follows the normal distribution of ACR classes
in other mammogram datasets; where class B is the majority class, there are more samples
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in class C than in class A, and class D is the minority class [38,48]. The chart in Figure 7
illustrates this distribution.

Figure 6. Age distribution.

Figure 7. ACR distribution.

3.2. Data Preparation

At this stage, we cleaned the data by removing mislabeled cases. The dataset was
divided as follows: 80% was used for training and validation and 20% was used for testing
with a fixed seed number. The images were converted into PNG format; the original image
size was 4096 by 3328 pixels in RGB color mode. Converting images to PNG format does
not compromise image quality through compression. Moreover, PNG format supports
a wide color range. The images were then resized to 300 by 300 pixels, as their original
size was too large to use during training. Finally, several augmentation techniques were
applied, including horizontal flip, rotation, and translation, as in most of the related works.

3.3. Pre-Trained Model

We applied several pre-trained CNN models used in related works to classify breast
density. These models were ResNet, Inception, DensNet, and VGG16 [34,36,37,44,47].
Moreover, we applied models based on VGG19, InceptionResNetV2, EfficientNetV2, and
Xception. The models were applied to the entire dataset, without excluding cases that were
affected by treatment. The structure of our proposed model is shown in Figure 8. First, the
pre-trained CNN is loaded. Then a flatten layer is applied. After that, the model going
through several dense and dropout layers. Finally, the output layer gives the density class.
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Figure 8. Structure of the model.

3.4. Average Ensembles

Ensembles is a technique that applies machine learning and deep learning to enhance
performance. Basically, ensembles combine multiple models instead of using just a single
model. How these models are combined determines the type of ensembles technique
used, which include stacking, bagging, boosting, and averaging. In stacking ensembles, a
meta-learning model integrates the outputs of basic models that were trained on the entire
training set. In contrast, the bagging technique trains many models separately on a subset
of data before combining their predictions to generate an ensemble predictor. Boosting,
meanwhile, uses sequential training, enabling subsequent models to focus on previously
misclassified samples. Finally, in averaging ensembles, several models are trained on the
training set, and during testing, the average of their predictions is taken. A subtype of
averaging ensembles is weighted average ensembles. In a weighted average ensemble,
each model is weighted according to certain criteria or based on a grid search. The final
result is obtained through a dot product of the weight vector and the model predictions
vector; after that, the sum or highest probable class is taking [49,50].

In our model, after we trained several pre-trained CNNs, we applied averaging
ensembles to the CNNs. A grid search was applied to find the optimal weight for each
model, and then weighted average ensembles were employed. Figures 9 and 10 illustrate
the idea of average and weighted average ensembles.
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Figure 9. Average ensembles.

Figure 10. Weighted average ensembles.

3.5. Experimental Tools

We used the Tensorflow Keras library and the training was conducted on Google
Colab Pro+. The loss function was categorical cross-entropy loss, and the optimizer was
RMSprop with a learning rate of 0.0001. We used 100 epochs. The hyperparameters were
chosen based on related works and a wide range of experiments. The dataset was divided,
with 80% for training and validation and 20% for testing. A fixed seed number was used
during data splitting to ensure that the data were divided in the same way each time and
that splitting would not affect the testing of other hyperparameters. The performance was
measured with accuracy and F1 scores, in addition to monitoring the confusion matrix and
F1 of each class.

4. Results and Discussion

The experiments were started with applying pre-trained CNN models that used in
the related works. Then, we investigated and tested recent and efficient pre-trained CNNs
supported by Keras. These models included VGG19, InceptionResNetV2, EfficientNetV2,
and Xception. Some models required a significant amount of memory, such as NasNet;
therefore, we could not use them. The training/validation behavior based on accuracy
and loss for each model is illustrated in Figures 11–19. Moreover, Tables 4–12 report the
performance of each model. Figure 11 explaining the behavior of the DenseNet based
model. It can be notice that, the validation loss increase in oscillatory manner after epoch 40.
The performance of DenseNet model, was low in terms of overall accuracy and F1 of each
class, as shown in Table 4. Moreover, MobileNet model was the worst model in classifying
breast density. We can notice this from training behavior in Figure 12, and testing results in
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Table 5. The loss value of ResNet50, increasing dramatically after epoch 80, as shown in
Figure 13. Both ResNet50 and InceptionV3, have overall accuracy exceed 70%. However,
the F1 of each class was better with ResNet50 model comparing with InceptionV3, as
shown in Tables 6 and 7. The training behaviors of VGG16 and VGG19, are very oscillate
as illustrated in Figures 15 and 16. Meanwhile, the performance of VGG16 and VGG19
shown in Tables 8 and 9 were low, the overall accuracy and F1 score were under 65%.
Comparing with ResNet50 and Inception V3, the InceptionResNetV2 model was worse,
the behavior of the model and its performance present in Figure 17 and Table 10. The
training behavior of the model based on Xception is shown in Figure 18, and the model’s
performance illustrated in Table 11. Finally, the training behavior and testing performance
of EfficientNetV2 is shown in Figure 19 and Table 12, respectively.

Figure 11. The training behavior of the model based on DenseNet121.

Table 4. DensNet 121.

Confusion Matrix Precision Recall F1A B C D

A 123 10 0 0 0.45 0.92 0.6

B 93 125 5 4 0.57 0.55 0.56

C 36 82 68 30 0.86 0.31 0.46

D 23 2 6 10 0.23 0.24 0.24

Accuracy 0.53

Overall F1 score 0.51

Figure 12. The training behavior of the model based on MobileNet.
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Table 5. MobileNet.

Confusion Matrix Precision Recall F1A B C D

A 119 14 0 0 0.44 0.89 0.59

B 124 92 8 3 0.40 0.41 0.40

C 24 115 76 1 0.71 0.35 0.47

D 5 10 23 3 0.43 0.07 0.12

Accuracy 0.47

Overall F1 score 0.45

Figure 13. The training behavior of the model based on ResNet50.

Table 6. ResNet50.

Confusion Matrix Precision Recall F1A B C D

A 114 16 2 1 0.66 0.86 0.75

B 51 134 34 8 0.73 0.59 0.65

C 8 34 164 10 0.76 0.76 0.76

D 0 0 15 26 0.58 0.63 0.60

Accuracy 0.71

Overall F1 score 0.71

Figure 14. The training behavior of the model based on InceptionV3.
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Table 7. Inception V3.

Confusion Matrix Precision Recall F1A B C D

A 103 28 1 1 0.78 0.77 0.78

B 22 167 36 2 0.70 0.74 0.72

C 7 41 160 8 0.73 0.74 0.74

D 0 3 22 16 0.59 0.39 0.47

Accuracy 0.72

Overall F1 score 0.72

Figure 15. The training behavior of the model based on VGG16.

Table 8. VGG16.

Confusion Matrix Precision Recall F1A B C D

A 48 84 1 0 0.69 0.36 0.47

B 21 153 53 0 0.53 0.67 0.60

C 1 49 166 0 0.64 0.77 0.70

D 0 1 38 2 1.00 0.05 0.09

Accuracy 0.60

Overall F1 score 0.57

Figure 16. The training behavior of the model based on VGG19.
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Table 9. VGG19.

Confusion Matrix Precision Recall F1A B C D

A 106 23 3 1 0.61 0.80 0.69

B 61 129 30 7 0.62 0.57 0.59

C 7 56 135 18 0.70 0.62 0.66

D 0 0 25 16 0.38 0.39 0.39

Accuracy Accuracy 0.63

Overall F1 score 0.62

Figure 17. The training behavior of the model based on InceptionResNetV2.

Table 10. InceptionResNetV2.

Confusion Matrix Precision Recall F1A B C D

A 64 60 7 2 0.81 0.48 0.60

B 14 133 79 1 0.62 0.57 0.60

C 1 23 186 6 0.63 0.86 0.73

D 0 0 21 20 0.69 0.49 0.57

Accuracy 0.65

verall F1 score 0.64

Figure 18. The training behavior of the model based on Xception.
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Table 11. Xception.

Confusion Matrix Precision Recall F1A B C D

A 103 26 3 1 0.72 0.77 0.74

B 33 127 62 5 0.72 0.56 0.63

C 8 24 178 8 0.69 0.82 0.75

D 0 0 15 26 0.68 0.63 0.66

Accuracy 0.70

Overall F1 score 0.70

Figure 19. The training behavior of the model based on EfficientNetV2B0.

Table 12. EfficientNetV2.

Confusion Matrix Precision Recall F1A B C D

A 98 34 1 0 0.78 0.74 0.76

B 21 171 34 1 0.68 0.75 0.71

C 6 47 152 8 0.74 0.70 0.72

D 1 0 18 22 0.65 0.54 0.59

Accuracy 0.72

Overall F1 score 0.72

Our target was to classify breast density according to ACR standards. However, fatty
and dense (or superclass) classifications were also performed. Tables 13 and 14 summarize
the accuracy and F1 scores of each model for ACR and superclass classification, respectively.

Table 13. ACR classification.

Pre-Trained CNN Accuracy F1 Score

DenseNet121 53% 51%

MobileNet 47% 45%

ResNet50V2 71% 71%

InceptionV3 72% 72%

VGG16 60% 57%

VGG19 63% 62%

InceptionResNetV2 65% 64%

EfficientNetV2B0 72% 72%

Xception 70% 70%
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Table 14. Superclass classification.

Pre-Trained CNN Accuracy F1 Score

DenseNet121 85% 85%

MobileNet 79% 79%

ResNet50V2 84% 84%

InceptionV3 85% 85%

VGG16 81% 81%

VGG19 79% 79%

InceptionResNetV2 82% 82%

EfficientNetV2B0 85% 85%

Xception 85% 85%

We noticed, from monitoring the performance of each model, that some models
performed better with specific classes. For example, InceptionV3 gave the highest F1 for
class A, whereas ResNet50 gave the highest F1 for class C. The model based on Xception
achieved the overall highest F1 score for class D. Therefore, average and weighted average
ensembles were applied to reap the benefits of all models. Table 15 shows the performance
of the average ensembles of all models. The overall accuracy of the proposed model
with average ensembles was 74.7%. Furthermore, weighted average ensembles with grid
search were applied. These reference exampling the idea of grid search [51] and how
to apply it with average ensembles [52]. First, we applied weighted averages using the
best five models, achieving an accuracy of 77.9%. Next, we selected the best four models,
InceptionV3, ResNet50, EfficientNet, and Xception, resulting in an overall accuracy of
78.11%. Finally, we tried weighted average ensembles with the three best models, achieving
an accuracy of 75.8%. More details on the weighted average ensemble performance are
provided in Tables 16–18. A summary of the average and weighted average of ACR and
superclass classification is provided in Tables 19 and 20, respectively.

Table 15. Average ensembles.

Confusion Matrix Precision Recall F1A B C D

A 97 35 1 0 0.81 0.73 0.77

B 17 165 43 2 0.72 0.73 0.72

C 6 29 178 3 0.74 0.82 0.87

D 0 0 20 21 0.81 0.51 0.63

Accuracy 0.747

Overall F1 score 0.75

Table 16. Weighted average ensembles with best 5 models.

Confusion Matrix Precision Recall F1A B C D

A 106 27 0 0 0.78 0.80 0.79

B 21 184 19 3 0.75 0.81 0.80

C 9 34 168 5 0.83 0.87 0.80

D 0 0 16 25 0.76 0.61 0.68

Accuracy 0.779

Overall F1 score 0.78
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Table 17. Weighted average ensembles with best 4 models.

Confusion Matrix Precision Recall F1A B C D

A 107 26 0 0 0.77 0.80 0.79

B 23 181 20 2 0.75 0.80 0.77

C 9 34 169 4 0.82 0.87 0.80

D 0 0 16 25 0.81 0.61 0.69

Accuracy 0.7811

Overall F1 score 0.78

Table 18. Weighted average ensembles with best 3 models.

Confusion Matrix Precision Recall F1A B C D

A 106 27 0 0 0.76 0.80 0.78

B 26 173 26 2 0.73 0.76 0.75

C 8 36 167 5 0.79 0.77 0.78

D 0 0 19 22 0.76 0.54 0.63

Accuracy 0.758

Overall F1 score 0.76

Table 19. Ensembles for ACR classification.

Ensembles Accuracy F1 Score

Averaging all models 74.70% 74%

Weighted average with best 5 models 77.95% 78%

Weighted average with best 4 models 78.11% 78%

Weighted average with best 3 models 75.85% 76%

Table 20. Ensembles for superclass classification.

Ensembles Accuracy F1 Score

Averaging all models 86.20% 86%

Weighted average with best 5 models 86.70% 87%

Weighted average with best 4 models 87.60% 87%

Weighted average with best 3 models 85% 85%

5. Conclusions

Breast density describes the amount of fibrous and glandular tissue in a breast com-
pared with the amount of fatty tissue. Breast density plays a significant role in detecting
breast cancer and on the risk of developing breast cancer. Dense breasts are more likely to
be affected by breast cancer. The Breast Imaging-Reporting and Data System (BI-RADS)
is an assessment standard for reporting the breast cancer risk based on a mammogram
image. It sorts breast density into one of four ACR classes. In class A, breasts are almost
entirely fatty. A few areas of dense tissue are scattered within the breasts in class B. In
class C, the breasts are heterogeneously dense. Finally, in class D, the breasts are extremely
dense. In this paper, a breast density classification model from mammograms was devel-
oped. The model is based on pre-trained CNNs and weighted average ensembles. The
dataset was collected from King Abdulaziz Medical City under the supervision of the
King Abdullah International Medical Research Center (KAIMRC). The dataset consists of
879 mammogram screenings. Several model pre-trained convolutional neural networks
were applied, including ResNet, Inception, DensNet, vgg16, vgg19, InceptionResNetV2,
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EfficientNetV2, and Xception. Among these models, InceptionV3, EfficientNet 2B0, and
Xception gave the highest accuracy in both four- and two-class classification. We noticed
from monitoring the performance of each model that some models performed better with
specific classes. Therefore, average and weighted average ensembles were applied to reap
the benefits of all models. After applying weighted average ensembles, the performance
was improved noticeably. The overall accuracy of ACR classification with weighted average
ensembles was 78.11%. For future works we recommend the following: different ensembles
techniques, such as boosting ensembles, could be investigated; increasing the size of the
dataset; and applying unsupervised learning segmentation techniques to segment ROIs.
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