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Abstract: The failure that occurs during the dry-type transformer temperature monitoring sensor
working will result in wrong data output, which may cause the monitor and monitoring background
to respond incorrectly. To solve this problem, a fault diagnosis and data recovery algorithm based on
principal component analysis (PCA), long short-term memory neural network (LSTM), and decision
tree is proposed. It can realize the fault sensor location, fault diagnosis, and data recovery under
dynamic processes. First, a set of temperature monitors was designed to collect the temperature inside
the dry-type transformer in real-time by using the collected temperature data to build a PCA-based
fault diagnosis model and a LSTM-based data recovery model. A fault location model based on
a decision tree was constructed for five typical sensor fault types. Finally, the three models were
constructed to obtain the sensor fault diagnosis and recovery algorithm. We then transplanted the
algorithm to the temperature monitor. The experimental results showed that the recognition rate
of the algorithm for different fault diagnoses of single- or multiple-sensors was above 96%. The
diagnosis time was less than 1 ms. The recovery error was within 0.1 ◦C. The field experiments
verified that the algorithm could significantly improve the stability of the monitor. Even if the sensor
fails, it can also ensure that the dry-type transformer works within the normal range.

Keywords: fault diagnosis; data recovery; principal component analysis; long short-term memory
neural network

1. Introduction

With the rapid development of the world’s economy and the continuous improvement
in people’s living standards, the electricity load in urban and rural areas has also increased.
This has brought more and more applications for dry-type transformers. Whether the
transformer works normally or not directly affects the entire power system. The insulation
performance of dry-type transformers is closely related to their heat generation and heat
dissipation performance. If the winding temperature is too high, it will cause accelerated
aging of the insulating material and shorten the service life of the transformer. This will
result in its economic benefits not being maximized [1]. In extreme cases, it may even cause
serious accidents such as transformer fires and explosions [2]. This will not only cause
equipment damage, power outages in local areas, and cause massive economic losses to
the society, but may also threaten the personal safety of the relevant personnel. Therefore,
it is necessary to monitor the temperature status of the transformer in real-time when the
transformer is working, and to respond to the abnormality in time [3–5].
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However, the sensor used in the existing dry-type transformer temperature detection
equipment hardly performs any self-confirmation on its working state, that is, the sensor is
always considered to be working normally. In this way, once the sensor fails, its output
results will seriously deviate from reality, which may cause false alarms, affect the work of
the system, and even cause catastrophic consequences [6].

In sensor fault diagnosis, the difference between the signal of the model system and
that of the actual system is defined as “the residual”. Dynamic process models are applied
to analyze the input and output signals. This method was first proposed by Willsky [7], but
they did not give the details of the processing. There is abundant fault information in the
residual signal, and the fault can be diagnosed based on an appropriate decision function
or decision rule. The method is often used together with the fault estimation method
to construct the sensor fault diagnosis process. By establishing a model and choosing
a decision function (or rule), the evaluation function of the residual can be compared with
the selected threshold function. As a result, a change is detected and a failure of the sensor
system is judged [8]. Chen et al. effectively detected the initial fault of the sensor in the
high-speed railway electric drive device through SPE statistics [9]. Li et al. also used SPE
statistics to diagnose the faults of sensors in the actual nuclear power plant facility system
to reduce the system’s false alarm rate [10]. Hanen et al. studied the fault detection and
isolation of the electric-drive sensor based by improving the parity space method. A fast
and simple algorithm for sensor fault detection was designed for second-order systems.
The simplicity of the final algorithm led to a shorter execution time and less resource
consumption in the conduction [11]. Hamed et al. proposed a sensor fault detection
method based on nonlinear parity technology, which can be used in a pH neutralization
system. The nonlinear fault detection and recognition algorithm can effectively detect and
isolate the sensor fault on the pH channel as well as immediately and accurately detect the
time of the fault occurrence [12].

In sensor data recovery, Wang B. et al. proposed a pressure sensor data recovery
model based on the correlation vector machine using the normal output data before the
fault [13]. Zhu T. et al. proposed a recovery method for aircraft engine sensor failure
based on the least squares support vector machine (LS-SVM) [14]. Oh, B.K. et al. proposed
a structure response recovery method based on the convolutional neural network. Using
the strain monitoring data stably measured before data loss, a convolutional neural network
(CNN) model for data recovery was constructed. In the case of sensor failure, a trained
convolutional neural network was used to recover the missing strain response using
functional sensors alone [15].

The application of sensor state self-confirmation technology to dry-type transformer
temperature monitoring equipment has application requirements. However, most of the
existing research on the fault diagnosis of sensors is only for a single sensor, and there
is a lack of research and differential diagnosis for multi-sensor faults. Additionally, the
research and application of fault sensor location are insufficient and the accuracy of the
fault data recovery is not high, which limits the correctness of the data diagnosis.

Tamás Orosz et al. highlighted the importance of the no free lunch theorem of mathe-
matical optimization [16]. The selection of the model must be aimed at the specific learning
problem. The model can only work best if the characteristics of the model match the char-
acteristics of the problem. Sensor data recovery is a typical time series forecasting problem.
Its characteristic is that it needs to make trend predictions based on sufficient historical
data, fully considering the statistical characteristics and random characteristics. Among
the various data prediction models, the RNN neural network can process time-series data.
Its variant LSTM further overcomes the problem of gradient disappearance or explosion,
which is prone to occur when the RNN processes long sequences. Experiments show that
its performance is overall better than the traditional RNN [17].
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In summary, this research constructed an algorithm for sensor fault diagnosis and
recovery based on the PCA, LSTM neural network, and decision tree and then transplanted
the algorithm to the developed platinum resistance dry-type transformer temperature mon-
itor. Using the designed temperature monitor to collect the temperature data, a PCA-based
fault diagnosis model and a LSTM-based data recovery model were constructed. A decision
tree-based fault location model was constructed based on five typical sensor fault types.
Finally, the three models were constructed to obtain the sensor fault diagnosis and recovery
algorithm, and the algorithm was transplanted into the developed platinum resistance dry-
type transformer temperature monitor. The results of the laboratory simulation and field
experiments showed that the algorithm had good effects on the multi-sensor fault diagnosis
and data recovery of dry-type transformers. Therefore, it provides a reliable method for
ensuring the normal operation of the dry-type transformer temperature monitor.

2. Materials and Methods
2.1. Monitor Principle and Design

In order to obtain the real-time temperature data inside the dry-type transformer, in
this study, a platinum resistance dry-type transformer temperature monitor was developed.
A field experiment was carried out at a transformer manufacturer in Yunnan Province, China.
The monitor could acquire the dry-type transformer temperature data in real-time and
make timely and correct responses to abnormal temperatures, ensuring that the transformer
worked within the rated temperature range. The dry-type transformer monitor had a total
of six modules, and its physical diagram and architecture are shown in Figure 1.
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The dry-type transformer used in the experiment was cooled by forced air cooling.
That is, the fan was arranged under the high-voltage winding. This method could keep
the temperature of the transformer stable, especially under overload conditions, making it
more reliable. However, it also led to the obvious step-by-step distribution of the internal
temperature of the transformer, and the temperature distribution of the lower part showed
an asymmetrical phenomenon. Therefore, the monitor needed to use multiple sensors
for multi-point sampling and real-time monitoring. At the same time, according to the
industry standard of China JB/T 7631-2005 [18], the accuracy of the thermostat must meet
0.1 ◦C, the range is 0–270 ◦C, it has a black-box function, and it could communicate with
the host computer.

Based on the above job requirements, the temperature controller designed in this study
used three-way PT1000 platinum resistance as the temperature sensor. The resistance of the
thermal resistance was 1000 Ω at 0 ◦C, and its resistance changed linearly with temperature.
The four-wire structure was used to eliminate the lead resistance. These were arranged
at different positions at the lower end of the high-voltage winding, and the signals were
amplified and transmitted to the single-chip microcomputer through three-way operational
amplifiers. Its resistance value was converted by the operational amplifier and ADC, then
finally converted into specific temperature data by FPGA operation. At the same time, the
monitor used five digital tubes to scan and display the monitoring temperature of each
channel and could communicate with the host computer through RS485.

Because the national standard of China GB/T 1094.11-2007 [19] stipulates that the
maximum temperature rise of the transformer shall not exceed 150 ◦C. To ensure that
the transformer worked in the normal temperature range, the FPGA needed to select the
maximum value of the three-temperature data as the reference value to determine whether
the reference value exceeded the default monitoring threshold. The relay module realized
the functions of turning off the fan below 80 ◦C, starting to cool down the fan when the
temperature exceeded 100 ◦C, a high-temperature alarm by buzzer when the temperature
exceeded 130 ◦C, a high-temperature trip when the temperature exceeded 150 ◦C, fault
tripping, and fault alarm when the temperature exceeded the range from −30 ◦C to 240 ◦C.

2.2. Implementation of Fault Diagnosis

PCA is a multivariate statistical process control method. It can effectively reduce
the dimension of high-dimensional data. Dimensionality reduction is very important to
find the inherent laws of high-dimensional data so that more variable indicators can be
represented by fewer comprehensive indicators. In geometry, the coordinate system formed
by the samples is projected into a new coordinate space through linear combination, and
the new coordinate axis represents the direction with the largest variance [20]. The fault
diagnosis of the algorithm is realized based on PCA. The three-way sensor of the monitor
can be considered as three characteristics.

The basic theory is that S is assumed to represent a measurement sample containing
m sensors. Each sensor has n independent sampling data to construct a measurement
data matrix, where each column represents a measured variable, and each row represents
a sample. Perform covariance decomposition on the data matrix and choose the number of
pivots. The following formula is obtained:

S ≈ XT ·X
n− 1

= V ·Λ · VT = [P · P] ·Λ · [P · P]
T

(1)

where Λ is a diagonal matrix, which is also the eigenvalue matrix of S, and the elements
on its diagonal satisfy λ1 ≥ λ2 ≥ · · · ≥ λm. V is the eigenvector matrix of S with the
dimension m×m. P is the first column A of V, containing the information about all of the
pivots. P is the remaining m-A columns of V, containing the non-pivot information.
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Decompose the original data to obtain the principal subspace and the residual sub-
space. Therefore, the eigenvalue decomposition of X can be decomposed as follows:

X = X + E = T · P + E (2)

Among them, Tn×A = Xn×m · Pm×A is the main subspace; E = X− X̂ is the residual
subspace; X̂ = T · PT is the score matrix; Pm×A is the load matrix, which is composed of
the first A eigenvectors of S.

Q statistic: Prediction squared error. That is, the SPE statistic, which indicates the
square of the Euclidean distance of the residual space projection vector e on this space. The
calculation method is:

Q = ‖e‖2 (3)

When the sensor is normal, the value of the Q statistic should be in a fixed range. Once
the sensor fails, the projection of the temperature data at this time in the residual space
must be enlarged, causing the calculated value of the Euclidean distance to be higher than
the limited range. Its fixed range threshold is Qa, which can be calculated from the last n −
1 eigenvalues:

Qa = θ1

[
ca
√

2θ2h02

θ2
+ 1 +

θ2h0(h0 − 1)
θ1

2

] 1
h0

(4)

where
h0 = 1− 2θ1θ3

3θ22 (5)

θi =
n

∑
j=k+1

λi
j, i = 1, 2, 3 (6)

where k is the main element and λi is the ith eigenvalue of the covariance matrix R.
By setting the confidence level to 90%, analyze whether the projection change of the

data in the residual space exceeds the threshold. That is, whether Q is higher than Qa in
diagnosing whether the sensor is faulty.

2.3. Realization of Sensor Fault Location

According to the national standard of China JB/T 7631-2005 [18], the displayed tem-
perature difference between the sensors shall not exceed 0.5 ◦C. Exceeding this temperature
range can be regarded as the occurrence of failure. To locate the faulty sensor. The max-
imum value of the selected three-channel sensor data after diagnosis is defined as the
reference value X, and the remaining two sensor data are defined as Y and Z, respectively.
We combined the five typical fault types of impact fault, drift fault, brownout fault, constant
value output, and deviation fault [21], and then summarized them into seven scenarios [22].
The fault location decision tree was constructed as shown in Figure 2.

Scenario 1: The temperature difference between the temperature values of the
three sensors is less than 0.5 ◦C, indicating that there is no sensor fault. This scenario is to
prevent misdiagnosis by the PCA troubleshooting model. The secondary diagnosis of the
sensor data is performed here to improve the accuracy of the data diagnosis.

Scenario 2: The maximum temperature difference between X and Y and between Y
and Z is less than 0.5 ◦C, but that between X and Z is more than 0.5 ◦C. It is considered that
the three-channel temperature value is X > Y > Z. Then, the LSTM predictor is started at
this point. If the temperature difference between the predicted result P and X is less than
0.5 ◦C, sensor Z is faulty. If the temperature difference between the predicted results of P
and Y is less than 0.5 ◦C, sensor X is faulty. Such failures are often deviation failures.

Scenario 3: The temperature difference between the maximum value X and Y is less
than 0.5 ◦C, however, between X and Z, Y and Z are all more than 0.5 ◦C. Then, start the
LSTM predictor at this point. If the temperature difference between the predicted results P
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and Z is less than 0.5 ◦C, it is considered that the sensors X and Y are faulty. Otherwise,
sensor Z is faulty. Such faults are often impulse faults or open circuit faults.

Scenario 4: The temperature difference between the maximum value X and Y is more
than 0.5 ◦C, however, between X and Z, Y and Z are all less than 0.5 ◦C, the same as Scenario 2.

Scenario 5: The temperature difference between the maximum value X and Z is less
than 0.5 ◦C, but between X and Y, Y and Z are all more than 0.5 ◦C, the same as Scenario 3.

Scenario 6: The temperature difference between the maximum X and Y, X and Z are all
more than 0.5 ◦C, but between Y and Z it is less than 0.5 ◦C. Then, start the LSTM predictor.
If the temperature difference between the predicted results P and X is less than 0.5 ◦C, the
sensors Y and Z are faulty. Otherwise, sensor X is faulty.

Scenario 7: The difference between the temperature values of the three sensors is
greater than 0.5 ◦C. All three sensors are faulty.

Therefore, to meet the positioning requirements, the prediction accuracy of the pre-
dictor needs to be high enough, and the difference between the predicted value P and the
actual value should not exceed 0.5 ◦C to ensure the accuracy of the fault location. Otherwise,
there will be no way to isolate the faulty data.
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2.4. Implementation of Data Recovery

In this paper, the LSTM neural network was used as the data prediction model, and
its structure is shown in Figure 3.
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LSTMs use gates to control the input and output of data. A gate is a fully connected
layer whose input is a vector and its output is a real vector between 0 and 1. Assuming W
is the weight vector of the gate and b is the bias term, then the gate can be expressed as:

g(x) = σ(Wx + b) (7)

The use of the gate is to multiply the output vector of the gate by the vector, so we need
to control it element by element because the output of the gate is a real vector between 0
and 1. When the gate output is 0, any vector multiplied by it will result in a 0 vector, which
is equivalent to nothing passing through. When the output is 1, any vector multiplied by
it will not change anything, which is equivalent to passing anything. Because the range
of σ (sigmoid function) is (0,1), so the state of the door is half-open and half-closed. The
LSTM uses two gates to control the content of the cell state c. One is the forget gate, which
determines how much of the cell state ct−1 at the previous moment is retained in the current
moment ct. The other is the input gate, which determines how much of the network’s input
xt is saved to the cell state ct at the current moment. The LSTM uses an output gate to
control how much of the cell state is output to the current output value ht of the LSTM. The
detailed formula is as follows:

ft = σ(W f · [ht−1, xt] + b f ) (8)

it = σ(Wi · [ht−1, xt] + bi) (9)

where ft is the forget gate; it is the input gate; W f is the weight matrix of the forget gate; Wi
is the weight matrix of the input gate; ht−1 is the hidden state at time t − 1; xt is the input
vector at time t; b f is the bias term of the forget gate; bi is the bias term of the input gate.

Multiply the last unit state ct−1 by the forget gate ft element by element, then multiply
the current input unit state c̃t by the input gate it element by element, and then add the
two products to obtain the current unit state c̃t. The unit state used to describe the current
input is calculated from the previous output and the current input. The detailed formula is
as follows:

c̃t = tanh(Wc · [ht−1, xt] + bc) (10)

ct = ft ◦ ct−1 + it ◦ c̃t (11)

where tanh is the activation function; Wc is the weight matrix of the current input cell state;
bc is the bias term of the memory update.

The output gate controls the effect of long-term memory on the current output. The
final output of the LSTM is determined by the output gate and the unit state:

ot = σ(Wo · [ht−1, xt] + bo) (12)

ct = ft ◦ ct−1 + it ◦ c̃t (13)

where ot is the output gate; Wo is the weight matrix of the output gate; ht is the current
hidden state, which is the final output of this unit; bo is the bias term of the output gate.

At the same time, to make the model state the best, it is necessary to optimize the
hyperparameters of the LSTM network to make the training model meet the requirements.
K-fold cross-validation (CV) is used to calculate the error by dividing the sample into
K parts, using K-1 parts as the training set each time, and the remaining part as the
validation set. This process is repeated K times. Finally, the average of the K errors
is used as the CV estimate of the outer sample error [23]. Grid search optimization is
an exhaustive method that enumerates or separates the hyperparameters that need to
be optimized. The optimal solution is obtained by traversing all combinations of the
hyperparameters and comparing the evaluation indicators during calculation. When
the number of hyperparameters grows, the computational complexity of the grid search
increases exponentially. If the sample size is large, it is often impractical to use a grid search
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for too many hyperparameters at once. At this time, the fast-tuning method of coordinate
descent can be used. According to the influence weight of the hyperparameters on the
model, the hyperparameters with the greatest influence are optimized first, and then the
other parameters are optimized in turn. Combining the grid search method and the K-fold
cross-validation to optimize the hyperparameters can avoid the optimization process from
falling into the local optimal solution to a certain extent.

2.5. The Construction of Fault Diagnosis and Recovery Algorithm

We combined the characteristics and specific implementation process of the
four functional models of temperature data acquisition, fault diagnosis, fault location,
and data recovery. In this study, each function was connected in series according to the
data flow to form an overall algorithm for fault diagnosis and recovery, the structure of
which is shown in Figure 4.

The algorithm first sorts the temperature data obtained by the three-way sensors,
selects the maximum value in the three-way, and defines it as the temperature X. The
remaining temperature values are defined as temperature Y and temperature Z. The
temperature data at this time cannot be judged whether it is correct or not. It can only
be divided into two situations: the steady state signal and sudden change signal. The
PCA model diagnoses the three-way data, and distinguishes three situations: the steady
state signal, the normal sudden change signal, and the fault signal. The steady-state signal
and the normal mutation signal are the normal conditions, and the fault signal is the
abnormal condition. For normal conditions, the temperature signal is output directly. For
abnormal situations, the three-way data are calculated by the fault location algorithm and
the abnormal situations are classified according to seven abnormal scenarios. Then, the
LSTM predictor is started, bringing the predicted value P into this abnormal situation, and
finally determining the faulty sensor and diagnosing the fault type. If it does not exceed
the threshold, it means that the data are still normal data at this time, and the temperature
signal is output directly. If the threshold is exceeded, one or more sensors are faulty. This
part of the data is isolated and the temperature signal predicted by the predictor is output.
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3. Results and Discussion
3.1. Sensor Failure Simulation Experiment

Since the internal temperature of dry-type transformers is mainly composed of the
coil temperature rise, it is also influenced by the local air temperature [24]. The air tem-
perature is characterized by seasonal changes, where the coil temperature will rise and
fall with the increase or decrease in load and show daily periodicity. To better verify the
algorithm’s performance of each function, the verification set should contain the above
two features. Therefore, the experiment selected the measured temperature of the whole-
day on 10 April in spring and 10 December in winter as examples for verification. Since the
sampling frequency of the monitor was once a second, there were 86,400 monitoring data of
three-way sensors per day. The sensor fault diagnosis function of the algorithm needed to
be verified with the fault data. The fault temperature data could be obtained by the method
of laboratory fault simulation because the measured data came directly from the normal
temperature monitored by the sensor. By superimposing the fault states based on normal
data, it simulated the shock faults, drift faults, power failure faults, constant output, and
deviation faults [25,26]. The specific method was as follows:

Impulse faults were caused by random disturbances, surges, and spark discharges in
the power and ground wires. This caused a sharp jump in the data measured by the sensor
in a short period. A linear function could be superimposed on this to make the temperature
rapidly increase and fall back in a short time to simulate a shock failure. Drift faults were
caused by the gradual shift in the sensor measurement values. Generally speaking, drift
faults are linear drift faults. These can be fitted by a superimposed linear relationship, and
a drift step size set to 0.01 ◦C. That is, if the drift is 0.01 ◦C per second, the drift is 0.6 ◦C
per minute. The power failures were caused by broken signal lines, disconnected chip pins,
or poor circuit contact. This kind of fault would cause the measured output value to be
0 ◦C. Therefore, the temperature value of this period can be directly set to 0 ◦C for the
simulation. The constant value output belongs to the hard fault in the sensor type fault.
When the fault occurs, the sensor loses its measurement ability and keeps a constant value.
It is possible to represent a constant temperature value by setting a constant. The bias
faults were caused by the bias current or bias voltage. This would make the data measured
by the sensor deviate from the normal measurement value, which could be simulated by
superimposing the deviation value.

The above five fault simulation methods were added to the time series monitored by
the three-way sensors A, B, and C. The whole-day temperature measured on 10 December
10 in winter was used as the test set. Shock faults were added to sensors A and B between
1000 and 2000 s. Open circuit faults were added to sensor B between 8000 and 13,000 s.
Then, we made sensor C power down between 20,000 and 26,000. Next, sensor C had a drift
fault in the interval of 31,000 to 35,000 s, drifting at 0.01 ◦C per second. For the deviation
fault, three faults were designed: high, low, and multi-sensor deviation. From 40,000 to
44,000 s, sensor A was 10 ◦C higher, and from 50,000 to 54,000 s, sensor B was 10 ◦C lower,
and between 64,000 and 74,000 s, sensor B and C had low faults, where B was 10 ◦C lower
and C was 20 ◦C lower. The all-day fault temperature simulated by the above method is
shown in Figure 5.

3.2. Accuracy Simulation Experiment of Fault Diagnosis

The fault data obtained by the simulation was used as the test set. The simulated
sensor faults were tested by the PCA fault diagnosis model. The test results are shown in
Figure 6 below.

The simulation results showed that when the temperature of the transformer was in
a stable state, its SPE statistic (Q statistic) also remained in a stable state, and the projection
on the residual space was smaller than the SPE threshold. This showed that the normal
steady-state signal could be accurately identified by the PCA model. When the dry-type
transformer temperature jumped normally, the sensor output value of the monitor also
changed, and the projection in the residual space also jumped. However, the SPE value
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of the temperature after the jump was still smaller than the set SPE threshold, so the
PCA model could identify this situation as a normal mutation signal rather than a fault
signal. When a fault occurred, the SPE value of the fault was higher than the set threshold.
Moreover, the jump amplitude of multi-sensor faults in the residual space was larger than
that of the single-sensor faults. According to the number of transitions higher than the SPE
threshold, the number of faults could be counted.

The results of the simulation experiments showed that the PCA model could accurately
diagnose different types of sensor faults as well as multiple sensor faults.
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To verify the diagnostic accuracy of the PCA model through the above fault simulation
method, five typical faults were added to the whole-day data at random times. Each fault
was tested 50 times, and the experimental results are shown in Table 1.

Table 1. The diagnostic accuracy of the different faults.

Impact Fault Drift Fault Power Failure Constant Output Deviation Fault

Diagnosis
rate/% 100 100 100 98 96

3.3. Data Recovery Model Training and Optimization

The hyperparameters of the LSTM network were optimized by using the K-fold cross-
validation and grid search optimization to make the trained model meet the requirements.
The LSTM network training used 90% of the data as the training set and 10% as the
validation set, then normalized the data. The hyperparameters of the LSTM network were
optimized by a grid search combined with 5-fold cross-validation. The residual sum of
squares (RSS) was used as the loss. Finally, the optimizer type was Adam, the activation
function was sigmoid, the number of hidden neurons was 12, and the maximum number
of cycles of the neural network was 1000. For the dataset in this experiment, a time step
of 24 was found to be advantageous over longer time steps during training. This meant
that the data of the past 24 moments could be used to determine the output of the current
moment. The data were divided into a training set and validation set according to 4:1. The
initial learning rate of the Adam optimizer was set to 0.01, and the loss on the validation
set was monitored to use the learning rate decayed callback function. If the loss did not
decrease after five consecutive iterations, the learning rate was reduced to be half and the
lower limit of the learning rate reduction was set to 0.001. When the loss of the validation
set did not decrease after five consecutive iterations, the callback function of the early stop
was triggered to avoid overfitting.

3.4. Accuracy and Generalization Performance Analysis of Data Recovery Model

Two sets of experimental data were selected for the experiment: 8:00 on 10 April in
spring and 18:00 on 10 December in winter. Then, we analyzed the forecast accuracy for
the future period at two-time points. Since these two sets of test sets did not appear in the
process of model training and tuning, they could reflect the generalization performance of
the model and could characterize the periodic change process of temperature. At the same
time, the BP and SVM predictors were compared with the LSTM predictors to analyze the
accuracy of the LSTM predictors.

The experimental results are shown in Figures 7–10. The experimental time in Figure 7
was 8:00 in the morning. After this time, the load gradually increased, and the temperature
of the transformer also increased in increments. The LSTM model always followed the
temperature of the transformer. From Figure 8, it could be found that the relative error
of the LSTM model was the smallest compared to the BP and SVM models and met the
accuracy requirements of an error of less than 0.5 ◦C. The experimental time in Figure 9 was
18:00. After this time, the load gradually decreased, and the temperature of the transformer
decreased accordingly. The LSTM could still follow the temperature change well. It can
be seen in Figure 10 that the output value of BP had a certain deviation from the real
temperature, and the error of the SVM model was too large, which seriously lost the
recovery ability. LSTM met the accuracy requirement with an error of less than 0.5 ◦C.
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Table 2 shows the mean absolute error (MAE), root mean square error (RMSE), and
maximum relative error (MRE) of the prediction results of each model. It can be seen
that the prediction effect of the LSTM model was significantly better than that of the
other models.

Table 2. The error comparison of the different prediction algorithms.

Error Algorithm 10 April 8:00 10 December 18:00

RMSE/◦C

BP 0.2671 0.0421

SVM 0.6090 0.5100

LSTM 0.0146 0.0221

MAE/◦C

BP 0.2670 0.0418

SVM 0.6087 0.5088

LSTM 0.0109 0.0103

MRE/%

BP ±1.6486 ±0.7402

SVM ±2.7975 ±6.0617

LSTM ±0.4053 ±1.0337

3.5. Field Test Results

The algorithm was transplanted into the designed temperature monitor, then the fault
diagnosis and recovery ability of the algorithm were tested through field experiments. The
experimental time was 86,400 s throughout the day. The host computer sent a simulated
sensor failure at a random time point. In this way, the algorithm’s ability to diagnose and
recover data from single-sensor failure and multi-sensor failure were tested. At the same
time, it verified that the thermostat would not respond incorrectly due to sensor failure,
and recorded the real-time data.

The field experiment results are shown in Figures 11–13. The algorithm’s fault diagno-
sis function could accurately diagnose different types of single sensor faults or multi-sensor
faults. The diagnosis time was less than 1 ms. The fault location function could accu-
rately locate the faulty sensor, isolated the faulty sensor data immediately, and started the
predictor to restore the data of the faulty sensor. The data recovery function tracked the
temperature changes well, and replaced the faulty sensor data with the output value of
the predictor to achieve data recovery. The difference between the predicted value and the
actual value was less than or equal to 0.1 ◦C, which met the accuracy requirements of the
predicted value. The experiments showed that the algorithm was accurate in diagnosis,
high in recovery accuracy, and accurate in fault location.
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Figure 12. The data recovery for the power failure of a single sensor.
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During the whole experiment, no false response of the monitor due to sensor failure
occurred. This algorithm provided a reliable method for ensuring the normal operation of
the dry-type transformer temperature monitor.

4. Conclusions

For dry-type transformer temperature monitors causing erroneous responses due to
sensor failure, in this study, a set of temperature monitors was designed. Then, a fault
diagnosis and recovery algorithm based on the principal component analysis (PCA), long
short-term memory neural network (LSTM), and decision tree was proposed. Finally,
the feasibility and scientific experiments of the method were verified by the simulation
experiments and field experiments. The research indicated the following:

1. The fault diagnosis function based on PCA could accurately diagnose the impact
fault, open circuit fault, power failure fault, drift fault, and deviation fault of single or
multiple sensors. The diagnosis rate was above 96%, and the diagnosis time was less
than 1 ms.

2. Fault localization could diagnose the faulty sensor through a decision tree and isolated
the fault data.

3. The LSTM-based data recovery function could accurately track the temperature
changes under dynamic processes. The error of the predicted value was less than or
equal to 0.1 ◦C and the generalization performance was good. Compared with the BP
and SVM, it has obvious advantages.

4. The field experiments verified that the algorithm could significantly improve the sta-
bility of the monitor. Even if the sensor fails, the dry-type transformer was guaranteed
to work within the normal temperature range.
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