Grouting Effect Detection within the Floor of a Coal Seam Using 3D Electric Resistivity Tomography (ERT) with Arbitrary Electrode Positions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Water-Rich Evaluation and Data Acquisition
2.3. Data Processing of Arbitrary Electrode Positions
2.4. Synthetic Model
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, L.; Han, J. Floor Water Inrush Mechanism and Prediction; China University of Mining and Technology Press: Xuzhou, China, 2004. (In Chinese) [Google Scholar]
- Zhang, J. Investigations of water inrushes from aquifers under coal seams. Int. J. Rock Mech. Min. Sci. 2005, 42, 350–360. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, X.; Xu, S.; Wang, Z.; Li, W. Experimental study on properties of a new type of grouting material for the reinforcement of fractured seam floor. J. Mater. Res. Technol. 2019, 8, 5271–5282. [Google Scholar] [CrossRef]
- Miao, X.X.; Pu, H.; Bai, H.B. Principle of water-resisting key strata and its application in water-preserved mining. J. China Univ. Min. Technol. 2008, 37, 1–4. [Google Scholar]
- Li, H.; Bai, H.; Wu, J.; Wang, C.; Ma, Z.; Du, Y.; Ma, K. Mechanism of water inrush driven by grouting and control measures—a case study of Chensilou mine, China. Arab. J. Geosci. 2017, 10, 468. [Google Scholar] [CrossRef]
- Qian, D.; Zhang, N.; Zhang, M.; Shimada, H.; Cao, P.; Chen, Y.; Zhang, N. Application and evaluation of ground surface pre-grouting reinforcement for 800-m-deep underground opening through large fault zones. Arab. J. Geosci. 2017, 10, 285. [Google Scholar] [CrossRef]
- Lu, P.; Hou, K. Current application status and development trend of curtain grouting in water-rich mine. Mod. Min. 2010, 3, 21–24. [Google Scholar]
- Shi, L.; Wang, Y.; Qiu, M.; Gao, W.; Zhai, P. Application of three-dimensional high-density resistivity method in roof water advanced detection during working stope mining. Arab. J. Geosci. 2019, 12, 464. [Google Scholar] [CrossRef]
- Schoor, M.V.; Binley, A. In-mine (tunnel-to-tunnel) electrical resistance tomography in South African platinum mines. Near Surf. Geophys. 2009, 8, 563–574. [Google Scholar] [CrossRef]
- Bharti, A.K.; Pal, S.K.; Priyam, P.; Pathak, V.K.; Kumar, R.; Ranjan, S.K. Detection of illegal mine voids using electrical resistivity tomography: The case-study of Raniganj coalfield (India). Eng. Geol. 2016, 213, 120–132. [Google Scholar] [CrossRef]
- Maillol, J.; Seguin, M.-K.; Gupta, O.; Akhauri, H.; Sen, N. Electrical resistivity tomography survey for delineating uncharted mine galleries in West Bengal, India. Geophys. Prospect. 2010, 47, 103–116. [Google Scholar] [CrossRef]
- Tang, H.; Yang, H.; Lu, G.; Chen, S.; Yue, J.; Zhu, Z. Small multi-turn coils based on transient electromagnetic method for coal mine detection. J. Appl. Geophys. 2019, 169, 165–173. [Google Scholar] [CrossRef]
- Yu, J.; Malekian, R.; Chang, J.; Su, B. Modeling of whole-space transient electromagnetic responses based on FDTD and its application in the mining industry. IEEE Trans. Ind. Inform. 2017, 13, 2974–2982. [Google Scholar] [CrossRef]
- Fitterman, D.V.; Stewart, M.T. Transient electromagnetic sounding for groundwater. Geophysics 1986, 51, 995–1005. [Google Scholar] [CrossRef]
- Buselli, G.; Lu, K. Groundwater contamination monitoring with multichannel electrical and electromagnetic methods. J. Appl. Geophys. 2001, 48, 11–23. [Google Scholar] [CrossRef]
- Xue, G.Q.; Chen, W.Y.; Ma, Z.J.; Hou, D.Y. Identifying deep saturated coal bed zones in china through the use of large loop TEM. J. Environ. Eng. Geophys. 2018, 23, 135–142. [Google Scholar] [CrossRef]
- Yue, J.; Yang, H.; Hu, B. 3D finite difference time domain numerical simulation for TEM in-mine. Prog. Geophys. 2007, 6, 1904–1909. [Google Scholar]
- Gao, B.K. Research on the Forward of Slope Exploration in DC Based on ANSYS. Master’s Thesis, Central South University, Changsha, China, 2008. [Google Scholar]
- Gao, W.; Shi, L.; Zhai, P. Water Detection within the Working Face of an Underground Coal Mine Using 3D Electric Resistivity Tomography (ERT). J. Environ. Eng. Geophys. 2019, 24, 497–505. [Google Scholar] [CrossRef]
- Liu, Z.G.; Qiao, D.H.; Li, Y.W.; Xu, J.Y. Tunnel Karst Disease Risk Estimation by Advance Geological Forecast. Appl. Mech. Mater. 2013, 353–356, 1689–1692. [Google Scholar] [CrossRef]
- Gao, X.Q.; Zhu, Y.Q.; Ye, C.L. Survey and Analysis of the Regularity of the Surface Crack in the Loess Tunnel of the Special Passenger Line. Appl. Mech. Mater. 2011, 90–93, 2258–2264. [Google Scholar] [CrossRef]
- Park, M.K.; Park, S.; Yi, M.-J.; Kim, C.; Son, J.-S.; Kim, J.-H.; Abraham, A.A. Application of electrical resistivity tomography (ERT) technique to detect underground cavities in a karst area of South Korea. Environ. Earth Sci. 2013, 71, 2797. [Google Scholar] [CrossRef]
- Bazaluk, O.; Sadovenko, I.; Zahrytsenko, A.; Saik, P.; Lozynskyi, V.; Dychkovskyi, R. Forecasting Underground Water Dynamics within the Technogenic Environment of a Mine Field. Case Study. Sustainability 2021, 13, 7161. [Google Scholar] [CrossRef]
- Gao, W.; Shi, L.; Han, J.; Zhai, P. Dynamic monitoring of water in a working face floor using 2D electrical resistivity tomography (ERT). Mine Water Environ. 2018, 37, 423–430. [Google Scholar] [CrossRef]
- Zhai, M.; Bai, H.; Wu, L.; Wu, G.; Yan, X.; Ma, D. A reinforcement method of floor grouting in high-water pressure working face of coal mines: A case study in Luxi coal mine, North China. Environ. Earth Sci. 2022, 81, 28. [Google Scholar] [CrossRef]
- Yu, X.; Pei, F.; Han, J.; Gao, W.; Wang, X. Ordovician limestone karst development law in Feicheng coal field. Environ. Earth Sci. 2018, 77, 781. [Google Scholar] [CrossRef]
- Shi, L. Analysis of the origin of water inrush coefficient and its applicability. J. Shandong Univ. Sci. Technol. 2012, 31, 6–9. [Google Scholar]
- Meng, Z.; Li, G.; Xie, X. A geological assessment method of floor water inrush risk and its application. Eng. Geol. 2012, 143–144, 51–60. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, Y.; Liu, D.; Zhou, W. Prediction of Floor Water Inrush: The Application of GIS-Based AHP Vulnerable Index Method to Donghuantuo Coal Mine, China. Rock Mech. Rock Eng. 2011, 44, 591–600. [Google Scholar] [CrossRef]
- Zhu, Q.H.; Feng, M.M.; Mao, X. Numerical analysis of water inrush from working-face floor during mining. Int. J. Min. Sci. Technol. 2008, 18, 159–163. [Google Scholar] [CrossRef]
- Rudakov, D.; Inkin, O. Evaluation of heat supply with maintaining a safe mine water level during operation of open geothermal systems in post-coalmining areas. Min. Miner. Depos. 2022, 16, 24–31. [Google Scholar] [CrossRef]
- Rudakov, D.; Westermann, S. Analytical modeling of mine water rebound: Three case studies in closed hard-coal mines in Germany. Min. Miner. Depos. 2021, 15, 22–30. [Google Scholar] [CrossRef]
- Wu, J.; Cai, J.; Zhao, D.; Chen, X. An analysis of mine water inrush based on fractal and non-darcy seepage theory. Fractals 2014, 22, 1440008. [Google Scholar] [CrossRef]
- Loke, M.H.; Barker, R.D. Least-squares deconvolution of apparent resistivity pseudosections. Geophysics 1995, 60, 1682–1690. [Google Scholar] [CrossRef]
Name of Drilling | The Water Inflow from NO. 5 LS (m3/h) | The Water Inflow from OLS (m3/h) |
---|---|---|
Drilling 1 | 2.0 | 60 |
Drilling 2 | 5.0 | 20 |
Drilling 3 | 7.0 | 25 |
Drilling 4 | 5.0 | 12 |
Drilling 5 | 0 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, C.; Gao, W.; Wu, P.; Wang, L. Grouting Effect Detection within the Floor of a Coal Seam Using 3D Electric Resistivity Tomography (ERT) with Arbitrary Electrode Positions. Appl. Sci. 2022, 12, 5625. https://doi.org/10.3390/app12115625
Pang C, Gao W, Wu P, Wang L. Grouting Effect Detection within the Floor of a Coal Seam Using 3D Electric Resistivity Tomography (ERT) with Arbitrary Electrode Positions. Applied Sciences. 2022; 12(11):5625. https://doi.org/10.3390/app12115625
Chicago/Turabian StylePang, Chuming, Weifu Gao, Pengzheng Wu, and Lidong Wang. 2022. "Grouting Effect Detection within the Floor of a Coal Seam Using 3D Electric Resistivity Tomography (ERT) with Arbitrary Electrode Positions" Applied Sciences 12, no. 11: 5625. https://doi.org/10.3390/app12115625
APA StylePang, C., Gao, W., Wu, P., & Wang, L. (2022). Grouting Effect Detection within the Floor of a Coal Seam Using 3D Electric Resistivity Tomography (ERT) with Arbitrary Electrode Positions. Applied Sciences, 12(11), 5625. https://doi.org/10.3390/app12115625