Orthofaçade-Based Assisted Inspection Method for Buildings
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
- Preparation and organisation of inspection;
- Building façade survey;
- Orthofaçade generation;
- Crack inspection.
2.1. Preparation and Organisation of Inspection
2.2. Building Façade Survey
2.3. Orthofaçade Generation
2.4. Crack Inspection
- 1.
- cv.THRESH_BINARY
- 2.
- cv.THRESH_BINARY_INV
- 3.
- cv.THRESH_TRUNC
- 4.
- cv.THRESH_TOZERO
- 5.
- cv.THRESH_TOZERO_INV
- src—Source 8-bit single-channel image.
- dst—Destination image of the same size and the same type as src.
- maxValue—Non-zero value assigned to the pixels for which the condition is satisfied
- adaptiveMethod—Adaptive thresholding algorithm to use, see #AdaptiveThresholdTypes. The #BORDER_REPLICATE | #BORDER_ISOLATED is used to process boundaries.
- thresholdType—Thresholding type that must be either #THRESH_BINARY or #THRESH_BINARY_INV, see #ThresholdTypes.
- blockSize—Size of a pixel neighbourhood that is used to calculate a threshold value for the pixel: 3, 5, 7, and so on.
- C—Constant subtracted from the mean or weighted mean (see the details below). Normally, it is positive but may be zero or negative as well.
- src—Input array.
- dst—Output array that has the same size and type as the input array.
- mask—Optional operation mask, 8-bit single-channel array, that specifies elements of the output array to be changed.
3. Results
3.1. Preparation and Organisation of Inspection
3.2. Building Façade Survey
3.3. Orthofaçade Generation
3.4. Crack Inspection
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chirjiv, K.A.; Amor, B. Recent developments, future challenges and new research directions in LCA of buildings: A critical review. Renew. Sustain. Energy Rev. 2017, 67, 408–416. [Google Scholar] [CrossRef]
- Dias, I.S.; Flores-Colen, I.; Silva, A. Critical Analysis about Emerging Technologies for Building’s Façade Inspection. Buildings 2021, 11, 53. [Google Scholar] [CrossRef]
- Chen, K.; Reichard, G.; Xu, X.; Akanmu, A. Automated crack segmentation in close-range building façade inspection images using deep learning techniques. J. Build. Eng. 2021, 43, 102913. [Google Scholar] [CrossRef]
- Barrelas, J.; Dias, I.S.; Silva, A.; de Brito, J.; Flores-Colen, I.; Tadeu, A. Impact of Environmental Exposure on the Service Life of Façade Claddings—A Statistical Analysis. Buildings 2021, 11, 615. [Google Scholar] [CrossRef]
- Safiuddin, M.; Kaish, A.; Woon, C.; Raman, S. Early-Age Cracking in Concrete: Causes, Consequences, Remedial Measures, and Recommendations. Appl. Sci. 2018, 8, 1730. [Google Scholar] [CrossRef] [Green Version]
- Alavi, H.; Bortolini, R.; Forcada, N. BIM-based decision support for building condition assessment. Autom. Constr. 2022, 135, 104117. [Google Scholar] [CrossRef]
- Kim, B.; Cho, S. Automated Multiple Concrete Damage Detection Using Instance Segmentation Deep Learning Model. Appl. Sci. 2020, 10, 8008. [Google Scholar] [CrossRef]
- Choi, J.; Yeum, C.M.; Dyke, S.J.; Jahanshahi, M.R. Computer-Aided Approach for Rapid Post-Event Visual Evaluation of a Building Façade. Sensors 2018, 18, 3017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pal, M.; Palevičius, P.; Landauskas, M.; Orinaite, U.; Timofejeva, I.; Ragulskis, M. An Overview of Challenges Associated with Automatic Detection of Concrete Cracks in the Presence of Shadows. Appl. Sci. 2021, 11, 11396. [Google Scholar] [CrossRef]
- Banaszek, A.; Zarnowski, A.; Cellmer, A.; Banaszek, S. Application of new technology data acquisition using aerial (UAV) digital images for the needs of urban revitalization. In Proceedings of the 10th International Conference of Environmental Engineering, Vilnius, Lithuania, 27–28 April 2017. [Google Scholar] [CrossRef]
- Munawar, H.S.; Hammad, A.W.A.; Haddad, A.; Soares, C.A.P.; Waller, S.T. Image-Based Crack Detection Methods: A Review. Infrastructures 2021, 6, 115. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.; Ahn, E.; Cho, S.; Shin, M.; Sim, S.-H. Concrete Crack Identification Using a UAV Incorporating Hybrid Image Processing. Sensors 2017, 17, 2052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, S.; Ham, S.; Lee, S. Drone-Assisted Image Processing Scheme using Frame-Based Location Identification for Crack and Energy Loss Detection in Building Envelopes. Energies 2021, 14, 6359. [Google Scholar] [CrossRef]
- Munawar, H.S.; Ullah, F.; Heravi, A.; Thaheem, M.J.; Maqsoom, A. Inspecting Buildings Using Drones and Computer Vision: A Machine Learning Approach to Detect Cracks and Damages. Drones 2022, 6, 5. [Google Scholar] [CrossRef]
- Eschmann, C.; Kuo, C.-M.; Kuo, C.-H.; Boller, C. Unmanned aircraft systems for remote building inspection and monitoring. In Proceedings of the 6th European Workshop on Structural Health Monitoring, Dresden, Germany, 3–6 July 2012. [Google Scholar]
- Choi, D.; Bell, W.; Kim, D.; Kim, J. UAV-Driven Structural Crack Detection and Location Determination Using Convolutional Neural Networks. Sensors 2021, 21, 2650. [Google Scholar] [CrossRef] [PubMed]
- Pix4D. Photo Stitching vs. Orthomosaic Generation. Available online: https://support.pix4d.com/hc/en-us/articles/202558869-Photo-stitching-vs-orthomosaic-generation (accessed on 10 December 2021).
- Pix4D. What Is the Relative and Absolute Accuracy of Drone Mapping. Available online: https://support.pix4d.com/hc/en-us/articles/202558889-What-is-the-relative-and-absolute-accuracy-of-drone-mapping (accessed on 10 December 2021).
- Ayele, Y.Z.; Aliyari, M.; Griffiths, D.; Droguett, E.L. Automatic Crack Segmentation for UAV-Assisted Bridge Inspection. Energies 2020, 13, 6250. [Google Scholar] [CrossRef]
- Zollini, S.; Alicandro, M.; Dominici, D.; Quaresima, R.; Giallonardo, M. UAV Photogrammetry for Concrete Bridge Inspection Using Object-Based Image Analysis (OBIA). Remote Sens. 2020, 12, 3180. [Google Scholar] [CrossRef]
- Bhowmick, S.; Nagarajaiah, S.; Veeraraghavan, A. Vision and Deep Learning-Based Algorithms to Detect and Quantify Cracks on Concrete Surfaces from UAV Videos. Sensors 2020, 20, 6299. [Google Scholar] [CrossRef] [PubMed]
- Zawad, M.; Zawad, M.; Rahman, M.; Priyom, S. A Comparative Review of Image Processing Based Crack Detection Techniques on Civil Engineering Structures. J. Soft Comput. Civ. Eng. 2021, 5, 58–74. [Google Scholar] [CrossRef]
- OpenCV. Available online: https://opencv.org/ (accessed on 6 December 2021).
- Russo, M.; Carnevali, L.; Russo, V.; Savastano, D.; Taddia, Y. Modeling and deterioration mapping of façades in historical urban context by close-range ultralightweight UAVs photogrammetry. Int. J. Archit. Herit. 2019, 13, 549–568. [Google Scholar] [CrossRef]
- Hallermann, N.; Morgenthal, G.; Rodehorst, V. Unmanned Aerial Systems (UAS)—Case Studies of Vision Based Monitoring of Ageing Structures. In Proceedings of the International Symposium Non-Destructive Testing in Civil Engineering (NDT-CE), Berlin, Germany, 15–17 September 2015. [Google Scholar]
- Pix4D Support: Image Acquisition. Available online: https://support.pix4d.com/hc/en-us/articles/115002471546-Image-acquisition (accessed on 10 December 2021).
- Regulation on Topographic Survey and Topographic and Cartographic Products. Official Gazette of Republic of Serbia, No. 7/2015. 2015. Available online: https://www.rgz.gov.rs/content/Datoteke/Dokumenta/02%20Pravilnici/Pravilnik%20o%20topografskom%20premeru%20i%20topografsko-kartografskim%20proizvodima%20-%2006.02.2015.pdf (accessed on 6 December 2021).
- Regulation on Unmanned Aerial Vehicles.Official Gazette of Republic of Serbia, No. 1/2020. 2020. Available online: https://cad.gov.rs/upload/Propisi/2020/Pravilnik%20o%20bespilotnim%20vazduhoplovima.pdf (accessed on 6 December 2021).
- Pix4D. Getting GCPs on the Field or through Other Sources. Available online: https://support.pix4d.com/hc/en-us/articles/202557489-Step-1-Before-Starting-a-Project-4-Getting-GCPs-on-the-field-or-through-other-sources-optional-but-recommended (accessed on 10 December 2021).
- Oniga, V.-E.; Breaban, A.-I.; Statescu, F. Determining the Optimum Number of Ground Control Points for Obtaining High Precision Results Based on UAS Images. Proceedings 2018, 2, 352. [Google Scholar] [CrossRef] [Green Version]
- Laban, M. The Improvement of Envelopes’ Performances of Multi-Storey Prefabricated and Semi-Prefabricated Residential Buildings in Novi Sad. Ph.D. Thesis, University of Novi Sad, Novi Sad, Serbia, 2012. [Google Scholar]
- LIVONA doo. Available online: http://www.livona.rs/wp-content/uploads/BAT_ANAFI_Work_Product-Sheet_A4_EN_2018-10-12_srb.pdf (accessed on 10 December 2021).
UAV Specifications | |
Size unfolded | 240 × 175 × 65 mm |
Weight | 320 g |
Max. flight time | 25 min |
Operating temperature range | −10 °C to 40 °C |
Max. horizontal speed | 15 m/s |
Max. vertical speed | 4 m/s |
Max. transmission range | 4 km with controller |
Max. wind resistance | 50 km/h |
Satellite Positioning Systems | GPS & GLONASS |
Camera Specifications | |
Sensor format | 6.194 × 4.646 mm |
Sensor | 1/2.4″ CMOS |
Lens | FOV 180° |
ISO range | 100–3200 |
Image resolution | 4608 × 3456 px |
Focal length | 4 mm |
Diagonal crop factor | 7.487 |
Flight Parameter | Performance | Flight Pattern | |
---|---|---|---|
Flight mode | Manual | ||
Flying distance from the façade | 6 m | ||
Camera orientation | Perpendicular | ||
GSD | 2.1 mm | ||
Area covered by a single image | 9 m × 7 m | ||
Image capture intervals | 1 m × 1 m | ||
Image overlap | Vertical | 86% | |
Horizontal | 89% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Draganić, S.; Popov, S.; Laban, M.; Marković, M.Z.; Lukić, I.; Malešev, M.; Radonjanin, V. Orthofaçade-Based Assisted Inspection Method for Buildings. Appl. Sci. 2022, 12, 5626. https://doi.org/10.3390/app12115626
Draganić S, Popov S, Laban M, Marković MZ, Lukić I, Malešev M, Radonjanin V. Orthofaçade-Based Assisted Inspection Method for Buildings. Applied Sciences. 2022; 12(11):5626. https://doi.org/10.3390/app12115626
Chicago/Turabian StyleDraganić, Suzana, Srđan Popov, Mirjana Laban, Marko Z. Marković, Ivan Lukić, Mirjana Malešev, and Vlastimir Radonjanin. 2022. "Orthofaçade-Based Assisted Inspection Method for Buildings" Applied Sciences 12, no. 11: 5626. https://doi.org/10.3390/app12115626
APA StyleDraganić, S., Popov, S., Laban, M., Marković, M. Z., Lukić, I., Malešev, M., & Radonjanin, V. (2022). Orthofaçade-Based Assisted Inspection Method for Buildings. Applied Sciences, 12(11), 5626. https://doi.org/10.3390/app12115626