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Abstract: The meeting between Natural Language Processing (NLP) and Quantum Computing has
been very successful in recent years, leading to the development of several approaches of the so-called
Quantum Natural Language Processing (QNLP). This is a hybrid field in which the potential of
quantum mechanics is exploited and applied to critical aspects of language processing, involving
different NLP tasks. Approaches developed so far span from those that demonstrate the quantum
advantage only at the theoretical level to the ones implementing algorithms on quantum hardware.
This paper aims to list the approaches developed so far, categorizing them by type, i.e., theoretical
work and those implemented on classical or quantum hardware; by task, i.e., general purpose such as
syntax-semantic representation or specific NLP tasks, like sentiment analysis or question answering;
and by the resource used in the evaluation phase, i.e., whether a benchmark dataset or a custom one
has been used. The advantages offered by QNLP are discussed, both in terms of performance and
methodology, and some considerations about the possible usage QNLP approaches in the place of
state-of-the-art deep learning-based ones are given.

Keywords: quantum computing; natural language processing

1. Introduction

In recent years, the explosion of neural language models based on deep learning
architecture has led to significant improvement in all NLP tasks [1–4], ranging from machine
translation [5], text classification [6], coreference resolution [7,8] or multi-language syntactic
analysis [9–11]. In particular, Transformers-based models such as BERT have proved to
outperform previous generation state-of-the-art architecture such as Long Short-Term
Memory (LSTM) recurrent neural networks (RNN).

However, the improvement in performance is matched by an increasing complexity of
models that have led to a paradox. Models require a huge amount of data to be efficiently
trained, with an enormous cost in time, resources and computation.

This is the major drawback of current approaches based on Transformers, for instance
the number of parameters for this kind of neural networks reaches the order of hundreds of
billions (data referred to OpenAI GPT model) [12,13]. In addition, it requires big resources
for the training phase (e.g., the whole Wikipedia corpus in several languages).

Beyond to these aspects, there are also open issues inherent to what really these models
learn about language [14,15], how they encode this information [16] and how much of
the information learned is really interpretable [17]. The literature has produced several
studies focused on whether neural language models are able to encode a sort of linguistic
information or whether they just replicate patterns observed in written texts.

An alternative way that is gaining attention in recent years is that which originates
from quantum computing, in particular quantum-machine learning sub-field. The idea is to
exploit powerful aspects borrowed from quantum mechanics to overcome computational
limitations of current approaches [18]. The dominant paradigm of classical statistics
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could be extended using quantum mechanics by representing objects with matrices of
complex numbers.

In quantum computing, bits are replaced by qubits, which are able to handle in-
formation in a non-binary state using a property of quantum system called superposi-
tion [19]. Quantum algorithms can perform calculations with smaller complexity com-
pared to the classical approaches using an intrinsic property of qubits known as super-
polynomial speedup [18,20,21].

Recent work has observed the development of quantum algorithms that could serve
as foundations for machine learning applications. In some cases, quantum properties
have been used to simply improve performance of machine learning approaches, while in
others problems of machine learning have been reformulated using quantum theory [22,23].
Process classical data using machine learning algorithms using quantum systems has
generated a big strand of research. Quantum machine learning has been used for different
purposes: delving into the use of quantum phenomena for learning systems, exploring the
ability of quantum computers to learn on quantum data and the possibility to reformulate
and implement machine learning algorithms on quantum hardware.

As happened before in the case of the classic machine learning, this rapid growth of
quantum machine learning algorithms, both from hardware and software side (in terms of
devices and algorithms) has involved the natural language processing (NLP) field. This has
given rise to the so-called QuantumNLP (QNLP) [24], defined as the implementation of
natural language on quantum hardware. It matches the compositional language structure
(grammar and semantics) with composition made possible by quantum systems in order to
model natural language and perform simple NLP tasks exploiting algorithms derived from
the quantum machine learning.

The core idea at the basis of QNLP is that the most effective manner for bringing
language meaning and grammatical structure together was provided by the categorical
quantum mechanics framework. Moreover, it promises to be more aware of the meanings
of the language involved in the modeling. The advantage of using a visual representation
language is the possibility to represent both the meaning of a word and its relationships to
others within a sentence, and its structure too. This would represent a step forward from
the classical dependency-based representation that relies on tree structure without explicit
connections to meanings of the syntactic elements involved.

The theoretical framework common to de facto all QNLP approaches is the Categorical
Distributional Compositional (DisCoCat) model for natural language [25]. DisCoCat allows
encoding meanings of words and phrases as quantum states and processes subsequently
implementable as quantum circuits in dedicated hardware or simulators. At the moment,
the developed approaches can mainly be pursued through a hybrid methodology, combin-
ing classical operations with operations taken from quantum mechanics. This is because
that—although the advantages of quantum-based approaches are proven at the theoretical
level [25,26]—the availability of hardware is currently limited to machines only to small to
intermediate scale (in particulare NISQ computers: Noisy intermediate-scale) [27]. Given
the growing interest of the NLP community in the possibilities offered by QNLP, this paper
aims at providing a comprehensive overview of quantum approaches to solve natural
language processing tasks. After a brief introduction of concepts and properties drawn
from quantum mechanics and NLP, the theoretical background underlying the proposed
approaches is described.

Subsequently, different work are listed distinguishing between their type, i.e., full the-
oretical work that have not had a real implementation, work based on quantum mechanics
but running on classical hardware, and work that can run on quantum hardware currently
available and have been tested on real data.

Note that—although QNLP is promising and could solve many critical issues related
to current well-established NLP mechanics—it is not yet possible to make a real comparison
between classical and quantum approaches [28]. This is since many of the works have only
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theoretically demonstrated performance benefits, while those that have been implemented
only manage to run on very small portions of data.

This paper is structured as follows: Section 2 introduces the theoretical background
both from a quantum computing and linguistic point of view. First, in Section 2.1 ba-
sic quantum mechanics notions, algorithms, and hardware used within the QNLP are
specified. Section 2.2 briefly describes the intersection between quantum computing and
NLP. After that, in Section 3 the approaches of QNLP that have been proposed so far are
enumerated, dividing them into theoretical (Section 4), classical hardware approaches
(Section 5) and approaches running on real quantum hardware (Section 6). Sections 7 and 8
are devoted to a review of the listed work and conclusions highlighting the advantages
and disadvantages of QNLP approaches.

2. Theoretical Background

This section aims to provide preliminary concepts with respect to both the terminology,
properties and algorithms derived from quantum mechanics that are discussed below and
concerning the linguistic theory foundations that underlie the proposed language models.

2.1. Quantum Background

In this section fundamental quantum concepts that are used in this work are briefly
outlined, covering both the fundamental concepts and the algorithms and hardware used
within the QNLP.

2.1.1. Fundamental Notions

• Qubits is the basic unit of information in quantum computing. Similar to its classical
counterpart, the bit, it can assume two distinct values of 0 or a 1. The difference is
that whereas a bit must be either 0 or 1, a qubit can be 0, 1 or a superposition of both.
Conventionally, possible states of a qubit are represented using the Dirac notation:
|0〉 and |1〉.

• Superposition is a principle of quantum mechanics allowing separate elements to
assume many configuration arrangements, such that the general state is a combination
of all of these possibilities. For the purpose of this work, notice that each qubit could
take a superposition of both |0〉 and |1〉, assuming a representation obtained from the
linear combination of the two states: |ψ〉 = a |0〉+ b |1〉, where |ψ〉 is a state that lives
in a 2-dimensional complex vector space (Hilbert space), a and b two arbitrary complex
coefficients whose sum of squares is 1 and |0〉 and |1〉 are orthonormal basis vectors,
related to the respective measures 0 and 1. In the context of NLP, the superposition
gives the possibility to better manage some pervasive natural language phenomena,
such as lexical ambiguity and polysemy [29,30]. For instance, the term bar can have
different meanings. It can indicate a place where alcoholic drinks are served or a piece
of metal. Using the Dirac notation, the word bar can be represented as a superposition
state: |bar〉 = a |place〉+ b |rod〉.

• Entanglement is a non-local property that distinguishes qubits from the classic bit. It
allows multiple states simultaneously, differently from the classical bits that can have
only one value at a time. For instance, considering two entangled qubits in the Bell
state, Bell states are specific quantum states of two qubits representing the simplest
and maximal examples of quantum entanglement 1√

2
(| |00〉+ |11〉 |). These two qubits

are separated and assigned to two different elements, a and b. The measurement of
qubits assigned to a gives |0〉 or |1〉 as a result. Due to the entanglement property, b
must now obtain exactly the same measurement as a. In particular, if a measures a |0〉,
b must measure the same, as |00〉 is the only state where a qubit is a |0〉. With regard to
NLP, the assumption is that words that the grammatical structure that connects with
specific relations of multiple words, form and entangle between quantum states in
which the words are encoded [31].
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• Hilbert space is defined as a vector space equipped with an inner product, which
allows defining a distance function so that it becomes a complete metric space. In quan-
tum mechanics, the possible states of a system are represented by state vectors located
in a complex separable Hilbert space [32].

• Quantum measurement is the act of observing a qubit in superposition and resulting
in one of the possible states. The act of observing or measuring a qubit collapses
the superposition state and the qubit takes on a classical binary state of either 1 or
0. Thus, when a qubit in a certain superposition state |ψ〉 = a |0〉+ b |1〉 is measured
with respect to the standard basis for quantum computation |0〉,|1〉, it is possible to get
either the result 0 with probability a2, or the result 1 with probability b2. Once a qubit
has been measured, it stays in that state forever. In other words, measurement alters
the state of a qubit, collapsing it from its superposition of |0〉 and |1〉 to the specific
state consistent with the result of the measurement, i.e., if |ψ〉 is observed to be in state
|0〉 through measurement, then the post-measurement state of the qubit will be |0〉,
and any subsequent measurements (in the same basis) will yield 0 with probability 1.

• Quantum interference is a principles of quantum theory that affects the state of a
qubit to influence its probability to collapse into a manner or another. It allows biasing
the measurement of superposition toward a desired basis state or set of states.

2.1.2. Quantum Computation and Algorithms

• Noisy intermediate-scale quantum (NISQ) devices are defined as quantum comput-
ers for which general-purpose quantum error correction is not feasible and hardware
errors are expected [33]. These devices currently can handle 1000 two-qubit operations
with tolerable error rates, having a memory size of 50–100 qubits. NISQ devices
are currently the only hardware in place to run quantum algorithms; however, they
present several limits concerning the number of qubits available to algorithms and the
maximum size of quantum circuits.

• Quantum Random Access Memory (QRAM) is the quantum counterpart of the clas-
sical random access memory (RAM). QRAM is able to use n qubits to address any
quantum superposition of N memory cells, where the classical RAM can only use n
bits to randomly access N = 2n distinct memory cells. QRAM presents some advan-
tages in terms of performance, exponentially reducing the need for a memory call
from N to O(logN). The architecture has been presented by [34], but it still remains
unrealized at the implementation level.

• Grover’s quantum search algorithm is structured to get the correct answer using a
state with an equal superposition of orthogonal states, which represent the answers as
input. The output is a state with only basic states that have any probability of being
measured correspond to correct answers [35].

• Quantum volume is the metric that allow a comparison between different quantum
computers, each of which can present a different architecture. Performances are
evaluated quantifying the largest random circuit of same width and depth successfully
implementable by a quantum computer.

2.2. NLP and Quantum: The Meeting Point

One of the assumptions underlying the union between natural language processing
and quantum theory is the possibility of creating a direct relationship between linguistic
features (i.e., syntactic structures and semantics meanings) and quantum states.

This is made possible using the DisCoCat framework through string diagrams [36] as
a network-like language [37].

This approach is part of a long and flourishing tradition of computational linguistics
focused on the search for the most efficient way to represent language structures and
meanings in a machine-readable way. On the one hand, the distributional approach—which
has been the most successful line of research in recent years—relies on statistics about the
contexts in which words occur according to the distributional hypothesis [38]. By contrast,
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the symbolic approach [39] has been focused on individual meanings that compose the
sentence. This approach is based on the theoretical linguistics’ concept of compositionality,
arguing that the meaning of a sentence depends on the meanings of its parts and by the
grammar according to which they are arranged together. Therefore, the analysis of the
individual constituents determines the overall meaning, which is expressed using a formal
logical language. This line of research has obtained less success in NLP applications so far.

Current state-of-the-art neural network models are based on the dominant distri-
butional paradigm. Therefore, this approach is not without problems. First, there is a
big bottleneck created by the need for ever larger data sets and parameters; moreover,
the interpretation of these models is difficult [40].

The first attempt to overcome the limitations of current NLP models is to include
features about the structure of the language (basically syntax) into canonical distributional
language models. The resulting model—denoted as DisCoCat—incorporates categorical
information and distributional information. Note that this is certainly not a new approach
in the field of theoretical and computational linguistics, since its roots lie in the Univer-
sal Grammar [41] and foundational work of [42,43], while applied aspects come from
categorical grammars proposed by [44] and pregroup grammar [45].

The Compositional Distributional Model

Given the premise that the constituents of a sentence are strongly interconnected,
and the grammatical structures in which they are involved affect semantics [46], the pioneer-
ing work proposed by [25] has proposed a graphical framework to draw string diagrams
(see Figure 1) exploiting concepts from Lambek’s pregroup grammar [47]. The uniqueness
of the proposed representation is that sentence meanings can be totally independent of the
grammatical structure.

The question they intended to answer is not only rooted in compositionality, i.e., whether
the meaning of a whole sentence can be deduced by single meanings of its words. The aim
is rather to make the first steps towards a grammar-informed NLP, deepening the ways
in which words interact with each other and establishing their meanings. In other terms,
the framework aims to combine in a whole diagrammatic representation structural aspects
of language (grammar theory and syntax) and statistical approaches based on empirical
evidences (machine/deep learning).

Figure 1. Example of a simple sentence represented using a string diagram inspired by formalism
proposed in [25].

In the diagram, boxes represent meanings of words that are transmitted via wires. It
deals with a representation similar to the canonical Dependency Parse Tree (DPT) well
known in the linguistics literature, but it does not introduce a hierarchical tree structure.
In the example shown in Figure 1, the noun in subject position “Max” and the one in
object position “pizza” are both related with the verb “ate” and the combination of these
words builds up the meaning of the overall sentence. In this way, distributional and
compositional aspects are combined into DisCoCat. The meaning of sentences is computed
using pregroup grammar via tensor product composition. In particular, it is possible to go
through the classic DPT using the tensor product of vector spaces of the meanings of words
and vectors of their grammatical roles. For instance, the example sentence in Figure 1 can
be represented as follows:

(
−−→
Max⊗

−→
subj⊗−→ate⊗ (

−−→
pizza⊗

−→
obj) (1)
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This vector in the tensor product space can be considered as the meaning of the sen-
tence “Max ate pizza”. Subsequently, this model has been reformulated in quantum terms,
creating the pregroup only using Bell-effect and identities [24]. In this diagrammatic nota-
tion (see Figure 2), pentagons represent quantum states and wires represent the Bell-effect.
The equivalence of wire structure with pregroup grammar has been demonstrated [31].

Figure 2. Diagrammatic notation showing how word meaning can be interpreted as quantum states
and grammatical structure as quantum measurements.

Notice that the original DisCoCat model works perfectly without any reference to
quantum theory, even if its true origin is the categorical quantum mechanics (CQM) formal-
ism [48] and this connection is only made explicit in further work [31].

The novelty in introducing elements from quantum theory lies in the argument put
forward in the work of [49] and then elaborated and enriched in [31]: QNLP can be consid-
ered “quantum-native” since quantum theory and natural language share an interaction
structure and the use of vector spaces. This interaction structure determines the entire
structure of processes, including the specification of the spaces where the states live. Vector
spaces are used to describe states. This implies that natural language could better fit in a
quantum hardware than a classical one.

Hence, the translation of linguistic structure into quantum circuits is particularly
suitable to be implemented in a proper quantum hardware (NISQ) and consequently
benefit from quantum advantage in terms of speedup.

3. Classification of Work

The release of a compositional derivational model such as DisCocat, has tremendously
influenced in direct and indirect ways all approaches in the nascent field of QNLP. Since in
its original version it can actually be considered as a tensor network language model [50],
some approaches have taken advantage of its internal architecture while not using the
whole model. Other works instead incorporate DiScoCat into their methodology, while
still other ones propose alternative models.

The papers reviewed below are categorized according to this criterion. First, a brief
mention of pre-quantum work is given, i.e., all work using the first version of the model or
work exploiting tensor networks to perform different NLP tasks. Although such works may
not appear to be in line with the purpose of this survey, it is important to include them since
they lay the groundwork for all future developments. In addition, they cover a broader
range of topics from which subsequent work complete with a full quantum implementation
will branch.

After that, Theoretical Quantum work are described, i.e., those works that propose
algorithms or methods based on quantum theory or are potentially implementable on
quantum, hardware, but which are not tested on real data. They range from approaches
focused on specific tasks to other ones that targeted generic aspects of NLP, such as how to
represent sentences or how to combine different language models (e.g., syntactic/semantic
or compositional/distributional).

Then, approaches that have been implemented and evaluated on real data are described.
A distinction is made between approaches that have been run on classical hardware (namely
quantum-inspired approaches) and those that have used actual quantum hardware.

Concerning quantum-inspired approaches, the quantum advantage has been demon-
strated at the theoretical level but the algorithms have been tested on classic hardware.
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These works are typically organized in this way: taking up the classical model, benefit-
ing from the contribution of quantum mechanics at the performance level and demonstrat-
ing that it is possible to outperform the state-of-the-art using a quantum approach. Note that
some of these works have been tested and compared with benchmark datasets well-known
in the literature, while other ones use ad-hoc-created samples for the evaluation.

Finally, approaches that have been actually tested on the quantum computer are out-
lined. These works—although at the moment very few in number—have been proposed
for some simple NLP tasks. These works are described following a distinction with respect
to the application task. These work are intended as the applied counterpart of theoretical
works in which the mathematical foundations are provided. All of them start from the as-
sumption that a quantum-based model of language should be closer and more reliable than
current language models with respect to a specific task. Experiments have been performed
on small-to-medium scale datasets, due to the current limits of quantum hardware.

Table 1 shows a comparative summary of the listed approaches, specifying type
and task.

Table 1. Comparison of existing approaches divided by type (theoretical, really implemented on
classical hardware and running on quantum hardware) and by NLP task on which they focused.

Type Task Work

Theoretical approaches

Syntactic-semantic
Representation

Zeng and Coecke (2016) [26]
Coecke et al. (2020) [31]
Meichanetzidis et al. (2020) [49]

Disambiguation
Question answering Correia (2021) [51]

Machine translation Abbaszade et al (2021) [52]

Quantum-inspired approaches
(classical hardware)

Information retrieval

Sordoni et al. (2013) [53]
Xie et al. (2015) [54]
Li et al. (2018) [55]
Jiang et al. (2020) [56]

Question answering
Zhang et al. (2018) [57]
Zhang et al. (2018) [58]
Li et al. (2019) [59]

Sentiment Analysis

Zhang et al. (2018) [60]
Zhang et al. (2019) [61]
Zhang et al. (2020) [62]
Zhang et al. (2021) [62]

Quantum computer approaches
(NISQ hardware)

Question answering Meichanetzidis et al. (2020) [63]

Sentence classification Lorenz et al. (2021) [64]

Machine translation Vicente (2021) [65]

Pre-QNLP Approaches

Even in its original pre-quantum formulation, the DisCoCat framework has had great
success in the literature, as it was used for various linguistic phenomena. For instance,
following an experiment proposed by [66], the work of [67] has tested DisCoCat on British
National Corpus (BNC) [68] in order to demonstrate the possibility of a practical imple-
mentation of such a model opening the way to the production of large scale compositional
models. More recently, other aspects connected to DisCoCat model have been investigated,
including tasks such as negation and disambiguation. In particular, in [69] the possibility of
a model for logical negation has been investigated. The work of [70] instead has proposed
a method exploiting the distributional compositional categorical model of meaning to
compare and translate sentences in English and Irish using via vector spaces.

Afterwards, the tensor-network based approach on which DisCoCat is based has given
rise to numerous derivative approaches. Among these, it is important to mention the study
proposed by [71]. It has used the Frobenius algebra [72] to develop a compositional vector-
based semantics of subject, and object relative pronouns within a categorical framework
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have been supported. The general operations derived from the Frobenius algebra have
been used to formalize the operations required to model the semantics of relative pronouns,
ranging from relative clauses to modifiers. Again, the feasibility of the approach has
been assessed through small-scale experiments on BNC corpus. Another work that has
exploited tensor networks following DisCoCat idea has been proposed by [73]. It is a
work focused on the disambiguation task. In particular, an algorithm able to improve
number of tensor-based compositional distributional models of meaning introducing a step
of disambiguation prior to composition has been developed. This approach is based on a
methodology already known in the literature for automatic word sense disambiguation [74],
which creates unambiguous versions of tensors before these are composed with vectors of
nouns to construct vectors for sentences and phrases.

4. Theoretical Quantum Approaches

Since its release, DisCoCat model offers several advantages on a theoretical level;
in particular, it has provided a syntax-aware algorithm able to compute the meaning of
sentences and phrases using tensor product composition. Although it is originally inspired
by some properties and protocols of quantum mechanics [75], its implementation was
limited by the high computational cost it required.

Addressing this issue, the work of [26] proposes a way to implement distributional
compositional models, such as DisCoCat using quantum computers. The starting assump-
tion is that quantum computation innately fits for managing high dimensional tensor
product spaces. Computational problems related to tensor-product-based compositional
semantics are addressed by the scalability of quantum systems. In addition, the work
proposes an efficient sentence similarity algorithm. These kinds of algorithms are good
candidates to have a real implementation on a quantum hardware, since noisy results can
be tolerated.

The proposed algorithm exploits the abstract connection between NLP and quantum
information modeling density matrices using mixed states of quantum systems. Concerning
performance, the quadratic speedup has been demonstrated in sentence similarity task.

However, this performance improvement has only been demonstrated on a theoret-
ical level, since it is based on the assumption that it is possible to use QRAM, which is
currently unavailable [21].

An alternative approach born to compensate for this lack has been proposed by [49].
This work theorizes a full-stack pipeline for NLP on a NISQ device exploiting the classical
ansätz parameters instead of the never realized QRAM of the original algorithm. Starting
from the tensor structure already proposed in the non-NISQ friendly algorithm [26], every
step of the theorized NLP pipeline is described in detail, specifying the tools and methods
that would be possible to apply to be compliant with a quantum hardware.

In particular, ansätze are used as lexical categories to map DisCoCat models to varia-
tional quantum circuits. These categories are connected following the grammar in order to
build circuits for arbitrary syntactic units. Two methods have been proposed for optimizing
the resulting circuits, aiming at the implementation on NISQ devices. Moreover, the work
explores alternative quantum computing models, i.e., continuous- variable, adiabatic and
measurement-based.

Although this is an essentially theoretical work that leaves many open issues (for
instance, the limitations of CFG to approximate some linguistic phenomena), this method
has been followed by an actual implementation on a NISQ device [63]. Even the implemen-
tation has been intended as a proof of concept experiment, and if it is tested on a very small
scale, it can be considered the first QNLP experiment running on quantum hardware.

The research line proposed by these preliminary works has been continued and ex-
panded in [31]. The vast majority of issues addressed by this study will be subsequently
explored in further theoretical and practical work. First, it provides mathematical founda-
tions for QNLP, exploiting diagrammatic theories provided by DisCoCat and CQM. Using
these diagrammatic systems of representation, language can be interpreted in terms of
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quantum processes. Moreover, the resulting quantum representation of natural language
can be embedded in quantum circuit form using the ZX-calculus [76]. The ZX-calculus acts
as a translator from linguistic diagrams to quantum circuit. This step is crucial to allow a
real implementation on quantum hardware.

This approach relies on the advocated intrinsic quantum-native nature of QNLP,
allowing the possibility to merge meaning and structure of language in a single unified
quantum model able to represent both syntactic and semantic levels. Another interesting
cue triggered by the work of [31] is the potential meaning-awareness of the QNLP, an aspect
that puts it in contrast with the vast majortiy of state-of-the-art machine learning approaches.
Different levels of linguistic knowledge would not be more embedded in a “black-box”
(hidden layers of a neural network), but they could be rendered explicit through the
expressive possibilities of the diagrammatic representation.

Concerning possible applications, the possibility to execute NLP task on NISQ devices
is discussed, although no details are presented on whether to deal with an actual imple-
mentation. The quantum speedup that the proposed approach should provide is also not
demonstrated. However, the possibilities offered by NISQ paradigm are strongly supported.
Notice that it is not proposed as a simple alternative to traditional methods, but variational
quantum circuits [77] are considered as the best option able to offer a QNLP-friendly way
for encoding linguistic data on quantum hardware.

More recently, a novel framework based on tensor contraction to build word represen-
tations as quantum states that serve as input to a quantum algorithm has been introduced
by [51]. This makes it particularly suitable for classification tasks, such as sentence disam-
biguation or binary (yes-no) question answering. Starting from this assumption, the work
proposes to use an implementation of Grover’s quantum search algorithm to find the
answer to a wh-question with quantum speedup using information given directly by the
tensor contractions of representations of words, as proposed by the tensor network.

The proposed framework has also been tested on a second NLP task, such as a sentence-
meaning disambiguation task. In this case, the advantage of quantum superposition is
exploited to store various meanings of ambiguous sentences.

Finally, the diagrammatic language of categorical quantum logic of DisCoCat has given
the opportunity to compare the grammatical structures of sentences in different languages.

The study of [52] has been included in this thread. It focuses on developing composi-
tional vector-based semantics of sentences using quantum natural language processing to
compare synonymous simple sentences in English and Persian using their parametrized
quantum circuits. This approach is based on a quantum long short-term memory model.
Even only two languages have been considered, this approach is virtually able to generalize
opening up the possibility to include different languages.

5. Quantum-Inspired Approaches

Notice that algorithms described in this section borrow mathematical frameworks from
quantum mechanics but they are not designed to run on quantum hardware, but rather on
classical computers. In some cases, they could theoretically be used on quantum hardware,
which, however, is not currently available. A comparative visualization of the models
proposed by the quantum-inspired works described below, including the datasets on which
they have been tested; the performance achieved against the reference baselines is shown
in the Table 2.
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Table 2. Comparison of quantum-inspired approaches running on classical hardware. Since a real
comparison is not always possible, only the works that have really compared with benchmark
datasets already known in the literature are shown. For each model proposed, the best score obtained
for the metric used with respect to the specific dataset is shown in the last column. In brackets, the
best score obtained by the baseline with which each approach has been compared is indicated.

Task Proposed Approach Dataset Metric Score

Information retrieval

Quantum Language Model (QLM) [53]

SJMN

MAP

0.2093 (0.271)
TREC7-8 0.2254 (0.2243)
WT10g 0.2264 (0.2146)
ClueWeb-B 0.1196 (0.1137)

Quantum Language Model-based
Query Expansion (QLM-QE) [55]

TREC 2013 MAP@10 8.94 (4.91)
TREC 2014 14.79 (14.52)

Quantum Interference-inspired
Neural Matching model (QINM) [56]

ClueWeb-B MAP 0.134 (0.082)
Robust-04 0.294 (0.103)

Question answering

Neural Network-based Quantum-like
Language Model (NNQLM) [57]

TREC-QA MAP 0.758 (0.678)
WIKIQA 0.649 (0.510)

Quantum Many-body Wave Function
for Language Modeling (QMWF-LM) [58]

TREC-QA MAP 0.752 (0.678)
WIKIQA 0.695 (0.512)

Complex-valued-Network (CNM) [59]
YahooQA

MAP
0.575 (0.395)

TREC-QA 0.770 (0.777)
WIKIQA 0.674 (0.652)

Sentiment classification

GQLM [60] OMD Accuracy 0.629 (0.614)
SS-tweet 0.618 (0.579)

Quantum-inspired
Interactive Networks (QIN) [61]

MELD Accuracy 0.679 (0.652)
IEMOCAP 0.376 (0.351)

TextTN [62]

MR

Accuracy

82.2 (82.3)
CR 85.7 (85.4)
Subj 95.3 (94.6)
MPQA 90.4 (90.4)

BERT + TextTN [62] SST-2 Accuracy 95.3 (96.7)
SST-5 54.8 (54.7)

5.1. Information Retrieval

One of the first approaches advocating the use of Quantum Theory for an NLP task
has been proposed by [53]. In this work, the quantum probabilistic framework is used
to develop a general approach to the information retrieval task. A density matrix has
been used to represent texts and term dependencies in a quantum language model (QLM),
combining the flexibility of vector spaces with probabilistic calculus. Dependencies are
not more represented stochastically as joined probabilities but as superposition events,
i.e., additional dimensions.

The experiments have compared the proposed QLM to the baseline unigram language
model, based on a bag-of-words approach, in particular Dirichlet smoothing, and to the
full dependence version of the non bag-of-words MRF model. Tests have been made
on different datasets (SJMN, TREC7-8, WT10g and ClueWeb-B) using the mean average
precision (MAP) as metric. QLM consistently achieves results above baseline, with MAP
increments varying from 12% to 19% depending on the dataset used.

A similar work [54] has proposed to introduce the quantum entanglement in order to
improve the performance of QLM in the information retrieval task. The basic assumption
underlying this approach is the equivalence between quantum entanglement (QE) with a
traditional retrieval approach, in this case Unconditional Pure Dependence (UDP) [78] used
in the Markov Random Field (MRF) retrieval model [79]. Starting from this, the occurrence
of QE can be inferred extracting UDP patterns. After that, the QLM has been enhanced using
QE, producing a new quantum-entanglement model for information retrieval (QQE). This
enhanced model has been shown to achieve better performance than both the traditional
model (MRE) and the QML. MAP has been used as metric to evaluate retrieval performance
on five collections in the documents’ re-ranking task. However, performance has been
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evaluated only on a set of custom-created document collections and not on any benchmark
dataset, making comparison with other models difficult.

Inspired by these works, another QLM that incorporated a query expansion framework
to overcome restrictions due to limited vocabulary has been proposed in [55]. Despite
successful applications of QLMs in the field of Information Retrieval, all these approaches
are biased by the fact that the training algorithm for the original QLM is not globally
convergent. Then, in order to try to reduce these imperfections affecting the final ranking,
approaches that use a QLM are based on a minimal vocabulary that typically coincides
with query terms. This compromised results in a significant reduction in the performance
capabilities possible with QLM. Therefore, incorporating a query expansion framework
into QLM opens up the possibility of using a higher number of terms into modeling.
The approach is structured as follows: first, an advanced training algorithm is used to
generate first-round ranking, then—in order to identify the expansion terms—a single
QLM is built for the top returned results. Finally, the final ranking result is generated by
applying a QLM with the new training algorithm to the expanded query.

The proposed Quantum Language Model-based Query Expansion (QLM-QE) frame-
work has been tested on TREC datasets showing an improvement when compared to
other traditional approaches. In particular, QLM-QE has been compared with four other
models to evaluate performance: the Unigram baseline model, RM-HS [80], a query ex-
pansion approach inspired by quantum interference, the original QLM proposed by [53],
and QMT [81], which is a quantum-like session search model inspired by the Two-State
Vector Formalism (TSVF). Performance has been evaluated on TREC datasets, since they
are the de facto standard for the performance evaluation for quantum models. nDGC@10
and MAP@10 have been chosen as metrics. QLM-QE has proven to outperform all other
models, achieving the result of 10.37%, 15.19% (nDCG@10) and 8.94%, 17.79% (MAP@10)
on TREC 2013 and TREC 2014, respectively. The most impressive result has been achieved
on TREC 2013, in which there is a 89.81% improvement in MAP@10 score over the baseline
and 70.83% compared with the best-performing quantum-model (QMT). However—in
spite of these results—further experiments are needed to demonstrate the real benefit of a
query expansion approach. In particular, comparisons should be made with classical query
expansion approaches and using specific datasets for information retrieval tasks.

More recently, Ref. [56] has proposed another improvement to QLM applied to in-
formation retrieval by introducing the interference effects in the neural matching model.
The work starts from a revision of neural matching models for retrieval, using a probabilistic
quantum property. The proposed model—namely the Quantum Interference-inspired Neu-
ral Matching Model (QINM)—applies quantum interference theory to the neural matching
model for retrieval. In particular, the proposed methodology construct the probability
distribution of a document into the reduced density operator, after which the effective
probability distribution is extracted using a N-gram window convolution network. Finally,
the query attention mechanism calculates matching features and the final matching score
is obtained. A set of experiments have been performed to test the effectiveness of the
interference matching information. Performances achieved by QINM on ClueWeb-09 and
Robust-04 datasets have shown a significant improvements with respect to other QLMs.

In particular, the model has been compared not only with QLM [53], but also with a
neural network-based model (NNQLM), which performs density matrices optimization
and learning architecture through two distinct approaches [57], and with a model that uses
Quantum Many-body Wave Function and convolutional neural network (QMWF-LM) [58].
QINM has achieved much better results on both datasets using different metrics (MAP,
NDCG@20, P@20, ERR@20) showing the advantage in using vectors and neural networks
in the retrieval process without focusing only on semantic information but also extracting
effective matching features, whose function turns out to be decisive. It is important
to note that good performance is highly dependent on taking into account interference
effects in relevance judgment process, which is an aspect totally ignored by other QLMs.
However, it is essential to consider that the models undergoing this comparison were
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not designed specifically for the information retrieval task. Moreover, unlike previous
work, in this case the model has been tested not only against other QLMs but also against
traditional information retrieval systems, and it has achieved better performance (0.255
using MAP on the Robust-04 dataset compared to 0.418 reached by BM25 [82]). This result
is further evidence of the advantage represented by using probability theory to improve
retrieval performance.

Summing up, the information retrieval task has largely benefited from quantum-
inspired approaches. Given the multidisciplinary nature of the task, using methods and
concepts derived from quantum mechanics (in particular quantum probability) has led to
the development of several quantum models, exploiting the representation possibilities
offered by complex vector spaces (Hilbert space) [53]. This method of representation has
been effective for the abstraction and contextualization of information objects such as
documents and queries [83]. Different approaches have ranged from using traditional
properties, such as query expansion [55] to phenomena such as quantum interference
placed in the framework of neural networks [56]. Although QLMs promise the best way to
model phenomena affecting information retrieval, such as ambiguity and dynamic changes
of context, the research on this area requires more formal rigor both in the design of models
with a strong theoretical basis with respect to the task, and in experiments.

5.2. Question Answering

Another task for which the application of quantum approaches has met with particular
success is Question Answering (QA). Differently from information retrieval, a QA task is
often composed by a question identified by a piece of natural language contained into a
sentence or multiple keywords. Candidate answers are usually shorter than documents
in the information retrieval task, hence there is low probability of overlapping between
question and answer sentences. For these reasons, approaching the QA task using semantic
matching via neural network is very common in the literature.

Given this premise, Ref. [57] has proposed to improve the original QLM model de-
signed only for the information retrieval task [53]. A Neural Network-based Quantum-like
Language Model (NNQLM) has been developed and applied to the QA task. It utilizes
word embedding vectors as the state vectors, from which a density matrix is extracted
and integrated into an end-to-end Neural Network (NN) structure. Information about
similarities between each question-answer pair is encoded by density matrices in a joint
representation. This representation is the source where similarity features are extracted
using a Convolutional Neural Network (CNN). The model has been tested on two datasets,
TREC-QA, one of the standard benchmark resource for this task [84], and WikiQA [85],
an open domain question answering dataset. For the evaluation, the MAP metric has been
used, in order to make possible the comparison with previous works for the same task
which use same datasets.

Several experiments have been conducted to test NNQLM on both datasets. First,
it has been compared to QLM, improving performance by 11.87% on TREC-QA, and by
27.15% on WikiQA using the MAP metric (results are shown in Table 2). These results show
how positively the combination of the density matrix and the simple training algorithm
can impact performance. A further comparison has been carried out between NNQLM and
existing neural network-based approaches. The proposed model has achieved higher scores
than most baselines (for instance the MAP score of the strong baseline proposed by [86]
by 2.46% on WikiQA). However, NNQLM fails to overcome some of the baselines [87,88].
In fact—even if the model is able to learn similarity patterns—it does not take into account
aspects such as structures and relations of sentences and this affects the overall performance.

This work is continued and extended in [58] introducing Quantum Many-body Wave
Function (QMWF) for language modeling (LM) to address QA task. QMWF-LM improves
the representation space of QLMs being able to represent complex word interactions,
using semantic basis vector corresponding to multiple word meanings. In addition, this
word aims to solve the problem of the connection between QLMs and CNN. In particular,
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QMWF-LM uses a series of derivations based on projection and tensor decomposition
to demonstrate that quantum representation and matching can be implemented by the
CNN with a product pooling. Based on this assumption, QMWF-LM is presented as an
efficient algorithm to represent and match the text/sentence pairs, and is therefore well
suitable for QA tasks. QMWF-LM has been tested on different QA datasets; it has proven
to be able to outperform quantum LM counterparts (i.e., QLM and NNQLM) and even
to achieve better scores, whether compared with traditional CNN-based approaches on
same datasets. Datasets taken into account are—similarly to previous works—TREC and
WikiQA. Moreover, a third dataset has been added, YahooQA, typically used as benchmark
dataset for community-based QA.

Although QMWF-LM significantly improves the performance of the original QLM
(0.695% MAP with respect to 0.512% on WikiQA) some clarifications should be made. The
low performance of QLM is easily explained since—unlike later approaches (NNQLM and
QMWF-LM)—it is trained in an unsupervised manner. Whereas, the better performance
obtained by QMWF-LM than by NNQLM is motivated by the fact that the latter does
not take into account word interactions, using embedding vectors as input and a CNN to
train the density matrix. Finally, QMWF-LM has been also compared with other classical
CNN-based QA models [86,88], showing a comparable or even better performance.

Another work addressing QA proposes an even different approach based on a complex-
valued framework [59]. Starting from a neural network built using density matrices pro-
posed in [57], a novel quantum-theoretic framework to model language in a way closer
to a cognitive point of view has been proposed. In the proposed framework, different
linguistic units are modeled as quantum states using quantum probability, i.e., the mathe-
matical framework of quantum physics aiming at model uncertainly on a unified Hilbert
space with well-defined mathematical constraints and explicit physical meaning. These
linguistic units are represented as complex-values vectors to preserve physical properties.
The length represents the relative weight of the word and the direction is viewed as a
superposition state. The superposition state is further represented in an amplitude-phase
manner, in which amplitude is consistent with the lexical aspects, while phases represent
semantic ones. The framework has been implemented using a complex-valued-network
(CNM) and applied to QA task to be evaluated. Unlike previous approaches, in this case
no CNN or RNN architectures are used, because of the difficulty to interpret structures of
convolutional kernels and recurrent cells. The proposed CNM offers a simpler alternative
in terms of understanding.

CNM has been tested on benchmark QA datasets (TREC and QikiQA) showing com-
parable performance to baselines. In particular, it achieves better performance of most
traditional CNN and LSTM-based models, characterized by a more complicated structure
and a larger number of parameters. In addition, it outperforms other QLMs on both
datasets (in particular, it improves NNQLM MAP score by 3.88%), supporting the validity
of the quantum theoretical framework.

Quantum approaches developed so far for question answering are varied and they
have addressed the task in very different ways. In [57], for the fist time, the original QLM
model has been extended using neural network architectures to be applied to question
answering. New density matrices, for single sentences and sentence pairs, based on
word embeddings have been integrated into the architecture for an effective joint training.
However, this approach does not allow one to easily represent complex interactions between
words, since it considers a compound word as a direct addition of the representation vectors
or subspaces of the single words involved. Moreover, the desired union between quantum
models and neural network remains hinted at but not formally approached. To deepen
the intrinsic motivations to bridge neural network and quantum models, in [58], the
analogy between the quantum many-body system and the language modeling has been
proposed, trying to merge a quantum many-body wave function-inspired model with a
neural network. A further investigation of the possibility offered by a robust quantum-
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inspired neural architecture in a higher-dimension Hilbert space has been conducted
by [59].

5.3. Sentiment Analysis

Another NLP task that has benefited from many quantum-based approaches is text
classification, and in particular, sentiment analysis. A method that uses features derived
from quantum probability theory to perform sentiment classification has been developed
by [60]. It is an unsupervised sentiment analysis approach based on a density matrix.
The approach is structured as follows: two sentiment dictionaries are ad hoc created,
using extended QLM density matrices of documents, and dictionaries are generated; the
sentiment is the result of the similarity between dictionaries and documents calculated
using quantum relative entropy. The viability of this approach to sentiment analysis
has been evaluated using two datasets well-known in the literature, the Obama-McCain
Debate (OMD) dataset and Sentiment Strength Twitter dataset (SS-Tweet). The results have
demonstrated higher performance of this approach compared to various baselines.

This initial work has evolved [61], introducing a new approach using quantum-
inspired interactive networks. Aiming at better modeling interactions and dependency
dynamics between words in existing sentiment analysis approaches, authors propose a
quantum-inspired interactive networks (QIN), combining quantum theory with the long
short-term memory (LSTM) neural network. Correlations between words captured by the
density matrix are used as an input of long LSTM. In detail, this method can be able to learn
such interaction dynamics, using a density matrix-based convolutional neural network
(DM-CNN) to capture intra-utterance correlations between words. A strong-weak model
based on quantum measurement theory is also used to extract inter-utterance correlations
and measure the influence between speakers through the utterance. The influence is inte-
grated in an LSTM which uses textual features as inputs. Starting from the hidden states
of the LSTM, affective states for each utterance are determined using a softmax function.
QIN has been compared to several baselines ranging from CNN [89] to attention-based
LSTM and Contextual/Hierarchical biLSTM [90]. Experiments have been carried out on
two datasets with different types of annotations: MELD (3-class sentiments; 7-class emo-
tions) and IEMOCAP (9-class emotions). In sentiment classification (3-class MELD dataset),
QIN achieves higher performance than all classical models, since they do not consider
contextual dependencies among utterances ignoring that the whole meaning of a utterance
is influenced by preceding ones. Increasing the complexity of the task and introducing
more classes (MELD 7-class and IEMOCAP 9-class), QIN continues to get the best results,
but the gap narrows, settling on a 7.1% accuracy improvement over biLSTM. BiLSTM
successfully achieves superior performance to other baselines, since it is able to extract
contextual features, taking utterances as inputs.

More recently, a further improvement of the original work has been proposed in [62]
introducing a new architecture based on a tensor network to improve performance, in-
terpretability and expressive power. In this work, a model based on tensor network (TN)
able to obtain state-of-the-art results in sentiment classification task has been proposed.
The model, called TextTN, exploits the great expressive power of TNs [91] to build a tensor
network-based probabilistic model for natural language representation and classification.
In order to to learn and classify texts, TextTN encodes each high-dimensional word vec-
tor in a probabilistic space by a generative TN (word-GTN). Then, a discriminative TN
(sentence-DTN) is used to classifiy sentences. It trains a TN for each sentence using as
input word vectors extracted by word-GTNs. Sentece-DTN is also devoted to handle
word interaction by the joint effect of different words for the later class predication by the
loss functions. Concerning the learning algorithm, an all-function training process in the
sentence-DTN has been proposed to improve the stability of TextTN. TextTN has been
extensively evaluated using main sentiment text classification datasets (MR, Subj, CR and
MPQA). In the comparison with classic benchmarks models, it has achieved better results
than CNN [89] on all four datasets, with accuracy improvements ranging from a minimum
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of 0.7% to 1.9%. The comparison with the state-of-the-art self attention model proposed
by [92] has returned a 0.3% and 0.7% increase, respectively, on CR and Subj datasets, while
the score has remained identical on MPQA. Moreover, experiments have been carried out
using TextTN in combination with pre-training word vectors from BERT on SST-2 [93] and
SST-5 [94] tasks. Concerning SST-2, BERT+TextTN performs better than BERT (accuracy
improved by 0.7% for SST-2 and by 1.9% for SST-5) and is comparable with ELECTRA [4].

In summary, quantum-inspired models for sentiment analysis can be considered a
generalization of classical approaches. Ref. [60] proposes first an improved version of QLM
for twitter sentiment analysis using the quantum probability theory. The work is extended
and expanded with comparative studies and the use of different datasets, annotated with
both polarity and emotion in [58]. This work combines a density matrix-based CNN with a
model inspired by quantum measurement theory. An even more sophisticated quantum
model, which makes even better use of the expressive potential of tensor networks, is the
one proposed in [62]. Notice that, although these models achieve impressive results, there
are some open issues. It is quite difficult to make proper comparison between different
quantum-inspired approaches for sentiment analysis. First, experiments are carried out
only in comparison with traditional models. Moreover, every approach is evaluated on
different datasets, then the datasets can have different types of annotations with varying
numbers of classes. This is inherent in the articulated nature of the task, but it makes the
performance strongly dataset-dependent.

It is worth mentioning other works focused on tasks that have received less attention
in the literature. In [95], the possibility to boost neural language models based on deep-
learning using QLM has been suggested. This approach trains a quantum-enhanced Long
LSTM to perform a PoS tagging task using numerical simulations. Among the advantages
of the implemented quantum LSTM is the reduced use of parameters, which is less than
half of the traditional one, but keeps the same performance. In addition, this work takes the
first steps toward the creation of a quantum-enhanced Transformer model, used to perform
sentiment analysis task. A preliminary experiment has been carried out on a IMDB dataset,
although no comparative results are reported. Notice that the work does not propose the
implementation of a proper quantum transformer, in which quantum circuit acts on qubits
similarly to self attention and positional embedding. Rather, a quantum alternative for
Transformers’ arithmetic operations is offered, even because a full implementation exceeds
the current computational possibilities of the available quantum hardware.

Finally, the work proposed by [96] has explored the possibility to apply a QLM to a
speech recognition task. Although this work is intended as a “proof of concept” and it does
not have a full implementation, an evaluation phase has been carried out on the TIMIT
dataset. The proposed QLM has been compared with two N-gram implementations and
two RNN models, achieving performance comparable with state-of-the-art.

6. Quantum Computer Approaches

The following section presents works using real quantum hardware. All work listed be-
low use NISQ computers [33]. In Table 3, some specifications of hardware and experiments
are provided.

The first implementation of an NLP task on NISQ hardware has been proposed by [63],
following theoretical methods proposed in [49]. Conceptual and mathematical foundations
on which these work are based are described in [31]. It uses DisCoCat, adopting the
paradigm of Parameterized quantum circuits as machine learning models [77]. The core
of the proposed approach is considering DisCoCat as a tensor network model of natural
language meaning [97]. Meanings of words are encoded as co-occurrence frequencies
or other word-embeddings produced by neural network. These tensor networks can be
represented as string diagrams [98], composed of boxes with input and output wires, each
of which carries a type. Boxes are composed to form process networks by wiring outputs
to inputs by ensuring types are respected. Output-only processes are called states and
input-only processes are called effects.
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The approach has been tested on a question answering task using a labeled dataset
composed by 30 randomly generated sentences using a finite vocabulary and a context-free
grammar (CFG) [99] and represented as a syntax tree. These sentences are converted into
DisCoCat diagrams. An optimization (or training) step is needed in order to match the
predicted labels with labels in the training set. The optimization has been performed using
SPSA (Simultaneous Perturbation Stochastic Approximation) [100], which has been proven
to perform well in noisy settings. This approach reformulates the problem as a supervised
learning task of binary classification for sentences, i.e., a special case of question answering
already known in the literature [101,102]. Before each circuit can be run on a backend, it
has been compiled using the quantum compiler t |ket〉TM [103]. The quantum compilation
operates in this way: given a circuit and a device, quantum operations are decomposed in
terms of devices native gateset, then the quantum circuit is make compatible with the device
topology. In addition, the compiler tries to minimize the most noisy operations. After that,
the circuits run on two IBMQ quantum computers ibmq_montreal and ibmq_toronto,
whose quantum volume is 32 for both, with a maximum allowed number of shots equal
to 213.

Concerning results, first a classical simulation has been performed. For the QA
task, sentence circuits have been evaluated using classical hardware. For this simulation,
the entire corpus of 30 sentences with a vocabulary consisting of 7 words has been taken into
account. The experiments running on NISQ device has instead exploited only 16 sentences
with a vocabulary of 6 words. The best results achieved reach a train error of 12.5% and a
test error of 37.5% on ibmq_toronto; values decrease further on ibmq_montreal, where the
train error is null, while the test error stops at 37.5%.

Table 3. Comparison of quantum experiments running on NISQ hardware. Note that not all details
are given in the description of the experiments performed. Concering NISQ devices, all machines
used have 5 qubits available and a quantum volume equal to 32.

Task Device Dataset Train Error Test Error

Question answering

simulation 30 sentences
7 words vocabulary

/ /

ibmq_toronto 16 sentences
6 words vocabulary

12.5% 37.5%
ibmq_montreal 0 37.5%

Meaning classification (MC) simulation 130 sentences
17 words vocabulary

16.9% 20.2%
ibmq_bogota / 16.7%

RelPron (RP) simulation 105 sentences
115 words vocabulary

9.4% 27.7%
ibmq_bogota / 32.3%

In [64], the first full experiments at a medium-scale, focused on two NLP tasks running
on quantum hardware, have been performed. This work starts from earlier work [63]
and—differently from previous approaches—does not intend to provide evidence of the
so-called “quantum advantage” in terms of performance. Therefore, these experiments
aim to explore the challenges and limitations of training and running an NLP model on a
NISQ device. In addition, this work contributes to shifting traditional approaches to NLP
tasks to a quantum-friendly form, proposing a quantum pipeline equivalent to the classical
one. Two tasks are proposed, and both of them are structured as binary classification
problems. The first one, namely the classification task (MC), uses a dataset of 130 sentences
plain-syntax generated from a fixed vocabulary using a simple CFG that can refer to one of
two possible topics, food or IT. For the second task, 105 noun phrases are extracted from
the RelPron dataset [104], and the goal of the model is to predict whether a noun phrase
contains a subject-based or an object-based relative clause. This task, identified using the
acronym RP, is more challenging since it requires some syntactic awareness from the model,
so it is a very reasonable choice for testing DisCoCat. Notice that, even these datasets
can appear small or simple, as they already reach the limits of the currently available
quantum hardware. Using DisCoCat, every different grammatical structure of a sentence
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is mapped to different quantum circuits. A simplified version of the quantum pipeline
used in this work is shown in Figure 3. In detail, in order to propose a full NLP pipeline
equivalent to classical ones, sentences need to be represented in a tree form consistent
using a parser. A parser, based on categorial grammar [105], has been used to obtain
representation consistent with DisCoCat. Subsequently, every diagram is mapped to a
specific quantum circuit. The mapping is defined by a conjunction of choices formulated
as an ansatz, allowing to make choices based on the specific hardware. Every NISQ
machine has a different sets of native gates indeed, of which some are more prone to error
than others. These steps have been implemented using the python implementation of
DisCoCAT [106]. To estimate the expectations of a hypothetical noise-free quantum device,
a simulation has been performed. According to this simulation, the train and test errors
reported after 500 iterations for the MC task are 16.9% and 20.2%, respectively. For the
second task on the RELPRON dataset, RP train errors are equal to 9.4%, while those of the
test reach 27.7%. Higher test error value for the RP task—at equal task complexity—are
motivated by a broader vocabulary (115 words) with respect to the MC one (17 words).
Once each sentence has been represented by a quantum circuit according the the chosen
ansatz, circuits are converted into machine specific instructions using t |tet〉TM compiler.
After that, the quantum device ibmq_bogota executes the circuit nshots times. This IBM
machine is a superconducting quantum computing device with 5 qubits and a quantum
volume of 32. In particular, initial states are prepared for each run, gates are applied and
all qubits are measured. This step returns the count of the shots for all qubits. Every time
the error cost is calculated, compiled circuits corresponding to all sentences are sent to the
device as a single job. After that, each circuit is run the the maximum possible number of
time offered by the machine (213 in this case). For every sentence, estimations of relative
frequencies are calculated in the order of a post-processing step aimed at calculating task-
specific results. In order to minimize the impact of quantum noise, the experiments has
been performed on a single run (100 iterations for the MC task with a exclusive access of
ibmq_bogota with 12 h of runtime and 130 iterations for the RP task in a sharing mode
with 72 h or runtime). Results demonstrate a test error of 16.7% for the MC task and 32.3%
for the RP one, with F-score of 0.85 and 0.75. Although it is impossible to make an objective
comparison with the simulator, these can be considered good results concerning the size of
the datasets, factors affecting NISQ devices and different conditions in which experiments
have been carried out. The simulation has been run on classical hardware without noise
during many averaged runs, while quantum computation has been performed on a single
run on a device affected by noise.

Figure 3. A simplified version of the pipeline proposed by [64].

In [65], a preliminary experiment focused on machine translation using DisCoCat has
been proposed. The goal of the experiment is the possibility of a quantum-like approach
for language understanding in different languages.

This is the first work trying to use DisCoCat for a language other than English. In par-
ticular, simple, complex and negative sentences in two languages (Spanish and English)
have been converted into DisCoCat diagrams, then into quantum circuits. Negative sen-
tences do not succeed to be managed from the system even if DisCoCat model is capable
of describing negative sentences and constructing diagrams. However, although some
solutions have been proposed in the literature, the possibility of mapping negations using
functors is still an open issue [107].

After that, these sentences have been encoded in an IBMQ quantum machine using
python language. In particular, using an optimized model (IBM Q NISQ backend) has
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demonstrated that it can answer factoid questions related to an input vocabulary. According
to the theoretical approaches proposed in the literature [63], the score achieved by IBMQ is
close to 1, indicating the correctness of the statement. The evaluation phase has shown that
the system is able to give consistent answers handling simple sentences. The results are
also quite good, as the complexity and length of the sentences increase. Evaluation phase
show a sentence similarity between the two languages, reaching a value of 95%. Notice that,
although the work claims to have used a NISQ device, no specific information is provided
about the implementation, machine type or dataset in detail.

7. Discussion

As can be observed from the Table 1, there has been an evolution in the tasks affected
by the QNLP. The possibilities offered by the compositional distributional model has
opened up a line of research that initially (in a pre-quantum era) has focused on very
specific tasks and critical aspects of NLP. On the one hand, the initial interests of scholars
have addressed the issue of a formal syntax-semantic representation, testing the DisCoCat
framework of well-known corpora such as the BNC. These interests in formal aspects of
language have ranged from modeling structures such as logical negation to disambiguation.
Many of these aspects have already been dealt with in the linguistic field with Lambek’s
pregroup grammar and within the broader framework of categorical grammars [108,109].

These subtle linguistic issues have remained the main topic moving to the early theo-
retical quantum approaches. In these works, first, QNLP algorithms have been proposed,
theoretically demonstrating the advantages at the methodological level and in terms of
performance. The possibility to successfully execute DisCoCat on a quantum hardware
benefiting from quantum speedup has first been addressed in [26].

In order to overcome the big shortcoming of this first attempt, i.e., a total dependence
on the theorized but never realized QRAM, alternative solutions have been proposed.
In [31], a family of quantum machine learning algorithms—namely variational quantum
circuits—have been used to indirectly encode data on the quantum computer. A different
approach is the one proposed in [49]; to avoid the need of QRAM entirely, the classical
ansatz parameters are exploited to encode distributional embedding. The feasibility of
the latter approach has been confirmed, since the proposed pipeline has actually been
implemented on a NISQ device—albeit with limitations and on a small scale—and it has
achieved good performance in the question answering task.

Concerning hybrid quantum-inspired approaches running on classical hardware, this
is the sub-field that has attracted the most interest in the literature so far. On the one hand,
the reason is the physical possibility of being able to perform experiments without having
to rely on quantum machines. On the other hand, these are the only approaches that have
had the possibility of being compared with benchmark datasets in the literature and for
which performance can be estimated according to classical metrics that are well known in
NLP tasks.

These hybrid approaches have arisen from the need to study the machine learning
and artificial intelligence problems using a point of view borrowed from quantum theory.

The first QLM proposed has taken into account the quantum probability theory to
overcome the limitations of traditional LMs, based on classic probability theory, whose
number of needed parameters grows progressively with the complexity of word depen-
dencies. The natural field in which to apply this QLM has been information retrieval.
The original QLM is based on encoding the probability measurement for both single words
and compound words using a density matrix with a fixed dimensionality. Derivative works
have extended the approach by introducing features such as query expansion or quantum
interference. The success of this approach applied to ad hoc information retrieval task,
which is capable of achieving performance comparable to classical LMs, has made it the
benchmark model used to evaluate the performance of all subsequent quantum-inspired
works. There are many reasons to apply the first quantum-inspired to the Information
Retrieval task. Firstly, there is a historical reason. Information Retrieval has been the first
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task for which the possibility to apply the mathematical framework of quantum mechanics
in Hilbert space has been theorized [83]. In addition, there is an immediate motivation on a
practical level, since the quantum advantage impacts mainly on tasks whose cost tends to
be exponential, such as Information Retrieval. After that, several studies in the literature
have demonstrated that quantum speedup can more likely affect NLP tasks related to
similarity calculations. This has meant that subsequent work has focused not only on the
similarity of the query and the documents (Information Retrieval) but also on the similarity
of the question and the answers (question answering) and the similarity of the sentences
(text classification).

Concerning Question Answering, models that combine QLM and end-to-end neural
networks to exploit the density matrix better have been developed (NNLQM). Subsequently,
other work has highlighted the inability of early models to apply the fundamental theoreti-
cal connections between quantum theory and neural networks in the language modeling
process. Therefore, more sophisticated question answering models have been proposed
in order to model the complex interactions among ambiguous words with multiple mean-
ings using properties such as the Quantum Many-body Wave Function. Moving to the text
classification task, In this case, the QLMs have focused on a specific case, i.e., sentiment
analysis task. The interest, as well as the difficulty of this task, lies in the interactions
between the utterances and the variability of the datasets. Sentiment datasets can have
different annotations based on the emotions/sentiments involved in the analysis. The task
has been approached in different ways, using a density matrix-based convolutional network
to identify interactions within each utterance or formalizing a tensor network method for
natural language representation.

Notice that almost all of these models are based on a density matrix defined in a quan-
tum probabilistic space. Density matrix has proven to be an effective way in representing
and modeling language in different NLP tasks, encoding more semantic dependencies
with respect to classic word embeddings. Moreover, NLP tasks—although well known in
the literature—are relatively simple and structured in a comparable manner. Concerning
evaluation, although some models claim to outperform deep learning-based approaches,
a proper comparative analysis between QLMs is currently not possible. In fact, there is still
no agreement on either the baseline dataset or the metrics chosen by QLMs; each model has
been tested against different baselines and compared with a different set of other models.

The experimental stage of QNLP is even more evident, moving to approaches running
on real quantum hardware. Significantly few approaches have been developed so far,
and there is a further simplification concerning NLP tasks. The tasks remain roughly the
same (question answering [63], text classification [64] and a preliminary experiment on
translation of simple sentences [65]; the experiments have been carried out on custom small-
scale datasets with simple sentences and a minimal vocabulary. Even the largest dataset
used so far in a NISQ experiment (100 sentences for a classification task in [64]) remains on
dimension enormously smaller if compared to that of deep learning-based architectures.
Notice that at the time of the listed work, NISQ devices can have 50-100 qubits. Currently,
the most powerful IBM Quantum machines reach 127 qubits (source: https://www.ibm.
com/quantum-computing/systems/ accessed on on 1 June 2022).

Although these limitations make difficult to compare quantum-hardware approaches
with classical deep-learning ones, as hardware power grows, this drawback may be re-
moved. It is highly feasible that, in the future, NISQ devices will be able to work on the
benchmark datasets well known in NLP community.

Notice that hardware limits of QNLP are the same shared with the whole field of
quantum computing (i.e., unrealized QRAM, the limited number of qubits, lack of fault-
tolerant quantum machine). For instance, the lack of the theorized QRAM has forced
scholars to find alternative approaches, such as ansatz circuits, which have been proven to
achieve good results for the specific task in the parameterization of word meanings [64].
However, this approach forces a preliminary step of choosing an optimal circuit to be
performed each time for each specific task. The possibility of generalizing using ansatze is

https://www.ibm.com/quantum-computing/systems/
https://www.ibm.com/quantum-computing/systems/


Appl. Sci. 2022, 12, 5651 20 of 25

far from being proven yet. This makes this type of approach a difficult path to follow in the
view of general performance of a model not limited to a single task. The small number of
qubits available instead constrains a very low limit on the number of sentences, their length
and the overall span of vocabulary. A higher number of sentence or a larger vocabulary
imply a scalability issue, since it means a higher dimensional parameter space. This aspect
is somewhat inconsistent with the supposed “quantum native ” status of QNLP; however,
it is only partially caused by the limitations of current quantum hardware architectures.

Indeed, the reasons why approaches running on quantum hardware cannot currently
offer a viable alternative to classical models lie not only in technical reasons. For example,
solving the above scalability problem is not enough to rely on higher-performance hardware.
The process that allows converting natural language sentences into their diagrammatic
representation and then into real quantum circuits theorized in [49] and implemented
in [63] works only for particular cases because the system’s internal grammar is capable of
correctly handling the representation of only specific sentences. Moreover, there are several
open issues concerning the implementation of logical operators used in diagrammatic
language to deal with specific language structures.

As a summarization of this overview, this field of research has appeared to be at
a very preliminary stage. Many conceptual and mathematical foundations have been
pointed out in the first works that appeared in literature; many of these aspects have found
application in quantum-inspired solutions evaluated on classical hardware, revealing,
albeit in an embryonic way, the enormous potentialities of the QNLP. Only very recently,
a reduced subset of these quantum-inspired solutions has found a way to be tested on
NISQ quantum hardware, showing promising results although operating on small datasets
and simplified scenarios, and not considering at all how to exhaustively assess a quantum
speed-up for QNLP. To point out some elements worthy of future investigations, first of
all, from an experimental point of view, relevant aspects affecting the performances of
QNLP approaches regard how to (i) benchmark the optimisation algorithms, (ii) choose
ansatz solutions, training methods and various hyper-parameters, (iii) assess the possible
relationship between corpus size, wire dimensionality and generalization. This will also
open up an exploratory arena for future work on assessing trade-offs of performance
achieved with different ansatz families and optimization parameters in a specific task versus
general performance on many tasks. On the other hand, from a theoretical perspective, how
much the claims held out by the QNLP are valid is yet to be proven at a purely linguistic
level. Although these quantum models promise to reduce the bottleneck of the need for
extensive annotated resources, it is also true that they require a grammar to describe the
structures of the language under analysis. Such grammar must be formalized in a formal
logical language and is based on the CFGs mentioned above, whose expressive potential has
never been tested on such a large scale. In addition, the low uptake of CFGs in NLP means
that there are a small number of tools, such as parsers or pos-taggers, which are currently
valid only for specific cases and for small data. This raises questions about the scalability of
the approach and practical portability, risking creating a future scenario in which resources
(i.e., grammars that formalize the language) are available only to rich-resource languages.

8. Conclusions

Although QNLP is still a new area of research and applications have focused on
relatively simple tasks so far, it has already shown numerous opportunities and advantages
in many ways.

First of all, from a theoretical point of view, the mechanics of natural language could
be better handled by a quantum-based approach: this is the so-called “quantum native”
view of QNLP, supported by many studies. Therefore, quantum language models would
be better suited to understand and describe natural language phenomena in a way that
is more aligned with real human cognitive processes. However, although this claim is
fascinating, there is currently no concrete evidence to support it except in managing specific
cases, i.e., simple sentences with a limited and controlled vocabulary. This reflects neither
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the actual way of learning human language nor its production. From an applicative point
of view, probably a solution could come in the future at the increased power and storage
capacity of quantum computers that could be the most realistic and suitable option to deal
with increasingly large vector spaces. From a theoretical side, introducing different types
of sentences with different construction using CFG and Pregroups is costly, since, in some
cases, it means that these resources have to be built from scratch. In addition, there are also
some concerns about the ability of these kinds of grammars to be able to approximate all
kinds of linguistic phenomena

Concerning the so-called “quantum advantage”, similar or even better performance
has been achieved by some QNLP models running on classical hardware in various tasks,
compared to state-of-the-art baselines. As an example of the application of these statements,
QNLP models have been applied to manage aspects of NLP, which have always been
critical to deal with the classical probabilistic models, such as interference phenomenon in
information retrieval, term dependencies or ambiguity resolution.

However, the performance boost offered by the quantum speedup have been only
theoretically demonstrated, relying on a quantum hardware that can take the benefit of
still unrealized and expensive QRAM. Although alternative solutions have been found
to make up for this shortcoming, implementations on NLP tasks cannot yet be remotely
comparable to the classic ones well known in the literature. The data on which these
approaches have been tested are in fact very small (about 100 natural language sentences
in medium-scale experiments) due to current limitations imposed by NISQ computers and
for very restricted tasks due to the need of an ad hoc created grammar for the sentence
involved in the experiment.

Concerning future work, the desirable end of dependence on large datasets and com-
plex models with a huge number of parameters can undoubtedly be addressed by the
QNLP, but many issues remain open. From a theoretical point of view, there is still the
question of scalability in building CFGs underlying the models and the possibility of creat-
ing compelling formal descriptions for different languages. Instead, from an application
point of view, it could regard the usage of more significant real-world data as well as the
implementation of more complex QNLP tasks such as sentence similarity and all those
tasks involving ambiguities that may benefit most from the quantum native approach of
QNLP. However, although it will presumably take years before QNLP approaches can be
executed on a large scale, as is the case today for deep learning-based models, QNLP can
offer the unique opportunity to use quantum properties to deal with challenging language
phenomena in a manner more similar to how natural language works. This has been
demonstrated by the successes of using quantum superposition to model uncertainties and
ambiguity in language or entanglement to describe both composition and distribution of
syntax and semantics effectively.
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