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Abstract: Three-dimensional ground penetrating radar (3D GPR) is a non-destructive examination
technology for pavement distress detection, for which its horizontal plane images provide a unique
perspective for the task. However, a 3D GPR collects thousands of horizontal plane images per
kilometer of the investigated pavement. The existing detection methods using GPR images are
time-consuming and risky for subjective judgment. To solve the problem, this study used deep
learning methods and 3D GPR horizontal plane images to detect pavement structural distress,
including cracks, repairs, voids, poor interlayer bonding, and mixture segregation. In this study,
two deep learning methods, called CP-YOLOX and SViT, were used to achieve the aim. A dataset
for anomalous waveform localization (3688 images) was first created by pre-processing 3D-GPR
horizontal plane images. A CP-YOLOX model was then trained to localize anomalous waveforms.
Five SViT models with different numbers of encoders were adopted to perform the classification of
anomalous waveforms using the localization results from the CP-YOLOX model. The numerical
experiment results showed that 3D GPR horizontal plane images have the potential to be an assistant
for pavement structural distress detection. The CP-YOLOX model achieved 87.71% precision, 80.64%
mAP, and 33.57 sheets/s detection speed in locating anomalous waveforms. The optimal SViT
achieved 63.63%, 68.12%, and 75.57% classification accuracies for the 5-category, 4-category, and
3-category datasets, respectively. The proposed models outperformed other deep learning methods
on distress detection using 3D GPR horizontal plane images. In the future, more radar images should
be collected to improve the accuracy of SViT.

Keywords: 3D GPR; horizontal radar images; deep learning; distress recognition and localization

1. Introduction

Three-dimensional ground penetrating radar (3D GPR) is an emerging non-destructive
inspection technology that is efficient, accurate, and multi-dimensional [1,2]. It has been
a major tool for pavement distress detection and pavement condition evaluation [3–5].
Pavement distress detection is defined as the process of classifying and locating instances
of pavement distresses in images or videos. Compared to a 2D GPR, 3D GPR uses stepping
frequency and antenna array technologies to collect the full structure data of a pavement
section. Informative 3D data can be used to detect internal pavement distress, such as
cracks, repairs, voids, poor interlayer bonding, and mixture segregation [6]. However,
a 3D GPR can obtain thousands of radar images per kilometer in different dimensions.
GPR images have been processed using traditional machine learning algorithms in several
studies [7]. Rebecca M.W. et al. [8] combined support vector machines (SVMs) and hidden
Markov models (HMMs) for Crevasse detection in ice sheets. Zhou et al. [9] combined
SVM with H-Alpha Decomposition for subsurface target classification of GPR. The existing
processing methods are fallible and unreliable for pavement distress detection using 3D
GPR data.
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In the last decade, machine learning has produced breakthroughs due to the rapid
development of deep learning. Deep learning provided excellent performance in the fields
of image recognition, speech recognition, and information security [10–12]. In particular,
convolutional neural networks (CNNs) have made excellent achievements in object de-
tection thanks to their powerful feature extraction architecture [13,14]. Additionally, the
vision transformer (ViT) model, which has emerged in the last two years, also has achieved
remarkable success in object detection [15,16]. Such cases provide a new idea for GPR
image processing [17]. For example, Liu et al. [18] detected and located reinforced steel bars
in concrete using GPR images and a Single Shot MultiBox Detector (SSD) model with good
accuracy and detection speed. Li et al. [19] and Liu et al. [20] achieved the automatic detec-
tion of concealed cracks and voids by using the You Only Look Once (YOLO) model and 3D
GPR, respectively. Sha et al. [21] proposed three CNN models to classify, localize, and mea-
sure structural cracks and potholes in asphalt pavements using GPR images. Hou et al. [22]
proposed a data enhancement method based on a convolutional self-encoder structure,
which significantly improved the accuracy of crack classification. Yan et al. [23] proposed a
pavement distress detection model based on faster region convolutional neural network
(Faster R-ConvNet), which reduced the ratio of missing and false detection. In addition,
Sha et al. [24] used cascaded CNN models to overcome the low-accuracy problem of tradi-
tional CNNs in identifying low-resolution GPR images. Tong et al. and Gao et al. [25–27]
used GPR images to identify, locate, measure, and reassemble 3D models of internal cracks
by building CNN models. In addition, they developed a Faster R-ConvNet model to
accurately identify internal pavement distress (reflection cracks, water-damage pits, and
uneven settlements). Moreover, GPR signals were directly input into a network-in-network
architecture to achieve the training and testing of the model, and the results showed that
the method was effective in detecting cracks, water-damage pits, and uneven settlements.
Long [28] used a 3D-to-2D data transformer for reverse-time offset imaging and adopted
a single-shot detector to investigate subsurface structures. Wang et al. [29] implemented
GPR data enhancement using cycle generative adversarial networks and localized radar
hyperbolic waveforms by a Faster R-ConvNet. Kim et al. [30] combined GPR images from
different channels into ones for pavement distress detection, and the results showed that
the method effectively reduced the error rate. Omwenga M. M. et al. [31] proposed deep
reinforcement learning (DRL)-based autonomous cognitive GPR (AC-GPR) to achieve the
automatic detection of subsurface targets with superior accuracy and speed.

The waveform characteristics of pavement distress vary from one channel to another in
a 3D GPR. The majority of the reported studies focus on the longitudinal radar images since
most distresses are obvious in these images. However, these methods ignore a fact that
3D GPR can obtain pavement internal information in three dimensions and the horizontal
radar images also can provide a unique view of pavement distress detection. However,
there are very few research studies that study this problem.

Motivated by the above reason, this study aims to detect pavement distress based on
the waveform characteristics of different distress in horizontal radar images. In horizontal
radar images, anomalous waveforms are located by a CP-YOLOX model, which is a
modified version of You Only Look Once X (YOLOX) [32]. On this basis, to investigate
the capacity of horizontal GPR images to represent different pavement distresses, the
localization results from the CP-YOLOX model were intercepted to build a classification
data set according to three class-membership strategies. Five SViT models, as simplified
versions of Vision Transformer [16], classify anomalous waveforms into one of the possible
distress categories. The objective of this study is to identify distress types from horizontal
radar images using deep learning methods and to provide assistance for distress detection
in the future by combining longitudinal radar images.

The rest of this paper is organized as follows. The methods of our study are presented
in Section 2, which include the collection of 3D GPR images, the processing method of
anomalous waveform localization using the CP-YOLOX model, and the method for distress
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classification using SViT models. Section 3 presents the numerical experiment results. The
conclusions are summarized in Section 4.

2. Proposed Approaches
2.1. Acquisition and Pre-Processing GPR Images

GeoScope 3D Radar was used to collect 3D GPR data, which mainly consisted of a
GeoScopeTM MK IV mainframe, a DXG1212 shallow ground-coupled antenna array, an
RT3D acquisition software, and a 3dr-Examiner data processing software, as shown in
Figure 1. The antenna matching mode was a conventional mode with 12 channels; trigger
spacing was 5 cm; time window was 25 ns; dwell time was 3 µs. A 3D GPR using a stepping
frequency of 100~3000 MHz and antenna array technology captured the full range of
wavelengths of pavement interior information during data acquisition, achieving a balance
between depth and resolution in a single acquisition.
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Figure 1. GeoScope 3D Radar equipment: (a) radar mainframe, (b) multichannel antenna array,
(c) Layout of the DXG1212 antenna array, where the numbers 1–7 indicate the serial number.

The investigated road sections were on Zhangshu-Ji’an Highway, Jiangxi, China.
Structure types I–IV in Figure 2 show four main types of pavement structures on the
highway. The lengths of the road sections with structure types I, II, III, and IV are 21.9 km,
8.3 km, 175.4 km, and 4.0 km, respectively. The four structures were the most common in
China. All 1574 original GPR images were collected and each of them represents a road
section with a length of 60 m and a width of 0.8 m. The 416 × 416 resolution image is a
common input size for the YOLO model, and the detector can detect anomalous waveforms
well at this resolution. Therefore, these images were cropped and resized to finally obtain
3688 horizontal radar images with a resolution of 416 × 416, as shown in Figure 3. The
actual width and length of each cropped radar image were 0.8 m and 20 m, respectively.
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Figure 3. Pre-processing of radar images: (a) processing of horizontal radar images; (b–g) cropped
horizontal radar images.

A crack is a typical type of distress in the pavement and appears in horizontal radar
images as stripes with a strong reflective appearance. Pavement repairs were performed
to prevent the pavement from deteriorating. The waveform at the repair location would
show a highlight feature compared to its nearby location due to the difference in repair
materials and raw materials. Voids refers to the phenomenon of bottom cavity of the
pavement structure layer caused by settlement and distortion between the old and new
asphalt pavement. It is often depicted as a blocky highlight on horizontal radar images.
Due to environmental constraints during construction, there was poor interlayer bonding
at the interlayer. It appears as a highlight anomaly on horizontal radar images. Mixture
segregation is the result of an uneven paving process due to poorly mixed materials or
uncontrolled temperatures during production, mixing and paving. This mixture segrega-
tion is often depicted as a messy highlight feature on horizontal radar images due to the
large number of voids. Typical pavement structural distresses (cracks, repairs, voids, poor
interlayer bonding, and mixture segregation) were shown in Figure 4. Different distresses
were represented clearly in the horizontal radar images. Therefore, horizontal radar images
provide a unique perspective for pavement distress detection and can be used as an aid for
pavement inspection. However, the horizontal radar images still had two problems. First,
the waveform characteristics were complex because the same pavement distress may have
shown different characteristics at different depths. For example, voids may be shown as
black or white highlights at different depth locations. In addition, due to the complex and
various internal structures of pavements, except for typical pavement distresses, there were
also a large number of noise waveforms that derive from many real-world factors, such as
antenna vibration and background noise. These anomalous waveforms significantly affect
distress detection performances. Therefore, a robust and accurate method was needed to
process the horizontal radar images.
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2.2. Proposed Localization Model
2.2.1. Distress Localization Dataset

It is necessary to generate a dataset of 3D GPR horizontal images before building a
deep learning model for anomalous waveform localization. The collected 3688 horizontal
radar images were divided into training, validation, and test sets, corresponding to 2470,
618, and 600 images, respectively. This study then made block-level labels for each image.
Labellmg software in the Python environment was used to label the anomalous waveform
areas in an image, such as the example shown in Figure 5a. A bounding box indicated the
location of an anomalous waveform area. Table 1 presents the total number of bounding
boxes in the training, validation, and test sets.
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Table 1. Number of training, validation, and test samples.

Type
Training and Validation Samples Test Samples

Number of
Objects

Number of
Images

Number of
Objects

Number of
Images

Anomalous
waveform 7453 3088 1592 600

In order to alleviate the overfitting and improve the accuracy of the location model,
random data augmentation was performed on the dataset. In this study, random data
enhancement had the following three main points:

(1) Randomly crop an image;
(2) Randomly resize an image in terms of its length and width;
(3) Randomly distort the color gamut of an image.

The three data enhancement methods were performed simultaneously, such as the
examples shown in Figure 5b–d. The randomly enhanced image was filled with zeros in
the remaining positions.

2.2.2. Structure of CP-YOLOX

In order to localize anomalous waveforms, a CSP PAN YOLOX (CP-YOLOX) model
has been proposed, which is modified from the original YOLOX [32]. The proposed model
can be divided into three parts: CSPDarkNet-SPP as Backbone, Path Aggregation Network
(PAN) as Neck, and Decoupled Head as Prediction [33–35]. The architecture of the model
is shown in Figure 6.
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(1) Backbone

The backbone extracts high-dimensional features from inputs using several convo-
lutional and pooling layers. In this study, the CSPDarkNet-SPP network was used as the
backbone of CP-YOLOX. The architecture and parameters of the network were shown in
Figure 7 and Table 2, respectively. The CSPDarkNet-SPP network incorporates Focus, Cross
Stage Partial (CSP), and Spatial Pyramid Pooling (SPP) to reduce the floating operations,
increase perceptual field, and enhance feature extraction efficiency.

In the CSPDarkNet-SPP network, an input image passes through the Focus structure,
which concentrates the information in the length and width dimensions into the channel
dimension. This operation obtained two-fold downsampling features without information
loss. The features were then compressed and extracted using a Convolutional Batch SiLU
(CBS) structure and four CSP layers. With the last CSP layer, an SPP operation was added
to increase the perceptual field of the network by utilizing maximum pooling layers with
different sizes, which improved feature extraction efficiency.
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Table 2. Main parameters of CSPDarkNet-SPP.

Layers Kernel Size and
Number Input Size Output

Size Stride

Focus 3 × 4 = 12 416 × 416 208 × 208 -
CBS3 3 × 3, 48 208 × 208 208 × 208 1

CSPLayer 2

CBS3 3 × 3, 96 208 × 208 104 × 104 2
CBS1 1 × 1, 48 1 × 1, 48 104 × 104 104 × 104 1

Res unit -

{
1× 1, 48
3× 3, 48

}
×

2
104 × 104 104 × 104 1

CBS1 1 × 1, 96 104 × 104 104 × 104 1

CSPLayer 6

CBS3 3 × 3, 192 104 × 104 52 × 52 2
CBS1 1 × 1, 96 1 × 1, 96 52 × 52 52 × 52 1

Res unit -

{
1× 1, 96
3× 3, 96

}
×

6
52 × 52 52 × 52 1

CBS1 1 × 1, 192 52 × 52 52 × 52 1

CSPLayer 6

CBS3 3 × 3, 384 52 × 52 26 × 26 2
CBS1 1 × 1, 192 1 × 1, 192 26 × 26 26 × 26 1

Res unit -

{
1× 1, 192
3× 3, 192

}
×

6
26 × 26 26 × 26 1

CBS1 1 × 1, 384 26 × 26 26 × 26 1

CSPLayer 2
+ SPP

CBS3 3 × 3, 768 26 × 26 13 × 13 2

SPP

1 × 1, 384
1 × 1, 5 × 5, 9 × 9, 13 ×

13, 384
1 × 1, 768

13 × 13 13 × 13 1

CBS1 1 × 1, 384 1 × 1, 384 13 × 13 13 × 13 1

Res unit -

{
1× 1, 384
3× 3, 384

}
×

2
13 × 13 13 × 13 1

CBS1 1 × 1, 768 13 × 13 13 × 13 1
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A CSP layer divides its input into two parts by performing a 1 × 1 convolution
operation in which one part passes through multiple residual modules to extract features,
and then the features are concatenated with another part. The residual module consists
of two CBS and one residual edge. The first CBS was used for channel adjustment to
reduce the computation cost, while the second one was used for feature extraction. The
CSP layer reduces the calculation of the network as well as the redundancy of the network
information while ensuring efficient feature extraction. Based on the proposed model,
the number of CSP layers represents the number of residual module cycles, and the cycle
numbers of the four residual modules were 2, 6, 6, and 2.

The CBS consists of a convolutional layer, a batch normalization (BN) layer, and
a SiLU activation function [36]. There were two sizes of convolutional kernels in the
convolutional layer. The 1 × 1 convolutional kernels were used for channel adjustment
to increase the nonlinear fitting ability, while the 3 × 3 convolutional kernels were used
for feature extraction. The BN layer normalized the outputs of a convolutional layer to
accelerate network convergence and alleviate overfitting. The SiLU activation function was
a comprehensive version of the Sigmoid and ReLU functions and is defined as follows.

f(x)= x·sigmoid(x), (1)

sigmoid(x) =
1

1 + e−x . (2)

Its smooth and non-monotonic characteristics work well on deep neural networks.
The function is shown in Figure 8.
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(2) Neck

Neck was an architecture between backbone and prediction, which fused the multi-
dimension features from the backbone network and imported them into the prediction
architecture, as shown in Figure 9. Three different features (Feat1, Feat2, and Feat3) from the
CSPDarkNet-SPP backbone were imported into the neck architecture. The low-dimensional
feature Feat1 contained strong local information, while the high-dimensional feature Feat3
included distress-semantics information. In this study, a Path Aggregation Network (PAN)
was used as the neck architecture to fused these features, as shown in Figure 9, for which
its parameters are shown in Table 3. In PAN, multi-dimension features were fused by
sequentially upsampling and using convolutional layers.

(3) Prediction

A decoupled head was proposed as the prediction architecture, using neck architec-
ture features as inputs. The decoupled head decoupled the classification and regression
tasks, as shown in Figure 10. The regression task aimed to predict the bounding box of
each anomalous waveform area, while the classification task classified each anomalous
waveform area into one of the distress classes. The decoupled head network used a CBS
layer to generate two feature vectors based on the input features. The first vector was then
passed through two CBS layers to produce a classification prediction vector, and the second
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vector was also passed through two CBS layers to produce a regression prediction vector.
After concatenating the two vectors, the dimension of the concatenated vector was adjusted
by using a 1 × 1 convolution layer. The final output of the model was a feature vector
with the size of 1 × 6, where 6 can be divided into 1 + 1 + 4, corresponding to anomalous
waveform or not, confidence, and location of the prediction boxes.
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The proposed model adopted the anchor-free strategy, which did not require pre-
defining anchor sizes. In addition, this study also adopted the simplify optimal transport
assignment (SimOTA) [37] strategy to dynamically matched positive samples for different
distresses. Anchor-free and SimOTA were used in conjunction to reduce the complexity of
the detection head and to increase the robustness of the model.
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2.3. Proposed Classification Model
2.3.1. Distress Classification Dataset

Even though the proposed location model can determine anomalous waveform areas,
it cannot easily determine the categories of these areas. For example, there was no easy
method to determine if the anomalous waveform area was caused by cracks or uneven
settlement. The main reason for this was that few studies had demonstrated the ability
of horizontal GPR images to represent different types of pavement distress. However,
the class-membership strategies of anomalous waveform images affected distress clas-
sification. An over-fine classification strategy had the risk of misclassification, despite
sometimes providing a precise decision; an over-coarse strategy cannot provide an infor-
mative decision. In this study, three class-membership strategies, as shown in Table 4, were
proposed to demonstrate the capacity of horizontal GPR images to represent different pave-
ment distresses. Among them, HD1 (Horizontal Distress 1) indicated that all anomalous
waveforms were considered cracks; HD16 indicated that the anomalous waveforms could
represent cracks or noises; HD45 indicated that the anomalous waveforms may be poor
interlayer bonding or mixture segregation; HD6 indicated that the anomalous waveforms
were background noises.

Table 4. Class-membership strategies of anomalous waveform in horizontal radar image.

Classification
Method Category Category

Number

1 HD1 HD16 HD45 HD6 HD126 5
2 HD1 HD16 HD45 HD6 4
3 HD1 HD45 HD6 3

As shown in Table 1, 9045 anomalous waveforms were manually labeled, which were
then intercepted from the horizontal radar images to create a classification dataset. Figure 11
illustrates how the image interception method works. The anomalous waveform areas were
cropped from the radar images based on the position coordinates. The intercepted anoma-
lous waveform images had different shapes, while a classification model was required to
had the inputs with a fixed size. Thus, the cropped anomalous waveform images were
resized by adding zeros to the missing parts. Finally, these filled images were assigned to
one of the distress categories using different class-membership strategies. Therefore, three
datasets with the same images but different labels were generated, as shown in Table 5.
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In all three datasets, the number of samples in different categories was balanced. In the
5-category dataset, all 395 images were selected for HD126, and 400 images were randomly
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selected for each of the other categories to create the dataset, and the total number of
datasets was 1995. In the 4-category dataset, the number of randomly selected images
were 1072, 1100, 1100, and 1100, respectively, for a total of 4372 images. In the 3-class
dataset, the numbers of randomly selected images were 1600, 1366, and 1600, and the total
number of images was 4566. For the three classification methods, the ratio of the training
and validation sets was 8:2, and the test set consisted of all the anomalous waveforms in
600 horizontal radar images with a total of 1592 images.

Table 5. Characteristics of three classification datasets.

Category HD1 HD16 HD45 HD6 HD126

5 Categories
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2.3.2. Structure of SViT

In this study, Simplify Vision Transformers (SViTs) were used to perform the classifi-
cation task, which was a simplified version of Vision Transformer (ViT). An SViT can be
separated into three modules, namely Embedding, Transformer Encoder, and MLP Head,
as shown in Figure 12.

(1) Embedding

As shown in Figure 12, the embedding module converted the input image into the
data format required by the transformer encoder module. The input image was split into
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196 blocks of 16 × 16 pixels in the embedding module. The blocks were then flattened
into one-dimensional vectors by a flattening layer to obtain 196 vector sequences with
256 dimensions. Finally, the position information is embedded in each vector sequence.
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(2) Transformer Encoder

The transformer encoder module, as the core of the SViT model, extracted features
from its input vector sequences. The architecture of the transformer encoder is shown in
Figure 13. The transformer encoder consisted of two residual structures. The first residual
structure was multi-head attention, while its second counterpart was multi-layer perceptron
(MLP). Multi-head attention divided the input data into multiple parts to perform attention
computation. In this study, the number of heads in multi-head attention was four, i.e., the
vector sequence of 197 × 256 was divided into four subsequences of 197 × 64 and imported
into the attention module. In the attention module, the vector sequence was further split
into Query (Q), Key (K), and Value (V), and the results of attention and multi-head attention
were computed as follows.

Attention(Q, K, V)= softmax

(
QKT
√

dk

)
·V, (3)

MultiHead(Q, K, V)= Concat(head1, . . . , headh)·WO, (4)

headi= Attention
(

QWQ
i , KWK

i , VWV
i

)
. (5)
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The number of neurons in the first fully connected layer of the MLP module was 1024,
which was four times the size of the inputs, and the number of neurons in the second fully
connected layer was 256, which was the same size as the inputs. The coefficient of the
dropout was 0.1, and the GELU activation function [38] was adopted as follows.

GELU(x)= xP(X ≤ x)= xΦ(x)= x·1
2

[
1 + erf

(
x/
√

2
)]

, (6)

GELU(x) ≈ 0.5x
(

1 + tanh
[√

2/π
(

x + 0.0447x3
)])

. (7)

The function of GELU was shown in Figure 14.
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The transformer encoder module was repeated several times to extract multi-level
features. In this study, five transformer encoders with 3, 6, 9, 12, and 15 cycles were used,
and the corresponding models were called SViT-3, SViT-6, SViT-9, SViT-12, and SViT-15, as
shown in Table 6.

Table 6. Detailed parameters of the 5 SViT models.

Model Patch Pixel Layer Hidden Size MLP Size Heads Params FLOPs

SViT-3 16 × 16 3 256 1024 4 2.49 M 1.09 G
SViT-6 16 × 16 6 256 1024 4 4.86 M 2.15 G
SViT-9 16 × 16 9 256 1024 4 7.23 M 3.21 G

SViT-12 16 × 16 12 256 1024 4 9.6 M 4.27 G
SViT-15 16 × 16 15 256 1024 4 11.96 M 5.33 G

(3) MLP Head

Based on the features from the transformer encoder, the MLP Head classified the input
image into one possible class. After completing feature extraction by the transformer en-
coder module, the output shape was 197 × 256, which contained the class token embedded
in the embedding module. The class token learned the features of anomalous waveforms
in the transformer encoder and extracted the class token individually into the MLP head,
which enabled the classification of anomalous waveforms.

2.4. Learning Strategy

(1) Overall

The weights and bias of the location and classification models were updated by the
backward propagation algorithm [14] as follows:
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Wij(q + 1)= Wij(q)− η
∂L

∂Wij(q)
, (8)

bj(q + 1)= bj(q)− η
∂L

∂bj(q)
, (9)

where ∂L
∂Wij(q)

and ∂L
∂bj(q)

were the gradients of the loss function with respect to weight Wij(q)

and bias bj(q), and η was the learning rate.
The convergence of the model can be accelerated by using different learning rates

during different training stages. In this study, an exponential descent function was used to
represent the learning rate:

lr = lrb×γepoch, (10)

where lrb was the base learning rate; γ was the coefficient of learning rate decay.
The location and classification models were trained in TensorFlow 2.5 framework. The

training device was a cloud server with AMD EPYC 7302 CPU, 64 G RAM, and NVIDIA
GeForce RTX 3090 GPU with 24 GB memory. The testing device was a laptop with Intel
i7-9750H CPU, 16 G RAM, and NVIDIA GeForce GTX 1650 GPU with 4 GB memory.

(2) Training of CP-YOLOX

In the learning strategy, three different loss functions were combined in the CP-
YOLOX model to compute the gaps between predicted and target information, including
the decision of anomalous waveform or not, confidence, and location of the prediction
boxes. The loss of category and confidence was defined by the cross-entropy loss function,
and the loss of box position was computed by the CIoU loss function [39] as follows:

LCIoU= 1− IoU+
ρ2(b, bgt)

c2 +αv, (11)

α =
v

(1− IoU) + v
, (12)

v =
4

π2

(
arctan

wgt

hgt − arctan
wp

hp

)2

, (13)

where IoU was the intersection over union between the prediction and truth boxes; b and
bgt represent the center points of the prediction and truth boxes, respectively; ρ was the
Euclidean distance between the two center points; c represents the diagonal distance that
can contain the minimum closed area of both the prediction and truth boxes; v represents
the similarity of the aspect ratio; wgt, hgt, wp, and hp were the length and width of the truth
and prediction boxes; α was the weight parameter.

The proposed CP-YOLOX model was trained in three stages, and each stage had
100 epochs. The values of lrb in the three stages were 1 × 10−3, 1 × 10−4, and 5 × 10−5,
while γ was 0.97, as shown in Figure 15a. The Adam optimizer [40] was used for training,
and the parameters of the optimizer were 0.9 and 0.999, as shown in Table 7. The training
of the model was terminated when the loss value of the validation set could no longer be
reduced after 20 epochs.

Table 7. The detailed parameters of model training.

Model Learning Rate
Decay Coefficient

Batch
Size Epoch Base Learning

Rate Optimizer

CP-YOLOX γ = 0.97 16
100 1 × 10−3

Adam100 1 × 10−4

100 5 × 10−5

SViT γ = 0.97 32 20 1 × 10−4 Adam
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Figure 15. Learning rate decline curve: (a) three stages of training for the CP-YOLOX; (b) training for
the SViT.

(3) Training of SViT

SViT models use cross-entropy loss functions to compute the gap between prediction
and target classes. The models also adopted Equation (10) to represent the learning rate.
The models were trained for 20 epochs with lrb of 1 × 10−4 and γ of 0.97, and the same
Adam optimizer was used for training, as shown in Figure 15b and Table 7. The training
of the model was terminated when the loss value of the validation set could no longer be
reduced after 10 epochs.

3. Results and Discussion
3.1. Analysis of Localization Results

The CP-YOLOX model achieved the lowest loss value of 3.060 in the validation set at
the 258th epoch. After that, the training continued for 20 epochs and the loss value stopped
decreasing. The loss curve of the model was shown in Figure 16.
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Five metrics were used to evaluate the well-trained localization model, Precision,
Recall, F1 score, and mean average precision (mAP) [14]. The results were shown in
Figure 17, which were obtained at a confidence threshold of 0.5. In the test set, CP-YOLOX
model achieved 87.71%, 58.73%, and 80.64% for precision, recall, and mAP, respectively.
The model required 29.8 ms to processed one image, and the frame per second reached
33.57 images/s. The evaluation results were shown in Table 8.
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Table 8. Results of the test set.

Model Size
(Pixels)

Precision
(%)

Recall
(%) F1 Score mAP

(%)
FPS

(Images/s)
Inference Time

(ms)

CP-YOLOX 416 × 416 87.71 58.73 0.70 80.64 33.57 29.8
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The well-trained model was used to localized the anomalous waveforms in the hor-
izontal radar images with a confidence threshold of 0.5. Some results were shown in
Figure 18. Prediction and truth boxes were plotted into the radar images, with green and
red boxes being prediction boxes and blue boxes being truth boxes. The prediction boxes
display green with IoU ≥ 0.5; otherwise, it shows red. Prediction result and confidence
levels were plotted into radar image, as shown in Figure 19. As a general rule, the proposed
model was able to identify the anomalous waveform areas in horizontal radar images.
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3.2. Analysis of Classification Results
3.2.1. Results of Training and Testing

In order to reduce the error, each of the five SVIT models was trained three times to
find optimal one using the validation set. The five models were trained three times for each
of the three data sets in Table 5. A total of 45 training results were obtained, as shown in
Figure 20.
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The weights with the smallest loss in the validation set among the three results were
selected, and the corresponding loss value decline curves were shown in Table 9.
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Table 9. Loss value decline curve for 15 best weights.

Model 5 Categories Dataset 4 Categories Dataset 3 Categories Dataset

SViT-3

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 24 
 

 
(c) 

 
(d) 

Figure 19. The prediction results of CP-YOLOX on the original image: (a-d) Predictions based on 
four randomly selected images. 

3.2. Analysis of Classification Results 
3.2.1. Results of Training and Testing 

In order to reduce the error, each of the five SVIT models was trained three times to 
find optimal one using the validation set. The five models were trained three times for 
each of the three data sets in Table 5. A total of 45 training results were obtained, as shown 
in Figure 20. 

 
Figure 20. Loss values of validation sets on different models under three data sets. 

The weights with the smallest loss in the validation set among the three results were 
selected, and the corresponding loss value decline curves were shown in Table 9. 

Table 9. Loss value decline curve for 15 best weights. 

Model 5 Categories Dataset 4 Categories Dataset 3 Categories Dataset 

SViT-3 

   

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

SViT-3 SViT-6 SViT-9 SViT-12 SViT-15
5 Categories 0.917 0.878 0.989 0.909 0.869 0.849 0.928 0.925 0.856 0.850 0.897 0.980 0.831 0.925 0.843
4 Categories 0.626 0.605 0.656 0.652 0.675 0.611 0.623 0.620 0.639 0.669 0.636 0.596 0.606 0.637 0.663
3 Categories 0.531 0.489 0.577 0.551 0.549 0.513 0.568 0.510 0.551 0.538 0.570 0.502 0.536 0.501 0.526

V
al

 L
os

s

5 Categories 4 Categories 3 Categories

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 24 
 

 
(c) 

 
(d) 

Figure 19. The prediction results of CP-YOLOX on the original image: (a-d) Predictions based on 
four randomly selected images. 

3.2. Analysis of Classification Results 
3.2.1. Results of Training and Testing 

In order to reduce the error, each of the five SVIT models was trained three times to 
find optimal one using the validation set. The five models were trained three times for 
each of the three data sets in Table 5. A total of 45 training results were obtained, as shown 
in Figure 20. 

 
Figure 20. Loss values of validation sets on different models under three data sets. 

The weights with the smallest loss in the validation set among the three results were 
selected, and the corresponding loss value decline curves were shown in Table 9. 

Table 9. Loss value decline curve for 15 best weights. 

Model 5 Categories Dataset 4 Categories Dataset 3 Categories Dataset 

SViT-3 

   

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

SViT-3 SViT-6 SViT-9 SViT-12 SViT-15
5 Categories 0.917 0.878 0.989 0.909 0.869 0.849 0.928 0.925 0.856 0.850 0.897 0.980 0.831 0.925 0.843
4 Categories 0.626 0.605 0.656 0.652 0.675 0.611 0.623 0.620 0.639 0.669 0.636 0.596 0.606 0.637 0.663
3 Categories 0.531 0.489 0.577 0.551 0.549 0.513 0.568 0.510 0.551 0.538 0.570 0.502 0.536 0.501 0.526

V
al

 L
os

s

5 Categories 4 Categories 3 Categories

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 24 
 

 
(c) 

 
(d) 

Figure 19. The prediction results of CP-YOLOX on the original image: (a-d) Predictions based on 
four randomly selected images. 

3.2. Analysis of Classification Results 
3.2.1. Results of Training and Testing 

In order to reduce the error, each of the five SVIT models was trained three times to 
find optimal one using the validation set. The five models were trained three times for 
each of the three data sets in Table 5. A total of 45 training results were obtained, as shown 
in Figure 20. 

 
Figure 20. Loss values of validation sets on different models under three data sets. 

The weights with the smallest loss in the validation set among the three results were 
selected, and the corresponding loss value decline curves were shown in Table 9. 

Table 9. Loss value decline curve for 15 best weights. 

Model 5 Categories Dataset 4 Categories Dataset 3 Categories Dataset 

SViT-3 

   

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

SViT-3 SViT-6 SViT-9 SViT-12 SViT-15
5 Categories 0.917 0.878 0.989 0.909 0.869 0.849 0.928 0.925 0.856 0.850 0.897 0.980 0.831 0.925 0.843
4 Categories 0.626 0.605 0.656 0.652 0.675 0.611 0.623 0.620 0.639 0.669 0.636 0.596 0.606 0.637 0.663
3 Categories 0.531 0.489 0.577 0.551 0.549 0.513 0.568 0.510 0.551 0.538 0.570 0.502 0.536 0.501 0.526

V
al

 L
os

s

5 Categories 4 Categories 3 Categories

SViT-6

Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 24 
 

SViT-6 

   

SViT-9 

   

SViT-12 

   

SViT-15 

   

Figure 21 presents the accuracies of 15 optimal models in the test sets. On the SViT-9 
model, the 5-categories and 3-categories test sets had the highest accuracy with 63.63% 
and 75.57%, respectively. On the SViT-6 model, the 4-categories test sets had the highest 
accuracy with 68.12%. The SViT model predicted the highest accuracy of 75.57% for the 3-
categories test sets, corresponding to the categories of crack, poor interlayer bonding, and 
mixture segregation. 

Based on the results in Figure 21, the SViT-6 model was tested in the 4-categories test 
set, while the SViT-9 models were tested in the 5- and 3-categories test sets. The results 
are shown in Figure 22. In the three class-membership strategies, the models were the 
most accurate in classifying pavement distresses without background noises, with HD1 
accuracies of 73.3%, 76.4%, and 82.1% and HD45 accuracies of 76.1%, 78.5%, 83.3%, re-
spectively. The models had poor accuracies in predicting distress containing background 
noises, in which all accuracies were lower than 70%. In horizontal radar images, SViT 
model was capable of detecting cracks, poor interlayer bonding, and mixture segregation 
distress. The model was tested well on a 3-category dataset, but the best distress classifi-
cation strategy needs to be determined along with longitudinal radar images. The future 
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Figure 21 presents the accuracies of 15 optimal models in the test sets. On the SViT-9
model, the 5-categories and 3-categories test sets had the highest accuracy with 63.63%
and 75.57%, respectively. On the SViT-6 model, the 4-categories test sets had the highest
accuracy with 68.12%. The SViT model predicted the highest accuracy of 75.57% for the
3-categories test sets, corresponding to the categories of crack, poor interlayer bonding,
and mixture segregation.
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Figure 21. Accuracy of different models on 3 test sets.

Based on the results in Figure 21, the SViT-6 model was tested in the 4-categories
test set, while the SViT-9 models were tested in the 5- and 3-categories test sets. The
results are shown in Figure 22. In the three class-membership strategies, the models were
the most accurate in classifying pavement distresses without background noises, with
HD1 accuracies of 73.3%, 76.4%, and 82.1% and HD45 accuracies of 76.1%, 78.5%, 83.3%,
respectively. The models had poor accuracies in predicting distress containing background
noises, in which all accuracies were lower than 70%. In horizontal radar images, SViT model
was capable of detecting cracks, poor interlayer bonding, and mixture segregation distress.
The model was tested well on a 3-category dataset, but the best distress classification
strategy needs to be determined along with longitudinal radar images. The future study
should focus on how to suppress the noise waveform and on more detailed analysis of the
disturbance waveform.
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3.2.2. Prediction Results of Different Models

SViT was a simplified model based on ViT, which was different from the traditional
CNN models described in Section 2.3. Different models were compared with the proposed
model. Comparison models included ViT and CNN-based MobileNet and ResNet50 [41,42].
The floating-point operations (FLOPs) and accuracies of different models were shown
in Figure 23 and Table 10. SViT outperformed ViT and MobileNet models on accuracy,
parameter, and FLOPs, even though its accuracy was slightly lower than one of ResNet50
model. As a result, the proposed model had fewer parameters and FLOPs, ensuring a
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high level of accuracy, which enables it to perform distress classification quickly. This
demonstrated the effectiveness of the proposed model in identifying pavement distress.
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Table 10. Accuracy results of 3 datasets with different models.

Model
Acc (%)

Params FLOPs
5 Categories 4 Categories 3 Categories

SViT-6 — 68.12 — 4.86 M 2.15 G
SViT-9 63.63 — 75.57 7.23 M 3.21 G

ViT 60.63 61.28 74.78 85.8 M 35.3 G
MobileNet 58.84 71.39 76.18 3.23 M 1.15 G
ResNet50 69.69 72.56 76.57 23.6 M 7.7 G

3.2.3. The Influence of Number of Samples on the Model

A ViT model surpassed traditional CNN models in the field of image recognition
once given sufficient samples in the learning set [16]. During training, the fitting ability
of SViT was excellent, and only a few epochs were required to complete the training.
Figure 24 presents the accuracies of different models with different datasets. With more
samples, the accuracy of the SViT model was close to that of ResNet50. The accuracy
gap between the two models shrank from 6.06% to 1% as the number of single-category
samples increased. SViT still had the potential to outperform the ResNet50 model if more
samples were available. Therefore, more 3D GPR images should be collected to improve
the performance of the proposed model.
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4. Conclusions

Pavement distress was detected using deep learning and horizontal GPR images in
this study. The anomalous waveform areas in horizontal radar images were located by
a CP-YOLOX model. Five SViT models classified anomalous waveforms into one of the
possible distress categories. A GPR image dataset collected from China demonstrated the
effectiveness of the proposed models. The following conclusions can be drawn.

(1) The proposed CP-YOLOX model could localize anomalous waveforms caused by
pavement distresses. With a confidence threshold of 0.5, the CP-YOLOX model
localized anomalous waveforms with mAP of 80.64%, Precision of 87.71%, and Recall
of 58.73%. The model processed radar images with a speed of 33.57 images/s.

(2) The proposed SViT model was capable of detecting cracks, poor interlayer bonding,
and mixture segregation distress in horizontal radar images. For the category without
background noise, the model had a high prediction accuracy. Future studies should
focus on how to suppress the noise waveform and on more detailed analysis of the
disturbance waveform.

(3) The proposed SViT model had fewer parameters and FLOPs, ensuring a high level
of accuracy, which enables it to perform distress classification quickly. With the
increase in GPR images, the gap between SViT and ResNet50 shrunk from 6.06% to
1%, indicating that more data samples had the potential to improve the performance
of SViT. This demonstrated the superiority of the proposed model on the pavement
distress classification.

(4) In the three classification datasets, the 3-categories dataset had the highest accuracy,
followed by the 4-categories dataset, and the 5-categories dataset had the lowest
accuracy. However, the model trained based on the 5-categories dataset provided the
most detailed basis for distress classification. Subsequently, we need to combine the
horizontal detection results with the longitudinal radar images to determine the best
classification method using 3D GPR.
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Abbreviations

Abbreviations Full Name
3D GPR Three-dimensional ground penetrating radar
DL Deep Learning
CNN Convolutional Neural Network
ViT Vision Transformer
SViT Simplify Vision Transformers
YOLOX You Only Look Once X
CP-YOLOX CSP PAN YOLOX
CSP Cross Stage Partial
SPP Spatial Pyramid Pooling
CBS Convolutional Batch normalization SiLU
PAN Path Aggregation Network
SimOTA Simplify Optimal Transport Assignment
HD Horizontal Distress
MLP Multi-Layer Perceptron
BP Backward Propagation
mAP mean average precision
NMS Non-Max Suppression
FLOPs floating-point operations
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