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Abstract: After declaring COVID-19 pneumonia as a pandemic, researchers promptly advanced to
seek solutions for patients fighting this fatal disease. Computed tomography (CT) scans offer valuable
insight into how COVID-19 infection affects the lungs. Analysis of CT scans is very significant,
especially when physicians are striving for quick solutions. This study successfully segmented lung
infection due to COVID-19 and provided a physician with a quantitative analysis of the condition.
COVID-19 lesions often occur near and over parenchyma walls, which are denser and exhibit lower
contrast than the tissues outside the parenchyma. We applied Adoptive Wallis and Gaussian filter
alternatively to regulate the outlining of the lungs and lesions near the parenchyma. We proposed
a context-aware conditional generative adversarial network (CGAN) with gradient penalty and
spectral normalization for automatic segmentation of lungs and lesion segmentation. The proposed
CGAN implements higher-order statistics when compared to traditional deep-learning models. The
proposed CGAN produced promising results for lung segmentation. Similarly, CGAN has shown
outstanding results for COVID-19 lesions segmentation with an accuracy of 99.91%, DSC of 92.91%,
and AJC of 92.91%. Moreover, we achieved an accuracy of 99.87%, DSC of 96.77%, and AJC of 95.59%
for lung segmentation. Additionally, the suggested network attained a sensitivity of 100%, 81.02%,
76.45%, and 99.01%, respectively, for critical, severe, moderate, and mild infection severity levels.
The proposed model outperformed state-of-the-art techniques for the COVID-19 segmentation and
detection cases.

Keywords: generative adversarial network (GAN); COVID-19; lung segmentation; deep learning

1. Introduction

The coronavirus disease 2019 (COVID-19) has spread worldwide, affecting every area
of human life. More than 200 M confirmed cases and 4.25 M deaths have been reported as
of 8 August 2021, and the infection rate is still on the rise globally. Hence, precise diagnostic
and effective treatment regimens are required. COVID-19 is diagnosed using a variety of
methods, including isothermal nucleic acid amplification technology and real-time reverse
transcription-polymerase chain reaction (RT-PCR) [1,2]. Currently, RT-PCR is extensively
used to diagnose COVID-19, but it has many drawbacks such as low sensitivity, scarcity
of test kits, and low efficiency [3]. Recent studies show that chest computed tomography
(CT) images could be an alternative solution with higher sensitivity, accuracy, and easy
accessibility in the healthcare setting.

Furthermore, CT scans of the lungs can reveal early lesions and be utilized by radiolo-
gists for diagnosis. Segmentation of the lungs is the first step to assessing lung diseases
through medical imaging. Precise segmentation of infections from CT imaging is critical for
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analyzing and quantifying COVID-19. There are different types of lung segmentation meth-
ods proposed by researchers, which are divided into two categories, i.e., handcrafted and
deep-learning methods. Handcrafted image segmentation methods such as morphological-
based methods [4] and active counter model [5] need physician intervention, are biased,
and are time-consuming. These processes are often carried out in a sequence of steps, where
empirical parameter adjustments are made manually. Various 3D-based [6] and 2D-based
techniques [4] have been devised to obtain the best quality results. Moreover, handcrafted
segmentation methods are tailored to specific imaging modalities, applications, and even
datasets. It is arduous to generalize various types of imaging modalities and applications.
Therefore, automatic segmentation of lung infections due to COVID-19 is highly desired in
healthcare settings.

Earlier deep-learning models were based on bounding boxes [7]. The goal is to guess
the central pixel(s) class label through the patch that includes its neighbors. In the field
of medical image processing, numerous successful pixel-wise classification approaches
based on deep learning have been designed. Ref. [8] developed a deep-learning model to
segment breast and mammographic risk scoring density. Ref. [9] created a fully connected
architecture for the semantic segmentation of images. Ref. [10] proposed a deep-learning-
based architecture viz. segCaps for the segmentation of lung. They introduced the concept
of the deconvolutional capsule in their model.

Recently, a lot of efforts have been made to design a deep-learning-based model to
assist rapid and precise diagnosis of COVID-19 through medical imaging [11–13]. For
example, ref. [14] developed a deep-learning architecture viz. VB-Net to segment lung
infection and lung lobes from CT images of a COVID-19 Patient. Ref. [15] proposed
a CT-imaging-based multi-task deep-learning architecture for the segmentation of lung
infections. Ref. [16] designed mining, a lightweight deep-learning model to overcome the
problem of overfitting and high computation cost. However, segmentation of lung infection
due to COVID-19 accurately remains a tough job owing to three primary reasons, including:
(1) the surrounding normal regions tissues and infected areas have blurry boundaries due
to low contrast, which limits the accuracy of the models. (2) Large variations in shape and
size induce significant challenges for precise segmentation of infectious areas of the lungs.
(3) Scarcity of labeled data limits the performance of the models that depend on a large
amount of data.

To tackle the problem of significant infection variations and low contrast boundaries,
we have proposed a context-aware conditional generative adversarial network (CGAN) to
segment infectious regions from the lungs. The proposed CGAN was trained using gradient
penalty and spectral normalization. We have employed the adversarial terms in training,
which foist higher-order spatial consistency instead of spatial contiguity. We presumed
the problem of lung and lesions segmentation as regression instead of classification in
which loss function was learned during the process of training. The suggested CGAN
was evaluated on four different publicly available datasets. The rest of the manuscript
is organized as follows: Section 2 summarizes the previous efforts, Section 3 describes
the architecture of the proposed CGAN, training, and testing schemes, and Section 4
discusses experiments and evaluation metrics. Analysis of results and discussion are given
in Section 5, and finally, Section 6 concludes this work.

2. Related Work

Recognition of COVID-19 from other kinds of pneumonia is very challenging com-
pared to other lung problems due to high intra-class similarities (particularly in early
stages) and low inter-class variations. Deep learning algorithms have a surge in popularity
due to standout performance in medical image analysis. Recently, numerous studies have
been conducted based on machine learning for the diagnosis of COVID-19 through CT
images [11–13] and several of these representative studies are summarized in this article.
Prior research studies focused on two classes, i.e., multi-class and binary classification.
Multi-class identification detected COVID-19 cases from pneumonia cases, other lung
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problems, and normal cases. Researchers made strenuous efforts to classify COVID-19
cases from non-COVID-19 issues in binary classification. In this research, we aim to classify
COVID-19 patients from non-COVID-19 patients.

Harmon et al. [17] implemented AH-Net and several other state-of-the-art deep-
learning models to locate lung parenchyma, subsequently recognizing COVID-19 infection
from CT images. They used a diverse dataset consisting of 2587 lung infection CT scans.
The dataset consists of 1695 non-COVID-19 cases and 922 COVID-19 cases. AH-Net
achieved a segmentation accuracy of 95%, while 3D-Densnet-121 was employed to identify
COVID-19 and non-COVID-19 infection and achieved a discriminative accuracy of 88.9%.
Zhou et al. [18] designed a lesion identification framework to quantify the area affected
by COVID-19. They used lung CT images. Three separate 2-D UNet were implemented
for X-Y, X-Z, and Y-Z views of the CT image, each with five neighboring slices as an input
and a central portion as an infection prediction mask. The proposed model achieved a
sensitivity of 77.6% and a DSC score of 78.3%.

Wang et al. [19] developed a semi-supervised deep-learning-based model for the
localization and classification of COVID-19. Firstly, the segmentation of the infectious
regions was carried out through the help of a pre-trained UNet. Secondly, a deep CNN was
employed to classify the lung region to COVID-19 or not. They used a dataset consisting
of 313 images of COVID-19 and 229 images of non-COVID-19 cases. They obtained a
classification accuracy of 0.95% and a 0.976% precision score. However, 68.5% of HR (hit
rate) recorded a low segmentation result.

Mei et al. [20] designed a joint framework to integrate the clinical findings such as
exposure history, symptoms, and lab tests with CT images to classify COVID-19 and non-
COVID-19 cases. They trained a joint framework with the help of a dataset consisting
of 905 cases. They achieved a specificity of 82.8%, sensitivity of 84.3%, and 0.92% AUC
(area under the curve) values. Chaganti et al. [21] developed a model for the segmentation
and quantification of aberrant patterns on lung CT scans of COVID-19 cases. They used
9749 lung CT scans, segmented lesions, and lobe regions. They employed different evalua-
tion matrices to quantify severity: % of opacity, % of high opacity, severity score, etc. Pu
et al. [22] developed an automatic approach to measure COVID-19 pneumonia progression
and severity. UNet was employed to segment lungs and vessels through 120 CT images
of COVID-19 patients. For the segmentation of lesions, the proposed method obtained a
DSC score of 81% and 95% for the segmentation of lung regions. Shen et al. [23] designed a
framework to determine the severity of COVID-19 pneumonia. The developed framework
consists of four stages, i.e., pulmonary vessels segmentation, lung segmentation, and lobes
segmentation and infection detection. The segmentation was performed using adaptive
region growing and thresholds. The Pearson correlation between physician and computer
ranged from 0.8373 to 0.7679.

Sahlol et al. [24] created a hybrid classification model that combines an improved
PSO (particle swarm optimization) and a deep CNN model. The aim was to achieve high
performance with minimum resource utilization and storage capacity. They employed a
novel and efficient feature optimizer viz. fractional-order marine predator algorithm to
choose the best features from a huge feature vector extracted via CNN. The results revealed
the supremacy of the proposed method over existing techniques for the said problem.

Notwithstanding the substantial amount of work on lesion recognition, detection of a
specific type of lesion from COVID-19 through images is still challenging. Earlier studies
aimed to distinguish lesions using CT scans. Most of the previous studies applied UNet to
segment lesions through computed tomographic images [25], Li et al. [26] differentiated
COVID-19 from community-acquired pneumonia, and Huang et al. [27] and Cao et al. [28]
extracted pulmonary opacities in the lung’s CT scans for quantitative assessment. All of
these techniques need precise annotation of lesions for training purposes.
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3. Materials and Methods

Ian Goodfellow created GAN consisting of two adversarial sub-networks, i.e., genera-
tor and discriminator. GANs based models are very prominent in research communities,
and there are various variants of GANs such as conditional GAN, super-resolution GAN,
vanilla GAN, etc. The generator and discriminator networks compete against each other
during training. The generator seeks to determine the data distribution while the dis-
criminator attempts to estimate the probability of input data. Both the generator and
the discriminator needed to be trained at the same time, and both required parameter
adjustments to reduce the log (1− d(g(z))), and logdx. The generator network G seeks to
maximize its loss, while the discriminator network strives to minimize its reward (d, g).
This minimax process is mathematically represented in Equation (1) below.

minG maxDV(D, G) = Ex∼pi(x)[logd(x)] + Ez∼pz(z)[log(1− d(g(z)))] (1)

where G stands for Generator and D for the discriminator, V (D, G) denotes value function,
x represents data, and pi and pz means data and prior noise distribution. We have designed
a conditional GAN derived from empirical knowledge from the widely used GAN.

3.1. Conditional GAN for Lesions and Lungs Segmentation

One of the biggest problems in the segmentation of lungs and lesions is the identifica-
tion of boundaries. Conventional deep-learning methods depend upon the depreciation
of pixel-wise loss. The role of a misclassified pixel is not prominent for the overall loss
but can eventually lead to the segmentation of multiple lungs regions as one. Such kinds
of challenges could be tackled by distance map regression [29], concave point identifica-
tion [30], and contour prediction [31]. CRFs (conditional random fields) have been widely
employed [32]. CNN-CRF is also used for context-aware training of models [33].

Notwithstanding the advancement in CNN-CRF networks, this technique is restricted
to unary or pairwise CRFs, which embody only lower-order statistics. According to [32],
higher-order statistics benefit medical image segmentation. Similarly, adversarial training
permits higher-order potential without restricting a specific type of higher-order consistency
and has field-of-view instead of pixel-wise.

The adversarial model can learn a suitable loss function that avoids manually con-
cocted loss functions. This mechanism has also been explained extensively in [34]. These
models can identify small changes in a range of higher-order consistencies between ground-
truth and predicted segmentation masks. The suggested conditional GAN learns a mapping
m for lung segmentation, in which m can acclimate lung images to their segmentation masks.
To train the proposed model with pair data for segmentation, the CGAN objective function
encompasses an adversarial loss function Fl and pixel-wise loss function L1 to reprimand
segmentation errors. The loss in conditional GANs is analogous to cycle-GAN, in which
the segmentation network Sn and discriminator Dn play a minimax game in minimizing
and maximizing the objective, miniSn maxDn Fl(Sn, Dn). Explicitly, Sn interprets lung CT
scans to realistic masks to reduce cross-entropy loss of Dn. The adversarial loss can be
construed as structured loss, in which Sn is reprimanded if pixels in the predicted masks
are unrealistic. The objective of the proposed model is expressed as in Equation (2).

Fl(Sn, Dn) = Em, n∼pdata(m,n)[logDm(m, n)]
+En∼pdata(n)[log(1− Dm(m, Sn(n)))]

(2)

where m represent masks and n denotes lung lesion images. For stabilization of training
and bringing prediction closer to the ground truth, we have employed the addition loss
function L1 as Equation (3).

L1(Sn) = En=m, n∼Pdata(m, n)[‖ m− Sn(n) ‖1] (3)



Appl. Sci. 2022, 12, 5768 5 of 13

3.2. Architecture Detail

The GAN architecture comprises the Generator sub-network and discriminator sub-
network, as shown in Figure 1. The very popular conditional GAN inspires it. The network
should produce an estimated output from input representation, i.e., COVID-19 image.
The generator sub-network has two functionally constrained convolutions with strides
of size 1/2 , two strides-2 convolutions, and twelve residual blocks. To minimize artifacts,
the concept of reflection padding is used. The discriminator sub-network is a simple
classification architecture consisting of three layers and an output layer of 70 × 70 size
to predict whether or not the overlapping patches are real. The discriminator is a patch-
level structure with fewer parameters and is suitable for various size images. However,
numerous residual blocks are required for efficient convergence in the case of larger-size
images. To normalize the training process, spectral normalization is implemented in
this model.
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Figure 1. Structure of the proposed CGAN.

3.3. Training Details

We evaluated the performance of the proposed CGAN model on four different lung
lesion datasets. For a fair comparison, we implemented benchmark image segmentation
models. Finally, we implemented the proposed CGAN architecture to solve the problem
of lung infection segmentation, demonstrating the benefits of the proposed model. Train-
ing begins by feeding annotated lung lesions images. The Adam optimizer was set for
170 epochs and the decay to 0 for the remaining epochs (total 380 epochs) to solve objective
loss. A batch size of 1 and a learning rate of 0.0002 were set. We trained the model from
scratch, and a standard deviation of 0.02 and mean of 0 of Gaussian distribution were
employed to initialize weight. The training was performed using PyTorch deep learning
library version V.0.4.0, with NVIDIA 1050Ti 4GB GPU (Graphics processing unit). Since the
goal of the proposed model was to design a distinct generator network, the objective func-
tion was divided by 2 for the optimization of the discriminator. Spectral normalization [35]
was adopted to enhance the GAN training stability.

The training of the proposed CGAN for lung segmentation lasted for approximately
6 minutes per epoch and approximately 5 min for lesion segmentation on our system.
The inference time per image was recorded at approximately 20 s for lesion and lung
segmentation for CGAN as shown in Table 1.

3.4. Lung and Lesions Segmentation

An encoder–decoder network was implemented to segment the affected region of the
lungs from CT images. Skip connections are used in the generator between the nth and n
-mth layer. Each skip connection in the encoder–decoder in the generator simply combines
the corresponding layers. A convolutional layer is added to the map output segmentation
mask at the decoder’s end, followed by the tanh activation function. We used Leaky-ReLU
(Rectified linear unit) activation function with a slope of 0.2 in the encoder and simple
ReLU in the decoder network. Discriminator also used leaky ReLU with a slope of 0.2.
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Table 1. List the time taken by employed models for this task.

Method Training Time Lungs Segmentation Training Time Lesion Segmentation Inference Time per Image

UNet 6 min 5 min 17 s

FCN 5 min 4 min 13 s

Mask-RCNN 7 min 5 min 17 s

UNet+ FCN 7 min 6 min 19 s

UNet+ Mask-RCNN 8 min 7 min 22 s

UNet+ FCN+ Mask-RCNN 9 min 7 min 28 s

GAN 6 min 5 min 19 s

Proposed CGAN 6 min 5 min 20 s

4. Experiments
4.1. Datasets

This study utilized four publicly available datasets from various sources to train
and assess the proposed CGAN. This work used 907 patients and 5726 CT slices. The
following Table 2 shows a list of the datasets that were used: the first dataset consists
of 3520 CT images with COVID-19 infections rates in the lungs ranging from 0.1 percent
to 59 percent. These images were precisely annotated and verified by radiologists. The
second dataset is the “COVID-19 CT segmentation dataset”, ref. [36] based on Radiopaedia
volumetric CTs. It is composed of 829 slices from 20 patients. The third dataset [37] consists
of 267 CT slices and their relevant ground-truth masks. This dataset consists of lung CT
images with non-COVID-19 cases. Moreover, the MosMedData [38] dataset was utilized
for external validation. The dataset was collected between 1 March and 25 April 2020,
and comprises 1110 CT slices. The dataset includes 856 COVID-19 cases and 254 normal
cases. The COVID-19 cases are divided into four categories, i.e., CTI (684 CT images, 1–25%
lungs infection), CT2 (125 images, lung’s infection ranging from 25–50%), CT3 (45 images,
infection percentage ranges from 50–75%) and CT4 (2 CT images, infection percentage
ranging from 75% and higher).

Table 2. Description of datasets employed in this study.

Dataset No. of Patients CT Images

COVID-19 CT Lung and Infection Segmentation Dataset 20 3520

MosMedData 856 1110

COVID-19 CT segmentation dataset 20 829

CT Data (Kaggle) 11 267

4.2. Preprocessing

Segmentation of lungs produces inconsistency near the lungs contour. COVID-19
lesions predominantly occur over the parenchyma walls, which are denser and exhibit
lower contrast than the tissues outside the parenchyma. An adoptive Wallis filter and
Gaussian filter are used to regulate the outlining of the lungs. This process is repeated until
an improved resultant image produces as shown in Figure 2 below. All the datasets used in
this study have images in neuroimaging informatics technology initiative (NITI) format
except CT data (Kaggle) which introduced inconsistency among features across various
datasets. We have converted all the images into PNG format and normalized the pixel
values within the 0–254 range to reduce inconsistencies. In the end, all the images from
four datasets were resized to 256 × 256.
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4.3. Data Augmentation

To tackle the data imbalance problem, which might lead to subsequent overfitting,
data augmentation was performed to equalize the number of CT images in each class of
the datasets. We have applied −90, 90, and 180-degree rotation for ground-truth and CT
scans. The number of images in each dataset used for training, validation, and testing of
the proposed model is listed in Table 3 below. The proposed CGAN was trained via a 5-fold
cross-validation scheme where 60% of the data were used for training, 20% for validation,
and the remaining 20% for testing.

Table 3. Shows the total number of original and augmented images used to train and evaluate the
proposed CGAN.

No of CT Images Lung Segmentation Lesion Segmentation

Total CT images 4616 3520

Training images 2955 2553

Augmented training images 11,820 9012

Validation images 923 563

Test images 738 704

4.4. Evaluation Metrics

We have employed the most commonly used and accepted metrics for image segmenta-
tion problems. Three different evaluation metrics, i.e., Accuracy, Dice similarity coefficient
(DSC), and intersection over union (IoU), were used to judge output quality empirically.

4.4.1. Accuracy

Accuracy refers to the ratio of accurate classification of pixels among the pixels of an
image. Mathematically shown in Equation (4) below:

Accuracy =
True positive + True Negative

True positive + True Negative + False positve + False Negative
(4)

4.4.2. Aggregated Jaccard Coefficient

The aggregated Jaccard coefficient/index is a quantitative assessment used for analyz-
ing the similarities and differences of sample sets. It extends the global Jaccard coefficient
that is used to gauge aggregated intersection and aggregated union cardinality in the
ROI (region of interest). The mathematical dynamics of this concept are illustrated in the
following Equation (5) below.

Jjac =
∑I

i=1

∣∣∣Ti ∩ P∗J (i)
∣∣∣

∑k
i=1

∣∣∣Ti ∪ P∗J (i)
∣∣∣+ |∑k∈U IPk|

(5)
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where T = Ui=1,2,3,...k, Ti denote ground-truth. P = Ui=1,2,3,....k Prediction and P∗J (i)
indicates connected components. More significant values of the Jaccard coefficient specify
better results of the applied method. The values calculated for the proposed model for lung
segmentation and lesion segmentation are shown in Tables 4 and 5.

Table 4. Lung segmentation results using state-of-the-art deep-learning models and proposed CGAN.

Model Accuracy (%) Aggregated Jaccard Coefficient (%) DSC (%)

UNet 99.68 95.01 96.57

FCN 94.44 89.76 95.99

Mask-RCNN 99.43 95.21 96.62

UNet+ FCN 99.69 95.02 96.58

UNet+ Mask-RCNN 99.72 95.23 96.66

UNet+ FCN+ Mask-RCNN 99.73 95.27 96.70

GAN 99.54 95.34 96.65

Proposed CGAN 99.87 95.59 96.77

Table 5. Lists the results of lesion segmentation.

Model Accuracy (%) Aggregated Jaccard Coefficient (%) DSC (%)

UNet 99.81 90.07 92.43

FCN 93.56 89.17 92.82

Mask-RCNN 99.80 90.25 92.53

UNet+ FCN 99.81 90.09 92.47

UNet+ Mask-RCNN 99.83 92.26 92.55

UNet+ FCN+ Mask-RCNN 99.84 91.28 92.57

GAN 99.82 91.18 92.60

Proposed CGAN 99.91 92.03 92.91

4.4.3. Dice Similarity Coefficient (DSC)

DSC is a statistical method used to gauge spatial overlap between predicted and
ground-truth masks. Mathematically it is represented in Equation (6).

DSC =
2(TP)

2(TP) + FN + FP
(6)

4.4.4. F1 Score

It is the harmonic mean of precision and recall. Mathematically, it is computed as in
the following Equation (7).

F1 =
Recall × precision
Recall + precison

(7)

A high score of F1 indicates better performance of the applied method. F1 score for the
problem of lung infection segmentation is demonstrated in Table 6.
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Table 6. Shows classification COVID-19 severity levels.

Severity Level Infection (%) Accuracy Sensitivity Specificity F1-Score

Cr 76–100% 100% 100% 100% 100%
ST 51–75% 98.63% 81.02% 98.77% 72.26%
MT 26–50% 96.29% 76.45% 98.94% 80.61%
mT 1–25% 97.32% 99.01% 94.11% 98.23%
HT 0% (Healthy) 99.10% 96.21% 98.51% 98.71%

5. Results and Discussion

This section of the article illustrates the results of the lesion and lung segmentation,
severity estimation, and COVID-19 detection.

5.1. Lung Segmentation

The performance of the proposed CGAN and state-of-the-art segmentation models is
shown in Table 4. It is noticed that UNet, Mask-RCNN, and GAN are the top-performers for
the segmentation of lungs. However, it is shown that the FCN model did not perform well
compared to the UNet network, which is state-of-the-art architecture for segmentation tasks.
Mask-RCNN has indicated the acceptable DSC score for the segmentation of lungs. The
proposed CGAN is the top-performer network for the segmentation of lungs with DSC and
AJC of 96.77% and 95.59%, respectively. It has been observed that the top-three performers
have very successfully segmented the tiny areas from the lung regions, as illustrated in
Table 4. Even though the lungs are badly affected by COVID-19, the trained model could
segment the lungs’ boundaries correctly, as reflected in Figure 3, which highlights the
robustness of the suggested lung segmentation model in this work. To further improve
the performance of the applied CNN models, we have ensembled UNet+ FCN, UNet+
Mask-RCNN, and UNet+ FCN+ Mask-RCNN. We noticed a minute improvement in the
performance, as listed in Table 4.
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Figure 3. Results of lung segmentation using proposed CGAN before (b) and after (d) preprocessing.
(a–d) Preprocessing enables models to segment lungs regions robustly and ignore other regions along
the boundary lines i.e., reflections, noise etc.

In this research, various preprocessing steps were performed to enable us to assess
the networks on the different datasets and utilize only slices where the lungs are visible.
Segmentation of the lungs is conducted as part of the pre-processing. This procedure
proved very effective in our preliminary experiments. We have demonstrated how the
proposed method enhances performance by improving the stability of CGAN during
training. We have implemented the proposed CGAN with the initial batch normalization
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setting instead of spectral normalization. A learning rate of 0.002 caused oscillation during
training, and worse results are noted for CGAN. The initial GAN setting utilized crop
entropy loss function and suffered from collapse; to avoid this, we have adopted the
mechanism suggested by [34].

5.2. Lesion Segmentation

The presence of vessels during the lesion segmentation obstructs the process of cir-
cumvention by the expert and also makes the training of an automatic model very difficult.
For the robust training of the model, these vessels are required to be excluded. There-
fore, these vessels are first segmented and then extracted from the marking of the experts.
The segmentation of vessels was performed using the proposed CGAN, subsequently to
segmentation of the lesion.

The segmentation results of various models are shown in Table 5. The results show
that CGAN is more consistent with the ground truth than UNet and GAN. The proposed
CGAN obtained better segmentation results than the benchmarking segmentation models.
CGAN obtained the best results with DSC of 92.91% and AJC of 92.03%. Mask-RCNN,
UNet, and GAN’s results are close to the proposed CGAN model with minimal differences.
Figure 4 presents segmented tiny lung regions with the help of proposed CGAN and other
state-of-the-art deep-learning models. The results of the state-of-art segmentation models
are presented in Figure 4. It is evident from Figure 4 that the segmentation result of CGAN,
GAN, Mask-RCNN, and UNet is highly congruent with the ground truth.
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5.3. COVID-19 Detection

COVID-19 was detected using prediction maps produced by the lesion segmentation
model. Consequently, a CT slice was classed as positive if at least one pixel was anticipated
to be infected with COVID-19, that is, softmax probability >0.5; otherwise, the image was
deemed negative that is normal. The severity levels of COVID-19 infection are divided
into four categories, i.e., severe, critical, mild, and healthy, on the basis of average infection
percentage (white pixels over the lungs regions) all the CT slices of the entire volume.

Table 6 shows the performance of lesion segmentation by the different models used
in this work. We have considered sensitivity as the primary metric for the detection of
COVID-19. All the models obtained the best sensitivity score where CGAN achieved
the highest sensitivity of 99.93%, which indicates the robustness of the proposed model.
Furthermore, C obtained a specificity value of 98.5% which is an indication of a low false
alarm rate.

5.4. COVID-19 Severity Classification

The MosMedData dataset was used for the classification of severity levels in this study.
The ground truth for the task under review is already provided in this dataset. We have
segmented the lungs and infection regions using CGAN that proved to be the best for detecting
borders from CT Volumes more precisely than others, as shown in Figure 4. The percentage
of infection for each lung CT volume is calculated, where each volume is categorized as
severe (ST), critical (Cr), moderate (MT), mild (mT), or healthy (HT). The classification and
quantification of severity levels are shown in Table 6 above. We have considered sensitivity as
the primary metric for the detection of COVID-19. All the models obtained the best sensitivity
score where CGAN achieved the highest sensitivity of 99.93%, which indicates the robustness
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of the proposed model. Furthermore, C obtained a specificity value of 98.5% which is an
indication of a low false alarm rate. The proposed model can identify Cr with 100% accuracy
according to the confusion matrix. Furthermore, a high percentage of normal cases (HT) were
determined accurately. Only ten instances were misclassified, whereas six out of ten cases
exhibited a low infection ratio of 2–4%. Notwithstanding that, the MosMedData Dataset
description stated no viral pneumonia for (HT) cases. Other pulmonary disorders may be
detected in HT cases. All COVID-19 pneumonia cases were identified as ST, MT, mT except
HT. Figure 5 presents a few of the COVID-19 predicted cases. Moreover, the proposed model
has shown a low sensitivity rate for ST, mT compared to HT and MT. This might be linked to
the labeling of the dataset through visual semi-quantitative techniques by the radiologist.
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6. Conclusions

In this study, we have proposed a GAN-based network for lung lesion segmentation
and quantification of infection severity levels. Various benchmarked deep-learning models
were also evaluated to determine the most suitable segmentation model for this task.
The proposed CGAN outperformed all of them to segment lesions and lungs. We have
classified different severity levels based on segmented infected lung regions. The critical
contribution of this work is as follows. For lesion and lung segmentation, the proposed
CGAN outperformed best performing models for such types of task. The proposed CGAN
achieved 99.87% and 99.63% accuracy for the segmentation of lungs and infected regions,
i.e., lesions, respectively. The proposed model achieved an accuracy of 99.63% for the
detection of COVID-19. We classified the severity of COVID-19 infection into levels (critical,
severe, moderate, and mild) based on the percentage of disease by using the segmentation
output of the proposed model. The system achieved a sensitivity of 100%, 81.02%, 76.45%,
99.01% for critical, severe, moderate, and mild infections. In short, the proposed computer-
aided identification and quantification system is a simple, efficient, and accurate prospect
to diagnose COVID-19 cases. The proposed method learns the loss function by considering
the entire image instead of pixel-wise loss. This approach makes them contextually aware
and globally more consistent. The proposed CGAN needs extensive data for effective
training and may suffer from inconsistency during training.
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for robust results. All authors have read and agreed to the published version of the manuscript.
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