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Abstract: Group learning is commonly used in a wide range of classes. However, effective methods
used to form groups are not thoroughly understood. In this study, we explore a quantitative method
for creating project teams based on student knowledge and interests expressed in project proposals.
The proposals are encoded to vector representations, ensuring that closely related proposals yield
similar vectors. During this step, two widely used natural language processing algorithms are used.
The first algorithm is based solely on the frequency of words used in the text, while the other considers
context information using a deep neural network. The similarity scores for the proposals generated
by the two algorithms are compared with those generated by human evaluators. The proposed
method was applied to a group of senior students in a capstone design course in South Korea based
on their project proposals on autonomous cars written in Korean. The results indicate that the
contextualized encoding scheme produces more human-like text similarity vectors compared to the
word frequency-based encoding scheme. This discrepancy is discussed from a context information
standpoint in this study.

Keywords: group learning; project-based learning; group assignment; natural language processing;
writing

1. Introduction
1.1. Group Learning in Project-Based Courses

Group learning has become increasingly important in higher education. Courses in
colleges and universities involve diverse group activities ranging from small assignments
due in a few weeks to more comprehensive projects due at the end of the semester [1].
Working as a group, students have opportunities to learn from each other and receive
practical peer support [2]. Group learning also provides an opportunity to practice decision-
making and responsibility, which are crucial for advancing in careers after graduation in
competitive environments [3].

Therefore, developing group-learning strategies has been an active research topic.
Fiechtner and Davis [4] pioneered a scheme to identify group learning strategies by con-
ducting surveys with college students to assess their perception of effective group activities.
They concluded that the manner in which groups are formed and group size significantly
affect learning outcomes. Specifically, groups should be formed by instructors rather than
students. The group size should not be too small (less than four) or too large (larger than
seven). Baer [5] further analyzed the composition of groups and its effects on cooperative
learning in undergraduate courses. The results demonstrated that homogeneously grouped
students significantly outperformed students grouped otherwise, which is more applicable
to high- or average-achieving students. Monson [6] confirmed these findings by determin-
ing that higher group achievement led to higher individual learning gains, which was not
correlated with the gender or race composition of groups.
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In this study, we explore group forming strategies considering project-based learning
(PBL) in Science, Technology, Engineering, and Mathematics (STEM) courses. STEM courses
typically involve group activities that allow students to consolidate obtained knowledge
into practical skills [7,8]. In many universities, students majoring in STEM fields are
required to complete capstone design courses, where senior students work as a team to
solve high-level complex problems using all the knowledge and skills acquired throughout
their courses before graduation [9,10].

Despite the importance of such courses, effective methods for forming groups in cap-
stone courses have not been investigated extensively. Currently, in most capstone courses,
student choice is the most common method of designating students to teams [10], which is
ineffective according to studies on group formation [4–6]. It would therefore be desirable
for the instructor to form groups based on students’ interests and preferences [11–13].
However, this is another challenge for the instructor because students’ high-level cognitive
skills are difficult to be measured and interpreted [14–16].

1.2. Contributions of the Study

Thus, we investigate a novel approach to form groups in PBL courses utilizing quanti-
tative measures of students’ backgrounds and interests. Instead of letting the students form
their own groups, the students are asked to write project proposals. The written propos-
als demonstrate students’ knowledge of the subject and highlight higher-order cognitive
skills [17–19]. Thus, we use natural language processing (NLP) techniques to cluster similar
proposals into groups.

Specifically, the proposed method consists of two steps. First, each text proposal
is encoded into a numerical representation that captures the core semantics and context
of the text. For this encoding step, we consider two NLP algorithms: a basic measure
based on the frequencies of words [20] and a deep-learning-based contextual embedding
scheme pretrained on large corpora [21,22]. Second, these numerical representations of the
proposals are used to cluster closely related proposals [23].

The research questions addressed in this study are as follows.

1. What are the differences between the encodings using the two NLP algorithms?
2. What are the differences between the NLP algorithms and humans in comparing

text proposals?
3. Which NLP algorithm is more effective in clustering text proposals?

The remainder of this paper is organized as follows. Section 2 describes data col-
lection, NLP-based team assignments, and human validation. In Section 3, we compare
the NLP-based representation schemes with human evaluation scores and present the
grouping results. Then, we discuss the results and their implications in Section 4 and the
limitations of this study in Section 5. In Section 6, we draw general conclusions with future
research directions.

2. Materials and Methods
2.1. Data Collection

Project proposals were collected in a capstone design course for senior students in
South Korea as follows. The project topic (autonomous cars) and toolkit (Nvidia JetBot)
were announced in the course syllabus before the beginning of the semester. Seventeen
senior students registered for the course, comprising 14 males and three females, whose
ages ranged from 23 to 26, with an average of 24.5. During the first week of the course,
two introductory lectures on the project topic and toolkit were provided to the students.
During the second week, students were asked to write project proposals individually in
their native language (Korean) and were informed that groups will be formed based on the
background and interests described in their proposals. They were given one week to write
the project proposals. During the third week, 17 term project proposals were collected from
the participants (one proposal from each).
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In terms of text lengths, the proposals were roughly divided into two groups with
relatively shorter and longer samples. The average word count in a proposal was 121, with
a considerably large standard deviation of 83. Figure 1 provides a histogram of the word
counts. This histogram highlights a bi-modal distribution, corresponding to nine shorter
and eight longer texts. The average number of words in the eight longer proposals was
200, with a standard deviation of 35. This group of eight proposals was selected as the
evaluation set and was used in the human evaluation, details of which are described in
Section 2.3.
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Figure 1. Histogram of proposal word counts.

2.2. NLP-Based Team Assignment

The collected text proposals were clustered into similar ones in two steps, shown as
a schematic in Figure 2. First, each proposal was encoded to a numerical representation
in a vector space. For this encoding step, two widely used NLP algorithms were used,
and corresponding numerical representations were compared for the same set of text
proposals. Second, similarity was measured for each pair of numerical representations, and
this similarity value was used to group similar proposals into a group. Distributions of the
similarity measures using the two NLP algorithms and clustering results were compared.
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The first step is to encode each proposal into a numerical representation using either
term frequency–inverse document frequency (TF-IDF) [20] or universal sentence embed-
ding (USE) [21,22]. For TF-IDF, each text was normalized, with nouns extracted using the
open-source Korean text processor [24]. For processing Korean texts, it is a customary
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preprocess step to use normalized nouns for efficiency and robustness [25,26]. The number
of unique nouns was 478. Thus, each text was represented by a 478-dimensional vector,
where each element corresponded to the occurrence of each word. Specifically, TF-IDF
signifies the product of the term frequency (TF) and inverse document frequency (IDF),
defined as follows:

TF-IDF(t, d) = TF(t, d) IDF(t)IDF(t) = log
1 + n

1 + df(t)
+ 1 (1)

Here, TF(t, d) is the term frequency of the given term (word) t in the document (text)
d, n is the total number of texts, and df(t) is the number of documents (texts) that contain
term (word) t. The resulting TF-IDF vectors were normalized using the Euclidean norm.

With the USE representation, each text was encoded to a 512-dimensional vector using
a deep neural network as follows. First, input texts were tokenized using SentencePiece [27].
Then, the encoder component of the transformer architecture [28] with bi-directional self-
attention produced context-aware token representations. A pretrained model for this
encoder was downloaded from the TF HUB [29], trained using the Stanford Natural
Language Inference (SNLI) corpus [30], with question–answer and translation pairs mined
from the Internet [21,22]. Finally, these token representations were averaged to obtain a
text-level representation for each text.

The key difference between TF-IDF and USE is the use of the context information.
TF-IDF is solely based on the frequency of each word. In contrast, the deep neural network
used for USE is trained to take neighboring words into account. This difference would lead
to qualitatively different numerical representations and grouping results.

Using the vector representations obtained via either TF-IDF or USE, the similarity
between a given text pair was calculated using the cosine similarity of their corresponding
vector representations:

S(v1, v2) =
v1·v2

|v1| |v2|
(2)

where · denotes the inner product of two vector representations (v1 and v2) and | | represents
the Euclidean norm. The similarity measures based on TF-IDF and USE are denoted as
STF−IDF and SUSE, respectively.

Based on these similarity measures, texts were clustered into groups through ag-
glomerative clustering [23]. Initially, each text forms a cluster; then, similar clusters are
recursively merged.

2.3. Human Evaluation

The NLP-based similarity measures were compared with those obtained based on
human evaluations. In the evaluation set, eight texts corresponded to 28 (=8C2) possible
pairs. For simplicity, 14 pairs were randomly selected among the 28 pairs for the human
evaluation. Three human evaluators (research assistants who completed prerequisite
courses) were recruited. Each evaluator received two sessions of training on the topic and
scoring criteria. For the evaluation, a web-based evaluation tool was used, where each
screen presents two texts in a random order followed by a question on the relevance of
each pair on a scale of 1 to 5. Then, the average scores were compared with the NLP-based
similarity measures. The similarity scores provided by the human evaluators are denoted
as Shuman.

3. Results
3.1. Similarity Measures Obtained Using TF-IDF vs. USE

The STF−IDF and SUSE values were modestly correlated. Figure 3A,B show the heatmaps
of STF−IDF (A) and SUSE (B) values for all text pairs, respectively. Figure 3C shows the
scatter plots of STF−IDF and SUSE with the identify line (dashed) presented as a reference.
Text pairs with smaller (larger) STF−IDF values tended to correspond to smaller (larger)
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SUSE values. The Pearson correlation coefficient between STF−IDF and SUSE was 0.54. Texts
7 and 8 produced the highest similarity values for both STF−IDF and SUSE.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 10 
 

3. Results 
3.1. Similarity Measures Obtained Using TF-IDF vs. USE 

The 𝑆ି୍ୈ  and 𝑆ୗ  values were modestly correlated. Figure 3A,B show the 
heatmaps of 𝑆ି୍ୈ (A) and 𝑆ୗ (B) values for all text pairs, respectively. Figure 3C 
shows the scatter plots of 𝑆ି୍ୈ and 𝑆ୗ with the identify line (dashed) presented as 
a reference. Text pairs with smaller (larger) 𝑆ି୍ୈ values tended to correspond to 
smaller (larger) 𝑆ୗ  values. The Pearson correlation coefficient between 𝑆ି୍ୈ  and 𝑆ୗ was 0.54. Texts 7 and 8 produced the highest similarity values for both 𝑆ି୍ୈ and 𝑆ୗ. 

 
Figure 3. Comparison of the similarity measures based on word frequency (𝑆ି୍ୈ) and contextu-
alized embedding (𝑆ୗ). In (A,B), the similarity values of 𝑆ି୍ୈ and 𝑆ୗ are shown, respec-
tively, for each pair of proposal texts. In (C), the similarity values of 𝑆ି୍ୈ and 𝑆ୗ are com-
pared on a scatter plot. In (D), the histograms of 𝑆ି୍ୈ (solid) and 𝑆ୗ (dashed) are compared. 

However, 𝑆ି୍ୈ values were smaller (mean: 0.09; standard deviation: 0.07) than 𝑆ௌா values (mean: 0.36, standard deviation: 0.14), which was a statistically significant 
difference (p < 10ିଽ, paired t-test).  

USE was more informative than TF-IDF for comparing text proposals. As shown in 
Figure 3D, the histogram of 𝑆ି୍ୈ was skewed toward zero, with a median of 0.08, in-
dicating that most of the 𝑆ି୍ୈ values were near zero, as highlighted by the small off-
diagonal values present in Figure 3A. In contrast, the histogram of 𝑆ୗ was more sym-
metrical (Figure 3D), with a median of 0.35, close to its mean (0.36). Thus, this wider range 
of 𝑆ୗ allows one to distinguish semantically different texts from others.  

Figure 3. Comparison of the similarity measures based on word frequency (STF−IDF) and contextual-
ized embedding (SUSE). In (A,B), the similarity values of STF−IDF and SUSE are shown, respectively,
for each pair of proposal texts. In (C), the similarity values of STF−IDF and SUSE are compared on a
scatter plot. In (D), the histograms of STF−IDF (solid) and SUSE (dashed) are compared.

However, STF−IDF values were smaller (mean: 0.09; standard deviation: 0.07) than
SUSE values (mean: 0.36, standard deviation: 0.14), which was a statistically significant
difference (p < 10−9, paired t-test).

USE was more informative than TF-IDF for comparing text proposals. As shown
in Figure 3D, the histogram of STF−IDF was skewed toward zero, with a median of 0.08,
indicating that most of the STF−IDF values were near zero, as highlighted by the small
off-diagonal values present in Figure 3A. In contrast, the histogram of SUSE was more
symmetrical (Figure 3D), with a median of 0.35, close to its mean (0.36). Thus, this wider
range of SUSE allows one to distinguish semantically different texts from others.

3.2. NLP vs. Human Evaluation

Figure 4A shows the histogram of the similarity scores calculated by the human
evaluators (Shuman). The values of Shuman were centered around the mean of 3.17 and
covered most of the maximum range from 1 to 5 with a standard deviation of 0.83.
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to NLP-based similarity measures (B).

The human scores were positively correlated with the scores obtained using the NLP
algorithms. Figure 4B shows STF−IDF and SUSE as functions of Shuman. Both STF−IDF and
SUSE tended to increase as Shuman increased. However, SUSE was more strongly correlated
with Shuman than STF−IDF. The Pearson correlation coefficient between SUSE and Shuman
was 0.76, whereas it was 0.51 between STF−IDF and Shuman.

3.3. Clustering Results

Figure 5 shows the dendrograms of the hierarchical clustering results based on TF-IDF
(A) and USE (B). In these dendrograms, the horizontal lines denote cluster merging and
vertical lines signify the trace of recursive merging, starting from individual samples at
the bottom.
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TF-IDF and USE produced considerably distinct clustering results, except for a few
texts. Texts 7 and 8 were the most similar in terms of TF-IDF and USE and were clustered
to the same group by the first merge. This group comprising 7 and 8 was later merged with
text 16. After this point, the two clustering results deviate from each other, resulting in very
different groups.

4. Discussion

TF-IDF and USE produced noticeably different numerical representations of the text
proposals. STF−IDF and SUSE were modestly correlated with a Pearson correlation coefficient
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of 0.54. This relatively low correlation indicates that the two NLP-based quantities capture
different aspects of the texts. Considering the human evaluation results, SUSE is more
correlated with Shuman than STF−IDF is. This difference is discussed in more detail as follows.

TF-IDF produced low similarity values for most of the text pairs. This was surprising
because the same project topic (JetBot-based autonomous cars) for the proposals was
given to the students. The fixed topic may have decreased the diversity of vocabularies
and produced higher STF−IDF values because TF-IDF is only based on the frequencies of
words. In contrast, the TF-IDF-based measure regarded most of the proposals as distinct
(STF−IDF ≈ 0). Thus, even for the same topic, the TF-IDF-based similarity measure
could distinguish differences in the proposals. However, STF−IDF is limited as a similarity
measure because it produced a limited range of values and lacked information regarding
the level of similarity for post processing, such as clustering.

In contrast, USE produced a wider range of similarity values than those of TF-IDF
on the same dataset (Figure 3D). This higher sensitivity of SUSE originates from the contex-
tualized embedding in the transformer encoder structure. For instance, the same word in
different proposals may coincide with different motivations or approaches. These semantic
differences are undetectable by TF-IDF, which counts only the occurrences of the word.
However, the contextual meaning of a word and its relationships with other words in a
sentence can be captured by USE. This additional information can be beneficial during
clustering (Figure 5).

USE results were closer to the human evaluations than TF-IDF in comparing proposal
pairs. This difference may be due to humans considering the occurrence of words and
their contextual meanings and structures when comparing texts [31–33]. The transformer
structure adopted in USE was designed to mimic how human readers pay attention to
particular words in a text. We argue that the attention-based contextualization of USE
produced more human-like similarity measures.

The hierarchical clustering results are interpreted considering the existing studies on
the ideal group size (4–7) as follows. Using the dendrograms presented in Figure 5, most
similar texts are sequentially combined into a group until the group sizes range from four
to seven. With TF-IDF (Figure 5A), it is natural to combine the most similar text pair (texts
7 and 8) into a group and add text 16 into the group to obtain a group size of three. As
the group size is rather small, it would be reasonable to combine this group with another
group of texts 2, 14, and 17 in the same hierarchy, resulting in a group of texts 2, 7, 8, 14,
16, and 17, sized (six) within the ideal range. Among the remaining texts, texts 3 and 5
are the most similar pairs and naturally form a group. However, at this point, it is unclear
whether to combine this group of size two with the previous one of size six. The process
is straightforward for the remaining texts. Combining texts 1 and 15 and merging them
with texts 6, 12, and 13 forms a group of size five. The remaining texts 4, 9, 10, and 11 form
another group. Similarly, the hierarchical clustering based on USE (Figure 5B) results in a
group of texts 7, 8, 16, 11, 17, 15, and 14 (by the order of merging) and another group of
texts 3, 12, 13, 6, 9, 2, and 4 (by the order of merging). Then, the remining texts 1, 5, and
10 form another group.

The relatively high correlation between USE and the human evaluation advocates
the deep-learning-based text embedding as a similarity measure for group assignments.
In general, evaluation by human experts is expensive and time-consuming and remains
to be a bottleneck [34]. BLEU [35] has been widely adopted as an efficient proxy for
human evaluation, which enables a dramatic improvement in machine translation [36].
This illustrates the importance of the well-established evaluation metric for advancing NLP
applications. Similarly, this study demonstrates that the context-based embedding could
serve as a semantic measure for proposal-based group assignments.

Furthermore, the proposed method opens the possibility of automated comparison of
written proposals and their usage for group assignments. The proposed method comprises
two steps—text embedding and clustering, each of which is efficient and well understood.
This study shows that such a straightforward framework could substitute human judges
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and automate developing NLP-based group assignments. This finding is a first step towards
integrating state-of-the-art NLP approaches to class administration.

5. Limitations of the Study

A major limitation of this study is the small number of samples. In this study, we
could only collect 17 text proposals from a small class. The small sample size could
limit the generality of the conclusions. To evade this limitation, the proposed method
has been intentionally designed to be generic. The NLP-based quantities (frequency of
words and word embedding) are not fine-tuned to the presented topic or collected texts.
Thus, the proposed method is applicable to more general participants focusing on different
project topics.

In addition, the text similarity measure used in this study needs to be validated in
future studies. In this study, the cosine similarity measure (Equation (2)) was chosen
following the literature on TF-IDF and deep-learning-based word embeddings. Other
similarity measures and algorithms should be investigated with more texts.

6. Conclusions and Future Research Directions

In this study, we explored the feasibility of assigning project teams by analyzing
written proposals using NLP and machine learning techniques. The text proposals were
encoded into numerical representations based on term frequency (TF-IDF) or contextualized
embedding (USE). These numerical representations were used to cluster similar proposals.

Conclusions are drawn by answering the research questions as follows. First, TF-IDF
and USE produce rather distinct numerical representations of the text proposals, resulting
in different similarity values for the same set of texts. Second, the similarity measure based
on the contextualized embedding (USE) was closer to human evaluation results than that
based on the term frequency (TF-IDF). Third, the former was more effective for producing
more fine-grained similarity values than the latter. Thus, the clustering result with USE
illustrates potential benefits for forming project teams based on student knowledge and
interests described in their proposals.

Our future research will focus on generalizing the proposed framework to more
complex cases. To test the generality of our method, we aim to collect more data containing
diverse topics and scaling up the text size. It is significant to investigate the sensitivity to
presented topics or participant characteristics. Another future research direction is adapting
the proposed method to educational settings. For instance, NLP-based tools can be used
to aid instructors in providing feedback and guidance on term projects and encourage
interactions within and between groups. We are eager to further explore NLP applications
for enhancing group-learning outcomes.
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