A Fully-Self-Adaptive Harmony Search GMDH-Type Neural Network Algorithm to Estimate Shear-Wave Velocity in Porous Media
Abstract
:1. Introduction
2. Experimental Methods
3. Materials
3.1. Harmony Search (HS) Algorithm
3.2. Group Method of Data Handling (GMDH)
4. Methods
4.1. Fully-Self-Adaptive Harmony Search (FSHS) Algorithm
4.1.1. Variable-Size Harmony Memory
4.1.2. Harmony Memory Consideration Rate (HMCR) and Pitch Adjustment Rate (PAR)
4.1.3. Bandwidth (BW)
4.1.4. Random Selection
4.2. Hybridization of the FSHS and GMDH-Type Neural Network Algorithms
5. Results and Discussion
5.1. Estimation Shear Wave Velocity Comparison
5.2. Comparison with Experimental Methods
5.3. Comparison with Machine Learning Methods
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Wu, S.; Zhao, L.; Wang, W.; Wei, J.; Sun, J. An Effective Method for Shear-Wave Velocity Prediction in Sandstones. Mar. Geophys. Res. 2019, 40, 655–664. [Google Scholar] [CrossRef]
- Mehrad, M.; Ramezanzadeh, A.; Bajolvand, M.; Hajsaeedi, M.R. Estimating shear wave velocity in carbonate reservoirs from petrophysical logs using intelligent algorithms. J. Pet. Sci. Eng. 2022, 212, 110254. [Google Scholar] [CrossRef]
- Sohail, G.M.; Hawkes, C.D. An evaluation of empirical and rock physics models to estimate shear wave velocity in a potential shale gas reservoir using wireline logs. J. Pet. Sci. Eng. 2020, 185, 106666. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Izadpanahi, A.; Ebrahimi, P.; Ranjbar, A. Estimation of shear wave velocity in an Iranian oil reservoir using machine learning methods. J. Pet. Sci. Eng. 2022, 209, 109841. [Google Scholar] [CrossRef]
- Avseth, P.; Mukerji, T.; Mavko, G. Quantitative Seismic Interpretation; Cambridge University Press: Cambridge, UK, 2005; ISBN 9780521816014. [Google Scholar]
- Greenberg, M.L.; Castagna, J.P. Shear-Wave velocity estimation in porous rocks: Theoretical formulation, preliminary verification and applications1. Geophys. Prospect. 1992, 40, 195–209. [Google Scholar] [CrossRef]
- Brocher, T.M. Empirical Relations between Elastic Wavespeeds and Density in the Earth’s Crust. Bull. Seismol. Soc. Am. 2005, 95, 2081–2092. [Google Scholar] [CrossRef]
- Castagna, J.P.; Batzle, M.L.; Eastwood, R.L. Relationships between Compressional-wave and Shear-wave Velocities in Clastic Silicate Rocks. Geophysics 1985, 50, 571–581. [Google Scholar] [CrossRef]
- Gassmann, F. Elastic waves through a packing of spheres. Geophysics 1951, 16, 673–685. [Google Scholar] [CrossRef]
- Krief, M.; Garat, J.; Stellingwerff, J.; Ventre, J. A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic). Log Anal. 1990, 31, 355–369. [Google Scholar]
- Pickett, G.R. Acoustic Character Logs and Their Applications in Formation Evaluation. J. Pet. Technol. 1963, 15, 659–667. [Google Scholar] [CrossRef]
- Ameen, M.S.; Smart, B.G.D.; Somerville, J.M.; Hammilton, S.; Naji, N.A. Predicting Rock Mechanical Properties of Carbonates from Wireline Logs (A Case Study: Arab-D Reservoir, Ghawar Field, Saudi Arabia). Mar. Pet. Geol. 2009, 26, 430–444. [Google Scholar] [CrossRef]
- Oloruntobi, O.; Butt, S. The Shear-Wave Velocity Prediction for Sedimentary Rocks. J. Nat. Gas Sci. Eng. 2020, 76, 103084. [Google Scholar] [CrossRef]
- Maleki, S.; Moradzadeh, A.; Riabi, R.G.; Gholami, R.; Sadeghzadeh, F. Prediction of Shear Wave Velocity Using Empirical Correlations and Artificial Intelligence Methods. NRIAG J. Astron. Geophys. 2014, 3, 70–81. [Google Scholar] [CrossRef] [Green Version]
- Samui, P.; Bui, D.T.; Chakraborty, S.; Deo, R.C. Handbook of Probabilistic Models; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128165140. [Google Scholar]
- Dalvand, M.; Falahat, R. A New Rock Physics Model to Estimate Shear Velocity Log. J. Pet. Sci. Eng. 2021, 196, 107697. [Google Scholar] [CrossRef]
- Eskandari, H.; Rezaee, M.R.; Mohammadnia, M. Application of multiple regression and artificial neural network techniques to predict shear wave velocity from wireline log data for a carbonate reservoir in South-West Iran. CSEG Rec. 2004, 42, 48. [Google Scholar]
- Rezaee, M.R.; Kadkhodaie Ilkhchi, A.; Barabadi, A. Prediction of Shear Wave Velocity from Petrophysical Data Utilizing Intelligent Systems: An Example from a Sandstone Reservoir of Carnarvon Basin, Australia. J. Pet. Sci. Eng. 2007, 55, 201–212. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Geem, Z.W. Review of harmony search with respect to algorithm structure. Swarm Evol. Comput. 2019, 48, 31–43. [Google Scholar] [CrossRef]
- Bagheripour, P.; Gholami, A.; Asoodeh, M.; Vaezzadeh-Asadi, M. Support Vector Regression Based Determination of Shear Wave Velocity. J. Pet. Sci. Eng. 2015, 125, 95–99. [Google Scholar] [CrossRef]
- Güllü, H. On the Prediction of Shear Wave Velocity at Local Site of Strong Ground Motion Stations: An Application Using Artificial Intelligence. Bull. Earthq. Eng. 2013, 11, 969–997. [Google Scholar] [CrossRef]
- Behnia, D.; Ahangari, K.; Moeinossadat, S.R. Modeling of Shear Wave Velocity in Limestone by Soft Computing Methods. Int. J. Min. Sci. Technol. 2017, 27, 423–430. [Google Scholar] [CrossRef]
- Anemangely, M.; Ramezanzadeh, A.; Amiri, H.; Hoseinpour, S.-A. Machine Learning Technique for the Prediction of Shear Wave Velocity Using Petrophysical Logs. J. Pet. Sci. Eng. 2019, 174, 306–327. [Google Scholar] [CrossRef]
- Nourafkan, A.; Kadkhodaie-Ilkhchi, A. Shear Wave Velocity Estimation from Conventional Well Log Data by Using a Hybrid Ant Colony–Fuzzy Inference System: A Case Study from Cheshmeh–Khosh Oilfield. J. Pet. Sci. Eng. 2015, 127, 459–468. [Google Scholar] [CrossRef]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A New Heuristic Optimization Algorithm: Harmony Search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems. Knowl. Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Taheri, A.; RahimiZadeh, K.; Rao, R.V. An Efficient Balanced Teaching-Learning-Based Optimization Algorithm with Individual Restarting Strategy for Solving Global Optimization Problems. Inf. Sci. 2021, 576, 68–104. [Google Scholar] [CrossRef]
- Ahmadianfar, I.; Bozorg-Haddad, O.; Chu, X. Gradient-Based Optimizer: A New Metaheuristic Optimization Algorithm. Inf. Sci. 2020, 540, 131–159. [Google Scholar] [CrossRef]
- Vasebi, A.; Fesanghary, M.; Bathaee, S.M.T. Combined Heat and Power Economic Dispatch by Harmony Search Algorithm. Int. J. Electr. Power Energy Syst. 2007, 29, 713–719. [Google Scholar] [CrossRef]
- Tsakirakis, E.; Marinaki, M.; Marinakis, Y.; Matsatsinis, N. A Similarity Hybrid Harmony Search Algorithm for the Team Orienteering Problem. Appl. Soft Comput. 2019, 80, 776–796. [Google Scholar] [CrossRef]
- Degertekin, S.O. Optimum Design of Steel Frames Using Harmony Search Algorithm. Struct. Multidiscip. Optim. 2008, 36, 393–401. [Google Scholar] [CrossRef]
- Gao, K.Z.; Suganthan, P.N.; Pan, Q.K.; Chua, T.J.; Cai, T.X.; Chong, C.S. Discrete Harmony Search Algorithm for Flexible Job Shop Scheduling Problem with Multiple Objectives. J. Intell. Manuf. 2016, 27, 363–374. [Google Scholar] [CrossRef]
- Cheng, M.-Y.; Prayogo, D.; Wu, Y.-W.; Lukito, M.M. A Hybrid Harmony Search Algorithm for Discrete Sizing Optimization of Truss Structure. Autom. Constr. 2016, 69, 21–33. [Google Scholar] [CrossRef]
- Yun, H.Y.; Jin, S.H.; Kim, K.S. Workload Stability-Aware Virtual Machine Consolidation Using Adaptive Harmony Search in Cloud Datacenters. Appl. Sci. 2021, 11, 798. [Google Scholar] [CrossRef]
- M’zoughi, F.; Garrido, I.; Garrido, A.J.; De La Sen, M. Self-Adaptive Global-Best Harmony Search Algorithm-Based Airflow Control of a Wells-Turbine-Based Oscillating-Water Column. Appl. Sci. 2020, 10, 4628. [Google Scholar] [CrossRef]
- Saha, S.; Ghosh, M.; Ghosh, S.; Sen, S.; Singh, P.K.; Geem, Z.W.; Sarkar, R. Feature Selection for Facial Emotion Recognition Using Cosine Similarity-Based Harmony Search Algorithm. Appl. Sci. 2020, 10, 2816. [Google Scholar] [CrossRef] [Green Version]
- Ivakhnenko, A.G. The Group Method of Data Handling-A Rival of the Method of Stochastic Approximation. Sov. Autom. Control. 1968, 13, 43–55. [Google Scholar]
- Ebtehaj, I.; Bonakdari, H.; Zaji, A.H.; Azimi, H.; Khoshbin, F. GMDH-Type Neural Network Approach for Modeling the Discharge Coefficient of Rectangular Sharp-Crested Side Weirs. Eng. Sci. Technol. Int. J. 2015, 18, 746–757. [Google Scholar] [CrossRef] [Green Version]
- Ivakhnenko, A.G. The Review of Problems Solvable by Algorithms of the Group Method of Data Handling (GMDH). Pattern Recognit. Image Anal. 1995, 5, 527–535. [Google Scholar]
- Taheri, A.; Ghashghaei, S.; Beheshti, A.; RahimiZadeh, K. A Novel Hybrid DMHS-GMDH Algorithm to Predict COVID-19 Pandemic Time Series. In Proceedings of the 2021 11th International Conference on Computer Engineering and Knowledge (ICCKE), Mashhad, Iran, 28–29 October 2021; pp. 322–327. [Google Scholar]
- Omran, M.G.H.; Mahdavi, M. Global-Best Harmony Search. Appl. Math. Comput. 2008, 198, 643–656. [Google Scholar] [CrossRef]
- El-Abd, M. An Improved Global-Best Harmony Search Algorithm. Appl. Math. Comput. 2013, 222, 94–106. [Google Scholar] [CrossRef]
- Mahdavi, M.; Fesanghary, M.; Damangir, E. An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 2007, 15, 1567–1579. [Google Scholar] [CrossRef]
Lithology | ai2 | ai1 | ai0 |
---|---|---|---|
Sandstone | 0 | 0.80416 | −0.85588 |
Limestone | −0.05508 | 1.01677 | −1.03049 |
Dolomite | 0 | 0.58321 | −0.07775 |
Shale | 0 | 0.76969 | −0.86735 |
Castagna et al. [8] Equation (1) | Greenberg and Castagna [6] Equation (2) | Castagna et al. [8] Equations (3)–(5) | Brocher [7] Equation (6) | FSHS-GMDH | ||
---|---|---|---|---|---|---|
Limestone | Dolomite | Shale | ||||
0.8130 | 0.8103 | 0.7962 | 0.8054 | 0.8051 | 0.4945 | 0.9688 |
Train Data | Test Data | All Data | |||||||
---|---|---|---|---|---|---|---|---|---|
Algorithm | R2 | RMSE | MSE | R2 | RMSE | MSE | R2 | RMSE | MSE |
MLP | 0.8691 | 93.48 | 8738.92 | 0.8512 | 103.82 | 10778.8 | 0.8634 | 96.70 | 9351.77 |
GMDH | 0.8935 | 83.64 | 6995.87 | 0.8647 | 101.49 | 10301.39 | 0.8834 | 89.38 | 7988.96 |
FSHS-GMDH | 0.9728 | 43.36 | 1880.23 | 0.9514 | 55.82 | 3116.92 | 0.9688 | 46.12 | 2127.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taheri, A.; Makarian, E.; Manaman, N.S.; Ju, H.; Kim, T.-H.; Geem, Z.W.; RahimiZadeh, K. A Fully-Self-Adaptive Harmony Search GMDH-Type Neural Network Algorithm to Estimate Shear-Wave Velocity in Porous Media. Appl. Sci. 2022, 12, 6339. https://doi.org/10.3390/app12136339
Taheri A, Makarian E, Manaman NS, Ju H, Kim T-H, Geem ZW, RahimiZadeh K. A Fully-Self-Adaptive Harmony Search GMDH-Type Neural Network Algorithm to Estimate Shear-Wave Velocity in Porous Media. Applied Sciences. 2022; 12(13):6339. https://doi.org/10.3390/app12136339
Chicago/Turabian StyleTaheri, Ahmad, Esmael Makarian, Navid Shad Manaman, Heongkyu Ju, Tae-Hyung Kim, Zong Woo Geem, and Keyvan RahimiZadeh. 2022. "A Fully-Self-Adaptive Harmony Search GMDH-Type Neural Network Algorithm to Estimate Shear-Wave Velocity in Porous Media" Applied Sciences 12, no. 13: 6339. https://doi.org/10.3390/app12136339
APA StyleTaheri, A., Makarian, E., Manaman, N. S., Ju, H., Kim, T. -H., Geem, Z. W., & RahimiZadeh, K. (2022). A Fully-Self-Adaptive Harmony Search GMDH-Type Neural Network Algorithm to Estimate Shear-Wave Velocity in Porous Media. Applied Sciences, 12(13), 6339. https://doi.org/10.3390/app12136339