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Abstract: Shear wave velocity (VS) is one of the most important parameters in deep and surface
studies and the estimation of geotechnical design parameters. This parameter is widely utilized to
determine permeability and porosity, lithology, rock mechanical parameters, and fracture assessment.
However, measuring this important parameter is either impossible or difficult due to the challenges
related to horizontal and deviation wells or the difficulty in reaching cores. Artificial Intelligence
(AI) techniques, especially Machine Learning (ML), have emerged as efficient approaches for dealing
with such challenges. Therefore, considering the advantage of the ML, the current research proposes
a novel Fully-Self-Adaptive Harmony Search—Group Method of Data Handling (GMDH)-type
neural network, named FSHS-GMDH, to estimate the VS parameter. In this way, the Harmony
Memory Consideration Rate (HMCR) and Pitch Adjustment Rate (PAR) parameters are calculated
automatically. A novel method is also introduced to adjust the value of the Bandwidth (BW) parameter
based on the cosine wave and each decision variable values. In addition, a variable-size harmony
memory is proposed to enhance both the diversification and intensification. Our proposed FSHS-
GMDH algorithm quickly explores the problem space and exploits the best regions at the late
iterations. This algorithm allows for the training of the prediction model based on the P-wave velocity
(VP) and the bulk density of rock (RHOB). Applying the proposed algorithm to a carbonate petroleum
reservoir in the Persian Gulf demonstrates that it is capable of accurately estimating the VS parameter
better than state-of-the-art machine learning methods in terms of the coefficient of determination
(R2), Mean Square Error (MSE), and Root Mean Square Error (RMSE).

Keywords: shear wave velocity prediction; artificial neural networks; well-logging data; petroleum
reservoir; metaheuristic algorithms; harmony search; optimization

1. Introduction

Seismic velocities, including P-wave velocity (VP) and S-wave data (VS), play a vital
role in subsurface studies. For example, geomechanical modeling or rock physical studies
requires the VS parameter to be estimated as a decisive parameter. Reservoir characteriza-
tion is one of the most important parts of surveys in oil industry, and research on the VS
parameter can greatly help to investigate the precise reservoir characterization. Lithofacies
and fluids’ properties are two significant and useful parameters in hydrocarbon reservoir
monitoring. Previous studies have shown that shear wave velocity can help determine
such parameters [1–4]. Besides, the VS’ porosity relationship can be helpful in assessing
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the sorting and volume of cementation, especially for sandstone reservoirs. In surface
geophysical investigations, the VS determines the size and geometry of the subsurface struc-
tures. Therefore, measuring the VS is essential, and several methods have been introduced
to estimate this parameter. Two main methods for measuring VS are reported as direct
and indirect methods, each having advantages and drawbacks. The laboratory methods
directly measure the shear wave velocity by coring samples [5]. Moreover, a well-logging
instrument outlines the Dipole Sonic Imager (DSI) tool, known as one of the most common
ways of measuring S-wave velocity. Unfortunately, the VS cannot be measured using
coring and well-logging operations, due to a number of problems, as follows: first, in the
horizontal and deviation wells and in weak formations (e.g., sandstone formation), obtain-
ing core samples in some of the oil and gas fields is impossible. Secondly, well-logging
operating is not applicable in the same situation. Thirdly, these methods are expensive and
time-consuming. Lastly, the measurement of shear wave velocity may not be recorded at
certain depths, or the recorded sections may include erroneous values. Consequently, this
leads to different indirect methods to be presented to address these problems.

Verifying the empirical rock physical relationship is one of the indirect approaches and
the number of the relevant studies has increased [6–12]. Oloruntobi et al. introduced a shear-
wave velocity prediction method that considered the relationship between shear wave
velocity and other parameters, such as P-wave velocity (VP) and density in sedimentary
rocks [13]. A P-wave is a compressional wave and is one of the two main types of elastic
body waves, called seismic waves in seismology. These waves are also primary waves
because they are the first waves to be recorded by seismographs and devices. This type
of wave is used in subsurface studies to detect the rock, fluid, pressure, and overpressure.
Maleki et al. employed correlations and artificial intelligence methods to estimate a shear
wave velocity from the petrophysical logs in a well drilled in carbonate formation [14]. The
relationships provided by these methods were usually specific to the area or formation, and
the shear wave velocity could be estimated by localizing their coefficients in some cases.

Geostatistical analysis, to which more attention has yet to be paid, can be useful
to estimate the VS. This method establishes a spatial correlation between the variables,
normalizes the database, and modifies the estimation equations [15]. Thanks to immanence
advances in science and technology, Artificial Intelligent (AI) techniques have been used to
estimate VS. Recently, ML methods have become popular and been widely used, because
they are inexpensive, fast track, and practical without restrictions concerning the horizontal
or deviation position of the wells [16]. These methods have been used in many studies
to predict the shear wave velocity by employing a different range of artificial intelligent
methods, such as Artificial Neural Networks (ANNs) [17,18], Support Vector Regression
(SVR) and neural networks [19–21], soft computing [22], machine learning, and colony-
fuzzy inference systems [23,24]. The results of these studies show that using AI methods to
predict shear wave velocity is reliable and favorable.

The present study introduces a novel hybrid method based on the Harmony Search
algorithm [25] as a metaheuristic algorithm and GMDH-type neural networks to predict
shear wave velocity using well-logging data. In contrast to earlier findings, this study
calculates VS by utilizing only two parameters, including VP and density (RHOB). In this
context, a Full-Self-Adaptive Harmony Search algorithm (FSHS) is designed and utilized
to optimize a GMDH-type neural network. Several modifications are made in the FSHS
algorithm. First, a two-dimensional Dynamic Harmony Memory Size (DHMS) strategy is
proposed to control diversity during the search process. Therefore, the FSHS algorithm
quickly explores the problem space and exploits the best regions at the late iterations.
Secondly, all of the parameters values are adaptive and calculated automatically in the
FSHS algorithm. Thirdly, a novel method is introduced to adjust the value of the BW
parameter based on the cosine wave and each decision variable value.

The rest of this paper is organized as follows: The experimental methods are explained
in Section 2. The materials and preliminaries of the proposed algorithm will be described
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in Section 3. In Section 4, the proposed hybrid algorithm is presented. The experimental
results and conclusion will be discussed in Sections 5 and 6, respectively.

2. Experimental Methods

There is a varied range of proposed experimental methods to estimate shear-wave velocity.
This study uses some of methods to calculate shear wave velocity, VS, by employing VP and
lithology. For instance, Castagna et al. [8] introduced an equation to estimate VS as follows:

VS = 0.86VP − 1170 (1)

In addition, Greenberg and Castagna introduced one of the most popular methods to
estimate VS, by considering VP and lithology [6] (Equation (2)):

VS =
1
2


[

`

∑
i=1

Xi

(
Ni

∑
j=0

aijV
j
p

)]
+

 `

∑
i=1

Xi

(
Ni

∑
j=0

aijV
j
p

)−1
−1

 (2)

where ` refers to the number of pure components in terms of lithology; Xi presents volume
proportion of lithological constituents; aij is empirical regression coefficients relying upon

lithology (Table 1); Ni refers to the order of polynomial for constituent I; Vj
p is the water-

saturated P-wave velocity in the j rock facies. Finally, VS is S–wave velocities (km/s) in
composite multi-mineral brine-saturated rock.

Table 1. Regression coefficients for VS prediction for the Greenberg—Castagna relations.

Lithology ai2 ai1 ai0

Sandstone 0 0.80416 −0.85588
Limestone −0.05508 1.01677 −1.03049
Dolomite 0 0.58321 −0.07775

Shale 0 0.76969 −0.86735

Castagna et al. [8] provided three other equations based on VP and lithology
(Equations (3)–(5)):

VS = 0.5508V2
P + 1.0116VP − 1.0305 (3)

VS = 0.5832VP − 0.0777 (4)

VS = 0.77VP − 0.8674 (5)

These equations are used for a specific purpose. For instance, Equation (3) is used
for limestone, and Equations (4) and (5) are used for dolomite and shale, respectively.
Furthermore, Brocher et al. [7] introduced a model based on VP to calculate the shear wave
velocity for each formation (Equation (6)):

VS = 0.7858− 1.2344V2
P − 0.1238V3

P + 0.0006V4
P (6)

3. Materials
3.1. Harmony Search (HS) Algorithm

Traditional optimization algorithms, such as linear programming (LP), non-linear
programming (NLP), and dynamic programming (DP), have taken on major roles in
solving optimization problems. Nevertheless, their drawbacks generate a demand for
other types of algorithms, such as meta-heuristic/heuristic optimization approaches. These
algorithms have been identified as efficient, intelligent techniques to solve optimization
issues. In recent years, various metaheuristic algorithms (MAs) have been proposed to solve
a wide range of complex real-world problems [26–28]. The harmony search (HS) algorithm
is a type of metaheuristic optimization algorithm, that was designed by Geem et al. [25].
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Inspired by the improvisation of music players, they first play music randomly with existing
instruments. This harmony is kept in the musician’s memory. In the next stage, according to
the harmony in their memory, the musician plays new music that has changed from the
previous one. Generally, the HS algorithm consists of three steps: (a) harmony memory
initialization; (b) improvisation; and (c) updating the harmony memory. The harmony
memory initialization step produces the initial harmonies (solutions), randomly. Then, in
step (b), an iterative process is completed to enhance the quality of solutions, by making
new solutions according to three operators, including harmony memory consideration,
pitch adjustment, and random consideration. Finally, in step (c), the best-found harmony is
selected based on objective function(s) as the optimum solution.

The HS algorithm has been applied to solve a wide range of real world optimization
problems. In [29], a modified harmony search algorithm was introduced and applied to
overcome the problem of combined heat and power economic dispatch. In order to solve
the Team Orienteering Problem (TOP), a new version of HS algorithm was proposed in [30].
In this way, the authors proposed an innovative method called the Similarity Hybrid
Harmony Search (SHHS) algorithm. A variant of the original harmony search algorithm
was developed in [31] for the optimum design of steel frames. The authors applied the
HS algorithm to find minimum weight frames by choosing appropriate sections from a
standard steel sections set. In [32], a discrete version of HS algorithm, named DHS, was
introduced to solve a Flexible Job-shop Scheduling Problem (FJSP). The proposed DHS
algorithm was utilized to minimize a weighted combination of the maximum completion
time and the earliness mean. A hybrid variant of the Harmony Search (HHS) algorithm
was introduced by the authors of [33]. The authors hybridized the neighborhood search
and the global-best search mechanism of the Particle Swarm Optimization (PSO) algorithm
with the HS algorithm to solve the problem of discrete truss-structure optimization. An
adaptive harmony search algorithm was designed to achieve an optimal virtual machine
(VM) consolidation model that decreased the power consumption of the datacenter in [34].
In order to obtain the optimum solution for the proportional-integral-derivative (PID)
controller, M’zough et al. proposed a Self-Adaptive Global Harmony Search (SGHS)
algorithm [35]. Sasha et al. [36] introduced a modified HS algorithm called Supervised Filter
Harmony Search Algorithm (SFHSA), to eliminate redundant/irrelevant features without any
significant effect on the process of classification for a Facial Emotion Recognition (FER) task.

3.2. Group Method of Data Handling (GMDH)

Introduced by Alexey G. Ivakhnenko [37], the GMDH-type neural network is a self-
organized method that combines both self-organizing and multilayer neural network
benefits to fit the data [38]. The GMDH tries to automatically identify the best model for
structuring the network and to integrate inductive techniques, biological neuron techniques,
probability, and black-box concepts [39]. Therefore, according to the GMDH, a model is a
set of neurons made by pairs based on the quadratic polynomial combination of inputs or
previous layers’ outputs. The main goal of this method is to find function f to estimate in a
feed-forward network according to a set of N inputs X = {x1, x2, . . . , xN} and one output
Y, based on a quadratic polynomial transfer function. The Volterra series is a non-linear
transfer function used in GMDH neural networks, shown in Equation (7). In this equation,
the regression method is used to calculate the coefficients ai for pairs of input variables
(xi, xj) [39]. As an example, a two-variable second-degree polynomial, derived from the
Volterra series, is presented in Equation (8):

Ŷ = a0 +
N

∑
i=1

aixi+
N

∑
i=1

N

∑
j=1

aijxixj+
N

∑
i=1

N

∑
j=1

N

∑
k=1

aijkxixjxk+ . . . (7)

f(xi, xj) = a0 + a1xi + a2xj + a3x2
i + a4x2

j + a5xixj (8)
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4. Methods

In this section, the proposed hybrid FSHS-GMDH algorithm is explained in detail.
First, the Fully-Self-Adaptive Harmony Search (FSHS) algorithm is described step by step.
Then, we will explain the hybridization scheme.

4.1. Fully-Self-Adaptive Harmony Search (FSHS) Algorithm

In the FSHS algorithm, several modifications have been made to the original HS
algorithm. In this way, a new method is presented, based on the Harmony Memory (HM)
with variable size and other values of decision variables. The FSHS algorithm aims to
explore the problem space quickly and exploits the best regions at the late iterations. The
values of the Harmony Memory Consideration Rate (HMCR) and the Pitch Adjustment
Rate (PAR) parameters are also automatically calculated. In addition, a novel method
is introduced to adjust the value of the Bandwidth (BW) parameter based on the cosine
wave [26] and each decision variable value. The flowchart of the novel Full-Self-Adaptive
Harmony Search algorithm is illustrated in Figure 1.
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Figure 1. Full-Self-Adaptive Harmony Search (FSHS) algorithm.

4.1.1. Variable-Size Harmony Memory

In the main HS, the harmony memory size is considered constant. It leads to the use
of all of the memory solutions in producing new harmonies. Although this increases the
diversity in the production of new harmonies in the initial iterations, it slows down the
convergence rate in the final iterations [40].
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We used a variable-size memory in the proposed method to address the problem, as
shown in Equation (9):

HMSg =

⌈(
1−

(
0.9
NI
× g

)2
)
×HMSmax

⌉
(9)

where HMSg is the harmony memory size in generation g; HMSmax is the maximum
size of harmony memory; NI is the number of iterations in the algorithm; and g is the
desired generation.

As all of the memory harmonies are used at the beginning of the search and during
the searches’ progress, the number of harmonies will decrease gradually. Lower-quality
harmonies are not physically removed from the harmony memory and are utilized in the
random selection step. In the initial iterations of this strategy, using all of the harmonies in
the memory leads to maintenance of the ability of the algorithm to keep the diversity by
generating various harmonies. Besides, the intensification increases in the final iterations
by focusing on the best harmonies. Moreover, as a result of increasing the diversity in the
production of a new solution and increasing the algorithm’s capability in the global search
in the proposed method, instead of using the values of the same decision variable, all of the
decision variables values are used after selecting a harmony from the memory. A similar
method is used in GHS [41] and IGHS [42]. However, this process is completed in the Pitch
Adjustment section and only the values of the decision variables of the best harmony are
used. Although this method greatly increases the convergence rate in the initial iterations,
it reduces the exploitation ability of the algorithm from the middle iterations onwards.

Hence, if the optimal values of the variables are not a close decision, selecting the
values of other variables prevents convergence in the final iterations [42]. Therefore, a
reduction mechanism is utilized in the FSHS to use the values of the other decision variables
for solving the problems (Equations (10)–(12)):

µ =

⌈(
1−

(
0.9
NI
× g

))
×N

⌉
(10)

Sµ ⊂ Xi , where Xi =
{

xi
1, xi

2, xi
3, . . . , xi

N

}
and i = U(1, HMSg) (11)

Xnew
j = Xi

k , where Xi
k ∈ Sµ and k = U(1,µ) (12)

where Sµ is a randomly selected of the harmony decision variables set which includes
µ members; Xi and k is an integer random number between 1 and µ; and the decision
variable Xi

k is a member of the Sµ. In other words, there is a variety of choice for the values
in the initial iterations. From the middle iterations onwards, the focus is on the values of
the same decision variables.

4.1.2. Harmony Memory Consideration Rate (HMCR) and Pitch Adjustment Rate (PAR)

The two parameters, HMCR and PAR, have an effective role in the efficiency of the
HS algorithm and extensive research has been completed on the automatic adjustment of
these parameters. Mahdavi et al. [43] introduced a new mechanism for setting the PAR
parameter. In their method, the PAR values are calculated between PARmin and PARmax for
each generation of harmonies. The drawback of this method is that two new parameters
need to be set. The proposed FSHS approach uses the same method (Equation (13)), except
that the PARmin and PARmax values are omitted. Besides, Equation (14) is used to set the
HMCR parameter:

PARg =

(
1

NI
× g

)
(13)

HMCRg =

(
1

NI
× g

)
(14)



Appl. Sci. 2022, 12, 6339 7 of 14

4.1.3. Bandwidth (BW)

The studies show that determining the appropriate value for the bandwidth, BW,
greatly affects the performance of the HS algorithm [19]. To be more accurate, a large
BW in the initial iterations can significantly help to search the problem space and find
better areas. In addition, small BW in the final iterations contributes to a local search in the
neighborhood of the solutions found by the searching algorithm. So far, many methods
have been proposed to adjust this parameter; however, the proper adjustment of this
parameter to solve various problems is much more difficult than other parameters. In this
research, a new mechanism for adjusting the BW parameter is presented, based on the
proposed method in the SCA [26] algorithm to overcome such challenges. Instead of using
a constant value for the BW, a variable domain is used in the proposed approach. The
idea behind this method is to increase the probability of using better values by making
alternating changes in the base BW range. For this purpose, the difference between the
minimum and maximum values of the memory harmony decision variables is used as the
value of the base BW. Then, the BW value is changed periodically, using the trigonometric
function cosine and Equations (15)–(18). Furthermore, each decision variable has a specific
BW in this method:

→
β =

(
−
(

NI
10

π

)
,
(

NI
10

π

))
(15)

Dj = Max(Xj)−Min(Xj) (16)

BWg
j = Dj + (Dj × cos(βg)) (17)

Xnew
j = Xnew

j + U(−1,+1)× BWg
j (18)

where β is a vector with length NI between −(NI
10 π) and +(NI

10 π) with intervals ( 2×NI
10×NIπ);

Dj is the difference between the maximum and minimum values of Xj in the harmony
memory; and BWg

j is the bandwidth of the decision variable Xj in the generation of g.
In addition, Xnew

j is the jth decision variable of the new harmony Xnew and U(−1, +1) is a
random value with uniform distribution between −1 and +1.

4.1.4. Random Selection

The proposed FSHS algorithm, adopted from [40], utilizes a similar approach for the
random selection step. In doing so, instead of generating random values between the upper
bound (UB) and lower bound (LB) in this step, we utilize the mean value of the decision
variable and a random value between the maximum and minimum values of the decision
variables of the HM (Equation (19))

Xnew
j = Xj ±U(−1,+1)×

(
Max(Xj)−Min(Xj)

2

)
(19)

where Xnew
j is the jth decision variable of new harmony Xnew and Xj is the mean value of

jth decision variable in HM.

4.2. Hybridization of the FSHS and GMDH-Type Neural Network Algorithms

The process of hybridization of our proposed FSHS-GMDH algorithm is explained
in this section. As mentioned earlier, the GMDH-type neural network conducts a self-
organized evolutionary mechanism to find an optimum structure, layer by layer. Therefore,
in the proposed hybrid FSHS-GMDH algorithm, the FSHS algorithm would be launched
to optimize each layer, and the coefficients of all the neurons in a quadratic polynomial
equation form are considered as decision variables and fine-tuned by the FSHS algorithm.
In addition, we consider the Mean Square Error (MSE) as the cost function that must be
minimized. A schematic view of the proposed FSHS-GMDH algorithm is shown in Figure 2.
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5. Results and Discussion

In this section, the implementation condition, dataset, and inputs are explained. Af-
ter that, the results will be discussed in detail. All of the algorithms and methods are
implemented using MATLAB software (version R2017b). Furthermore, the following con-
figurations and settings are considered in our study of the algorithms. For the FSHS-GMDH
algorithm and the original GMDH, each maximum number of the layers and neurons is
set to 4 and 10, respectively. In addition, the number of neurons in the hidden layer is
set at 8 (4-8-1) for the multilayer perceptron (MLP) model. Furthermore, R2, MSE, and
Root Mean Squared Error (RMSE) are calculated, using Equations (20)–(22) to evaluate and
compare the proposed hybrid algorithm and other methods. We used only two parameters,
including density (RHOB) and VP in this study to estimate the shear wave velocity. Figure 3
shows the inputs data and original shear wave velocity. Equations (20)–(22) are as follows:

R2 =

√√√√√√√√√
N×

N
∑

t=1
(Xt × Yt)−

N
∑

t=1
(Xt)×

N
∑

t=1
(Yt)√

[N×
N
∑

t=1
(X2

t )− (
N
∑

t=1
(Xt)

2]× [N×
N
∑

t=1
(Y2

t )− (
N
∑

t=1
(Yt)

2]

(20)

MSE =

N
∑

t=1
(Ỹt − Yt)

2

N
(21)

RMSE =

√√√√ 1
N
×

N

∑
t=1

(Ỹt − Yt)
2

(22)

In our research, the used shear wave velocity is original and measured by the dipole
sonic log in the well-logging operation. The correlation between the mentioned parameters
and the shear wave velocity must be evaluated in the first step. Figure 4 illustrates that the
correlation between the VS and two selected input data are 0.71 and 0.86 for RHOB and VP,
respectively. Therefore, they can be reliable as the input data.
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5.1. Estimation Shear Wave Velocity Comparison

Figure 4 illustrates the plot diagrams for the FSHS-GMDH, MLP, and original GMDH
models. The vertical axis represents the estimated values as the output value of the model
and the horizontal axis shows the target values as the actual observations. Figure 5a–c
illustrate the results of the proposed FSHS-GMDH. Figure 5d–f represents the MLP model
results, and the original GMDH model results are shown in Figure 5g–i, respectively. Ac-
cording to the results, it can be seen that our proposed FSHS-GMDH algorithm outperforms
the MLP and the original GMDH models in shear wave velocity estimation. In addition, the
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predicted results of the shear wave velocity and the error distribution for test and total data
(train and test) are shown in Figures 6 and 7, respectively. As can be seen, the proposed
FSHS-GMDH algorithm is capable enough to estimate the shear wave velocity, according
to the test data.
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Figure 5. Representation of the correlation between the estimated and actual shear wave velocity.
So that, (a–c) represent the proposed method results, subfigures (d–f) illustrate the results of MLP
model, and the results of the original GMDH model are shown in (g–i). (from left to right, columns
represent the results for train, test, and all data, respectively).
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5.2. Comparison with Experimental Methods

The statistical analysis of the shear wave velocity is calculated by experimental meth-
ods (Equations (20)–(22)) in terms of the coefficient of determination R2, which is presented
in Table 2. According to the results in this Table, it is clear that the proposed FSHS-GMDH
algorithm achieves the best performance for all of the data with R2 = 0.9688. In addi-
tion, the second-best result is achieved with the experimental method introduced by
Castagna et al. [6]. However, there is no significant difference between the experimental
methods’ results as presented in Table 2.

Table 2. Statistical analysis (R2) of shear wave velocity estimation calculated by experimental methods
Equations (1)–(6).

Castagna et al. [8]
Equation (1)

Greenberg and Castagna [6]
Equation (2)

Castagna et al. [8] Equations (3)–(5) Brocher [7]
Equation (6) FSHS-GMDH

Limestone Dolomite Shale

0.8130 0.8103 0.7962 0.8054 0.8051 0.4945 0.9688

5.3. Comparison with Machine Learning Methods

In order to have a fair comparison, the performance of the FSHS-GMDH algorithm is
investigated using the train and test data. In doing so, the MLP, GMDH, and FSHS-GMDH
algorithms are firstly trained to produce the optimum models. Then, obtained from the
training phase, the best setup of each algorithm is employed to estimate the shear wave
velocity, according to the test data samples.

Table 3 represents the statistical results of shear wave velocity estimation. The results
are presented in R2, RMSE, and MSE for the train and test data. It can be seen from Table 3
that the proposed FSHS-GMDH algorithm provides a better performance than the MLP
and the original GMDH methods. The FSHS-GMDH algorithm provides the lowest values
of RMSE (43.36), MSE (1880.23), and the highest value of R2 (0.9728) for the train data.
Furthermore, according to the results for the test data, the best performance is achieved by
the FSHS-GMDH model with the lowest values of MSE (3116.92), RMSE (55.82), and the
highest value of R2 (0.9514). However, the original GMDH model shows better performance
for the train data; there is no significant difference between the performance of the original
GMDH and MLP models for the test data.

Table 3. Statistical analysis of shear wave velocity estimation calculated by ML methods.

Train Data Test Data All Data

Algorithm R2 RMSE MSE R2 RMSE MSE R2 RMSE MSE

MLP 0.8691 93.48 8738.92 0.8512 103.82 10778.8 0.8634 96.70 9351.77
GMDH 0.8935 83.64 6995.87 0.8647 101.49 10301.39 0.8834 89.38 7988.96
FSHS-

GMDH 0.9728 43.36 1880.23 0.9514 55.82 3116.92 0.9688 46.12 2127.93

6. Conclusions

This study estimated shear wave velocity as one of the most important parameters in
reservoir geophysical characterization via the Full-Self-Adaptive Harmony Search-GMDH
neural network algorithm in a carbonate petroleum reservoir in the Persian Gulf. In doing
so, a novel version of the Harmony Search (HS) algorithm was introduced and applied to
optimize a GMDH-type neural network. In addition, only two of the parameters, including
density (RHOB) and P-wave velocity (VP), were utilized as inputs, as they have the highest
correlation with the S-wave velocity, 0.71, and 0.86, respectively. The results proved that
estimating S-wave data through our novel algorithm with R2 ≈ 0.97 is more accurate and
cost-effective than similar studies. Previous studies used more than two inputs of data that
led to spending more time and higher costs; however, their results were not as accurate
as the results in this study. Nevertheless, from an optimization perspective, metaheuristic
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algorithms concentrate on providing a comprehensive search to find a global optimum and
it may lead to the model become over-fit. In order to overcome this problem, it is crucial to
conduct a deep study to enhance the generalizations in the future work.
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