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Abstract: Time series prediction is crucial for advanced control and management of complex systems,
while the actual data are usually highly nonlinear and nonstationary. A novel broad echo state
network is proposed herein for the prediction problem of complex time series data. Firstly, the
framework of the broad echo state network with cascade of mapping nodes (CMBESN) is designed
by embedding the echo state network units into the broad learning system. Secondly, the number of
enhancement layer nodes of the CMBESN is determined by proposing an incremental algorithm. It can
obtain the optimal network structure parameters. Meanwhile, an optimization method is proposed
based on the nonstationary statistic metrics to determine the enhancement layer. Finally, experiments
are conducted both on the simulated and actual datasets. The results show that the proposed
CMBESN and its optimization have good prediction capability for nonstationary time series data.

Keywords: time series prediction; echo state networks; broad learning system; nonstationary analysis

1. Introduction

Time series data are generated in various fields such as social sciences [1], meteorologi-
cal industry [2,3], financial market [4], modern agriculture [5,6], electric power field [7], etc.
Especially in the Big Data and IoT industry [8], it is essential to analyze the regular patterns
of time series data and predict the trends for system management and control. Time series
prediction can help to sense and control the systems in advance. However, the time-series
data in all systems are often highly nonlinear, nonstationary, and massive [9], making it
very difficult to predict trends accurately. Therefore, the prediction of complex time series
data has become a hot research topic in data mining [10].

Scholars have explored different methods for the nonlinear and nonstationary prob-
lems in time series data prediction. The existing prediction methods are mainly classified
into statistical methods [11,12], shallow machine learning methods [13,14], deep learn-
ing methods [15,16], and broad learning methods [17,18]. The main statistical prediction
methods are the autoregression model (AR), moving average model (MA), autoregression
moving average model (ARMA), and differential auto regression integrated moving aver-
age model (ARIMA). The methods above mainly transform the nonstationary time series
into the stationary time series by variance or integration. It is difficult to reduce the loss
function value with stable data transformation, so it is unsuitable for practical applications.
Deep learning methods develop from external neural networks. Deep learning forms
a vertically deepened network structure, which improves the network’s learning ability.
However, the time and computational costs are high since all layers need the training
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simultaneously. Meanwhile, the gradient disappearance and explosion can occur in deep
learning. The broad learning method is proposed for the resource occupation problem
of deep learning. A broad learning system (BLS) [19] is built with a horizontal extension
instead of a vertical deepening. It achieves feature extraction ability through a mapping
layer and an enhancement layer. It dramatically reduces the time cost, but it is found
that the prediction accuracy of time series needs improving in practice. It has been the
main issue to utilize and improve the machine learning methods for accurate time series
prediction.

The literature research and previous experiments found that an effective prediction
model often depends on the network structure and the computation resource occupation.
The BLS has advantages in terms of resource occupation but has limited capability in data
regression. A lightweight network of echo state network (ESN) was found in the previous
study, which is computationally fast and has a strong nonlinear fitting ability. For the
prediction problem of complex time-series data, this paper designs a new broad echo state
network to utilize the advantages of different neural networks fully. The new network
takes the BLS with mapping layer cascade as the basic framework and combines the broad
structure with the ESN. An optimization method is also proposed for the enhancement
layer to improve the prediction ability.

This paper is organized as follows. Section 2 introduces the related methods for
time series prediction. Section 3 introduces the proposed broad echo state network and
the optimization method based on an incremental algorithm and nonstationary metrics.
Section 4 presents the experimental results and analysis of the model application. Section 5
presents a summary and discussion of the method.

2. Related Works
2.1. Time Series Prediction Methods

In this section, several classical time series prediction methods are introduced, some
of which will be set as the experimental comparison models. The existing time series
prediction methods include statistical and machine learning methods.

The early statistical methods are mainly the AR [20], MA [21], and ARMA [22] models
based on the randomness theory. They use the regression equation established by the
historical and current data correlation. The ARMA model solves the problem of random
variation terms, widely used in the early prediction of nonstationary time series. With
the development of computer technology, machine learning, and deep learning have
been applied for time series prediction. The external neural networks can solve the simple
classification problems, which face the weak performance in the time series regression. Then
deep learning and BLS develop from external neural networks. The classical deep learning
methods for the time series prediction are GRU [23], LSTM [24], DeepESN [25], graph
neural network [26], Fusion network [27], etc. LSTM belongs to the RNN network [28] and
mainly solves the problem of gradient disappearance and explosion in RNN [29]. GRU
is a variant of LSTM that combines the forget gate and output gate into one update gate.
It has a more concise structure than LSTM. DeepESN is a network that connects multiple
reservoir units in the deep learning idea. It realizes a multi-layer reserve pool, which
improves the network stability and prediction ability to a certain extent. The BLS realizes
the horizontal expansion rather than a vertical deepening of deep networks. The BLS can
significantly reduce the training time and the complex structure [30]. The BLS based on the
cascade of mapping layer (CMBLS) [19] is a variant structure of the width learning network,
which aims to enhance the extraction of data features and improve the performance of the
network model.

As mentioned above, statistical methods for the prediction problem can analyze the
stable and linear time series data. Their performance will degrade when the time series
is nonstationary and nonlinear. Then the machine learning methods are applied for the
complex time series regression. Machine learning relies mainly on the data characteristics,
the network structure, and computation resources. The ESN and DeepESN have been
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the emerging models in the recurrent networks with a lightweight training mode. The
BLS is proposed to reduce the network scale of the deep learning networks. There is no
ideal network to cover the strong learning ability and appropriate structure [31]. Then
we try to propose a new model which combines the BLS and ESN to take advantage of
different networks. The new network is studied to balance the model learning ability and
the computation resource occupancy.

2.2. Broad Learning System

The BLS is a forward neural network based on the connection of random vector
functions. Its network structure is divided into a mapping layer, reinforcement layer, and
output layer, as shown in Figure 1. Compared with the random vector function connectivity
network, the mapping layer replaces the output layer. The BLS can update the network
structure quickly by adding nodes in the mapping and enhancement layers, which benefits
from the efficient incremental algorithm. The BLS extracts the mapping features of the
original data by feeding the input data into the mapping layer and then uses the output of
the mapping layer as the input of the enhancement layer. It can achieve the data feature
and finally obtains the output weight matrix by the ridge regression method.

Z1 Z2 Zn

Mapping  

Layer

X

H1 H2 Hm

Φ(XWei+βei ),i=1,2,…,n Φ(XWei+βei ),i=1,2,…,n 
Z

Enhancement 

layer

Output  LayerOutput  LayerOutput  Layer

Wout Wout

Y

ξ (ZWej+βej ),j=1,2,…,m ξ (ZWej+βej ),j=1,2,…,m 

Figure 1. The network structure of BLS [19].

The structure of the BLS can be flexibly changed, and the CMBLS is a typical variant.
The network of CMBLS is shown in Figure 2. CMBLS cascades each node of the mapping
layer in turn. It maps the original input data as the first mapping node through the mapping
function. Then the output of the first mapping node is used as the second mapping node
input. It continues to form the structure of the mapping layer cascade, which achieves
sparse and nonlinear mapping of data features [32]. It can weaken the correlation between
adjacent features and improve the transformation of low-level to high-level features.

As a basis of the proposed method in this paper, the CMBLS is introduced first.
As shown in Figure 2, the mapping layer node is defined as Z = [Z1, Z2, · · · , Zn], the
enhancement layer node is defined as H = [H1, H2, . . . , Hm], and the input data sequence
is X. The first node of the mapping layer is Z1.

Z1 = ϕ(XWe1 +βe1) , ϕ(X; {We1,βe1}) (1)

where We1,βe1 are the randomly initialized weight matrix and bias vector, respectively, ϕ is
the mapping function, We2,βe2 are similar to We1,βe1 in that they are generated through a
random initialization mechanism. The second mapping node Z2 is defined as:

Z2 = ϕ(Z1We2 +βe2)

, ϕ(ϕ(XWe1 +βe1)We2 +βe2)

, ϕ2(X; {We1,βe1}, {We2,βe2})
, ϕ2

(
X; {Wei,βei}i=1,2

) (2)
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By the same analogy, the k′th mapping layer node is defined as:

Zk = ϕ(Zk−1Wek +βek)

= ϕn
(

X; {Wei,βei}k
i−1

)
, f or k = 1, . . . , n

(3)

where Wei,βei is the randomly initialized weight matrix and bias vector, and the input of
the enhancement layer node is the input of the mapping layer node, so the enhancement
layer node Hi is defined as:

Hi = ξ(ZWhi +βhi), i = 1, . . . , m (4)

where Whi,βhi is randomly initialized, ξ is the excitation function, the enhancement layer
node is defined as H = [H1, H2, . . . , Hm], and the combined matrix of the enhancement
and mapping layers is A = [Z|H] , so the output Y and the output weight matrix Wout of
CMBLS are defined as:

Y = [ϕ(X; {We1,βe1} ), · · · , ϕn(X; {Wei,βei}n
i=1)

∣∣
ξ(Z nWh1 +βh1), · · · , ξ(Z nWhm +βhm

)
]Wout

= [Z1, Z2, · · · , Zn
∣∣H1, H2, · · · , Hm]Wout

= [Z
∣∣H]Wout

= AWout

(5)

Wout =
(

λI + A(A)T
)−1

(A)TY (6)

where λ denotes the regularization factor, which takes the value range (0,1), T denotes the
transpose, and I represents the unit matrix. Wout is found by the pseudo-inverse method.
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2.3. Echo State Network

The ESN follows the concept of reservoir computation which is very suitable for
modeling complex nonlinear relationships. The ESN contains an input, reservoir, and
output layer. The original data are mapped to the high-latitude reserve pool through the
input layer, and the model is trained through the pool computation structure. The ESN
differs from other network models in terms of training mechanisms. Firstly, there is no error
backpropagation in the ESN. Secondly, the ESN need not train the input weight matrix and
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hidden layer weight matrix. Only the output weight matrix needs to be trained [34]. The
network structure of the ESN is shown in Figure 3.
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As shown in Figure 3, the input layer of ESN at the time t is defined as
u(t) = [u1(t), u2(t), . . . , uK(t)], the reservoir state is x(t) = [x1(t), x2(t), . . . , xN(t)], and
the network output is y(t) = [y1(t), y2(t), . . . , yL(t)], where K, N, L represents the number
of input samples, the number of reservoir neurons, and the output dimension in that order.

To ensure the echo state property of the ESN, the spectral radius range is usually set to
(0,1), and the update and output formulas of the reservoir are shown below.

x(t + 1) = (1− δ)x(t) + δ· f
(

Winu(t) + Wresx(t)
)

(7)

y(t + 1) = g
(
Woutx(t + 1)

)
(8)

x(t + 1) denotes the state of the reservoir at the time t + 1, y(t + 1) denotes the
network output at the time t + 1, δ denotes the leakage coefficient, Win, Wres denotes the
weight matrix generated by the random initialization of the input layer and the reservoir,
respectively, f (·), g(·) denotes the activation function of the reservoir and the output layer.
Formula (7) can continuously update the state of the ESN model after each set of data
input to the model until all data input is completed and the output of the network model is
obtained by Formula (8). Where Wout is calculated as follows:

Wout = YXT
(

XXT + λI
)−1

(9)

X ∈ RN×K denotes the state matrix of the reservoir pool, Y ∈ RL×K means the actual
output, λ denotes the regularization coefficient, I denotes the unit matrix, and Wout is
computed by many methods, including ridge regression [36], recursive least squares [37],
singular value decomposition, and pseudo-inverse solution [38], etc. The training mech-
anism of the ESN network can be simply training the output weight matrix, which will
significantly reduce the difficulty of network training.

As a clear comparison, the methods of time series prediction above are summarized
as follows in Table 1, including the statistical approach, classical deep learning network,
and broad learning system.
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Table 1. Description of each model.

Categories Models Features Existing Problems

Statistical
approaches

AR [39]
It treats the subsequent

data as a linear
combination of the data. It is difficult to reduce the

value of the loss function,
which is not applicable in

real-world data.
ARMA [40]

It combines the advantages
of the AR model and MA

model.

ARIMA [22] A differential process is
added to ARMA.

Typical deep
learning
networks

LSTM [24]
It improves the problems of

gradient disappearance
and explosion in RNN.

Time cost and computing
resources increase.

GRU [23] It reduces the number of
gate units in the LSTM.

DeepESN [25]

It connects multiple echo
state networks vertically

with the error
backpropagation training

mechanism.

Broad learning
system BLS [19]

It is with horizontal scaling
of the neural units. The

incremental learning
algorithms are designed for

faster training.

The prediction accuracy
is relatively low on

complex time series data.

As shown in Table 1, each model has different characteristics and deficiencies. For the
DeepESN in the deep learning networks, the echo state structure brings a new approach
to regression modeling. The BLS can reduce the training resources in the typical deep
learning networks. Analyzing related works above can provide a solution to combine
the different advantages. Then an improved method is proposed in this paper. The new
network takes the BLS as the basic framework and integrates the broad structure with the
ESN. It is improved both on the learning ability and the network structure scale.

3. Novel Broad Echo State Network
3.1. Network Based on the Cascade of Mapping Nodes

As mentioned in Section 2.2, CMBLS develops from BLS. In CMBLS, the original data
are mapped to the first mapping nodes, the first layer’s output is set as the input of the
second layer, and so on. The improved structure of CMBLS can strengthen the feature
extraction ability. It is theoretically proved that CMBLS retains a good fitting function [19].
The mapping nodes and enhancement layers in both BLS and CMBLS are essential for a
reliable regression of the time series data. Then we embed the ESN into the enhancement
layer of CMBLS to form a novel broad echo state network. The new network is abbreviated
as CMBESN (Broad Echo State Network with Cascade of Mapping nodes), and its structure
is shown in Figure 4.
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Figure 4. The network structure of CMBESN.

The CMBESN model consists of the mapping, enhancement, and output layers. The
ESN units are added to the enhancement layer with the incremental algorithm. The output
of the mapping layer is shown in Formula (3). The output of the enhancement layer of the
CMBESN is defined as:

Hj(t + 1) = (1− δ)Hj(t) + δ· f
(

WhjZ + WjHj(t)
)

(10)

Hj, Whj, and Wj denote the output of the first ESN unit in the enhancement layer, the
connection weight of the jth ESN unit to the mapping layer output, and the inner weights
of the reserve pool in the jth ESN unit, respectively. Meanwhile, Z denotes the output of the
mapping layer. The output and weight matrix of the CMBESN are calculated as follows.

Y = [Z1, Z2, · · · , Zn|H1, H2, · · · , Hm]Wn
m

= An
mWn

m (11)

Wn
m =

(
λI + An

m(An
m)T

)−1
(An

m)TY (12)

The incremental algorithm is introduced in the CMBESN, which will be presented
in Section 3.2. Then the combination matrix and the output weight matrix are changed
as follows.

An
m+1 = [An

m|Hm+1] (13)

The pseudo-inverse matrix of the combination matrix An
m+1 is:

(
An

m+1
)+

=

[
(An

m)+ −DBT

BT

]
(14)

The updated output weight matrix Wn
m+1 is:

Wn
m+1 =

[
Wn

m −DBTY
BTY

]
(15)

where B, D, C are defined as follows:

D = (An
m)+Hm+1 (16)

BT =

{
(C)+ , C 6= 0(
1 + DTD

)−1BT(An
m)+ , C = 0

(17)

C = Hm+1 −An
mD (18)
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The formulas above show that it does not need to restart the training data or recalculate(
An

m+1)+ when the incremental algorithm updates the network structure.
(
An

m+1)+ and
Wn

m+1 are updated with a simple matrix operation. The incremental algorithm can rapidly
update the network model [30]. The training algorithm of the CMBESN is shown in
Algorithm 1.

Algorithm 1: The training algorithm of CMBESN

Input: Input data (after abnormal data processing and normalization, custom data step length),
number of nodes in the mapping layer, RMSE threshold, spectral radius of ESN, leakage factor,
and reserve pool size.
Output: Number of nodes in the enhancement layer, RMSE, training time.
Algorithm:
Step 1: Randomly initialize (Wei,βei), f or i = 1, . . . , n; the initialized ESN unit includes the
sparsity, the reservoir size, and the connection weight matrix.
Step 2: Record the output of mapping layer nodes Z.
Step 3: Record enhancement layer output H.
Step 4: Calculate the combination matrix An

m and the pseudo-inverse matrix of the combination
matrix, and calculate the output weight matrix Wn

m by Formulas (11) and (12).
Step 5: Calculate the current RMSE and compare it with the RMSE threshold.
Step 6: If the current prediction is greater than the RMSE threshold, the ESN unit is increased by
the incremental algorithm.
Step 7: Initialize the newly added ESN cell by Step 1 and loop Step 4 to Step 6 to know that the
RMSE of the prediction result is less than the RMSE threshold.
Step 8: Record training results.

3.2. Optimization of Enhancement Layer Based on Unit Increment and Nonstationary Metrics

For the network proposed above, some measures should be taken to guarantee the
performance of the CMBESN. A solution should determine the concrete structure and
hyperparameter. Then the algorithms are studied in this section. Firstly, given the network
structure, the number of ESN units is determined by an incremental algorithm. Secondly,
in the view of the network hyperparameter, the regularization coefficient is adjusted based
on the nonstationary metric of the time series. The two algorithms form the optimization
of the enhancement layer.

3.2.1. Incremental Algorithm of Enhancement Units

The CMBESN and the ESN are introduced in the enhancement layer to fit the nonlinear
trend of the data. The reserve pool is the essential component of the ESN, while its size
is difficult to determine. Instead of the traditional empirical approach, an algorithm
is designed to select the reservoir size automatically. The incremental algorithm can
improve the fitting capability of the network by adjusting the number of ESN units in the
enhancement layer. The flow of the incremental algorithm is shown in Algorithm 2.
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Algorithm 2: Incremental Algorithm

Input: Number of ESN, ESN parameter configuration, RMSE threshold.
Output: Output weight matrix Ŵm

n .
Algorithm:
Step 1: Initialize mapping layer node parameters.
Step 2: Initialize the reinforced layer ESN cells, including reserve pool size, leakage factor,
sparsity, etc.
Step 3: CEBESN network output before the incremental algorithm is used and RMSE′ is
calculated.
Step 4: If RMSE′ is less than the RMSE threshold, incremental algorithm optimization is started.
Step 5: Calculate the current RMSE and compare it with the RMSE threshold.
Step 6: If the current prediction is greater than the RMSE threshold, the ESN unit is increased by
the incremental algorithm.
Step 7: Update the combination matrix Ân

m with Ŵm
n by Formulas (14)–(18).

Step 8: Repeat step 5 to step 7 until RMSE′ is less than the RMSE threshold. Update Ŵm
n at the

same time.
Step 9: Record the last Ŵm

n .

The proposed algorithm above can help avoid the overfitting problem to a certain
extent. It is conducted following the idea of early stopping. Early stopping is an iterative
truncation method to prevent overfitting. The iteration stops before the model converges to
the training data set. The accuracy of validation data is calculated at the end of each epoch.
The accuracy is quantized with the RMES. The increment of the ESN units and training is
stopped when the RMSE reaches the set condition.

3.2.2. Parameter Optimization Based on Nonstationary Metrics

Time series data are often nonstationary in complex systems [41]. The relationships in
the nonstationary data are more complicated than that in the stationary time series [42].
The proposed network model is expected to be appropriate for the nonstationary time
series. Then the parameters in CMBESN are optimized based on nonstationary time series
data analysis.

In this paper, the parameters of CMBESN are optimized based on nonstationary
metrics. Therefore, the test methods of the nonstationary time series are analyzed first.
The classical test methods are Dickey-Fuller [43], augmented Dickey-Fuller (ADF) [44],
correlation test [45], etc. The ADF test is a validation method to verify the stationarity
of time series in classical econometric theory. The ADF test weakens the influence of the
random disturbance term on the overall validation. It does not judge the stability of the
time series with the existence of trailing and truncation such as the correlation test. The
ADF criterion is the time series’ mean and variance. According to the Akaike information
criterion (AIC), the degree of nonstationary is determined by judging the probability
values (p), test statistics, 1% critical value, 5% critical value, and 10% critical value.

The regularization coefficient λ in the CMBESN is vital for model training. The
regularization coefficient is set as the parameter to optimize. This paper proposes an
integrated metric consisting of the probability value from the ADF test and the model’s
errors. The proposed nonstationary metric is as follows.

Si = f (p) · 1
n

√
n

∑
k=1

(ŷ(k)− y(k))2 (19)

f (p) =| p̂− p| (20)

Si
Si+1

> M (21)

where p̂ and p denote the ADF probability value of the predicted data and the ADF
probability value of the actual data, respectively, ŷ(k) represents the k′th predicted value,
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y(k) means the k′th true value, n is the number of samples, M is the set threshold coefficient,
and Si denotes the nonstationary error indicator of the i′th experiment. Combining the
above indicators, λ can be calculated by the following formula:

λi+1 =

{
α · λi, L ≥ 0
β · λi, L < 0

(22)

L =
n

∑
k=1

ŷ(k)− y(k) (23)

where λi denotes the regularization coefficient of the CMBESN model at the i′th prediction
and L represents the error of the actual data of the prediction series.

Formula (19) shows that the proposed metric can reflect the stability difference and the
errors between predicted and actual data. Formula (20) is a function of stability difference.
The smaller the S, the smaller the prediction error. It can be seen from Formulas (22) and (23)
that when the L results are in the different intervals, the regularized scaling coefficients are
adjusted to various degrees. Formula (21) is the termination condition of the optimization
process. The optimization flow of the regularization coefficient is shown in Figure 5.
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As described above, the proposed CMBESN is optimized in the enhancement layer.
Then it is abbreviated as CMBESN-OE, in which OE means optimizing the enhancement
layer. The optimization includes the incremental algorithm of the ESN size and the param-
eter optimization based on the nonstationary metrics.

As a summary of the methods above, the training and test process of the CMBESN is
shown in Figure 6. The related algorithms are shown in Tables 2 and 3, and Figure 5.



Appl. Sci. 2022, 12, 6396 11 of 22

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 24 
 

Start

Initialize enhancement layer ESN cells

Incremental algorithm to get the right 
number of ESNs

End

Yes

No

Calculate     by ADF test and set iS M

Calculate and store    L
1

i

i

S M
S +

> Update the 
regularization factor λ

Update and store 1iS +

Records    and    , and other assessment 
metrics
λ
 

S

Initialize              and record output  ,ei eiW β Z

 
Figure 5. Flow chart of optimization based on nonstationary error metrics. 

As described above, the proposed CMBESN is optimized in the enhancement layer. 
Then it is abbreviated as CMBESN-OE, in which OE means optimizing the enhancement 
layer. The optimization includes the incremental algorithm of the ESN size and the pa-
rameter optimization based on the nonstationary metrics. 

As a summary of the methods above, the training and test process of the CMBESN is 
shown in Figure 6. The related algorithms are shown in Tables 2 and 3, and Figure 5. 

 

Figure 6. The training and test process of the CMBESN-OE.

Table 2. Configuration of model parameter for MSO dataset.

Model
Number of

Mapping Layer
Nodes

Number of
Enhancement
Layer Nodes

Reservoir Size Spectral
Radius Rate Leaking Rate Sparseness

BLS 1–50 1–40 NA NA NA NA
ESN NA NA 300–800 0.95 0.1 0.05

CMBLS 1–50 1–40 NA NA NA NA
CMBESN 1–50 1–40 300–800 0.95 0.1 0.05

Table 3. Configuration of each model parameter in the Beijing Fangshan District air quality dataset.

Model
Number of

Mapping Layer
Nodes

Number of
Enhancement
Layer Nodes

Reservoir Size Spectral
Radius Rate Leaking Rate Sparseness

BLS 20–60 10–50 NA NA NA NA
ESN NA NA 400–1000 0.95 0.1 0.05

CMBLS 20–60 10–50 NA NA NA NA
CMBESN 20–60 10–50 400–1000 0.95 0.1 0.05

4. Experiment and Result
4.1. Dataset
4.1.1. Simulation Dataset

The data from the multiple superimposed oscillators (MSO) are the typical nonstation-
ary time series, which are often used in the experiments of time series prediction. Kinds
of frequency sine waves essentially form MSO data. In the real world, the superimposed
phenomenon of multiple frequencies is widespread [46]. Then the data of MSO is set as the
simulation data in the experiment. The complex degree increases rapidly when the number
of superpositions rises. The MSO data can be expressed as follows.

y(n) =
k

∑
i=1

sin(αin), k = 1, 2, · · · , m (24)

where y(n) denotes the n simulation sample, k represents the number of sinusoidal com-
ponents, αi denotes the frequency of the i′th component, and the frequency of each com-



Appl. Sci. 2022, 12, 6396 12 of 22

ponent in this paper is α1 = 0.2, α2 = 0.311, α3 = 0.42, α4 = 0.51, α5 = 0.63, α6 = 0.74,
α7 = 0.85, α8 = 0.97, Figure 7 shows the variation of MSO simulation data with eight
components. To ensure the experiment’s reliability, the ratio of the training set to the test
set is 4:1.
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4.1.2. Air Quality Dataset

The air quality monitoring data in Fangshan District Beijing is a nonstationary time
series dataset from the natural system. Air quality indexes include CO, NO2, O3, PM10,
PM2.5, and SO2. The AQI is a comprehensive indicator reflecting the general air quality
level. In the experiment, the AQI indicator is used as the output of prediction and the rest
indicators as the input in this study. The dataset recorded 15,000 data. The monitoring
started on 5 February 2017, and ended on 2 December 2018. The monitoring interval is 1 h.
Figure 8 shows the general variation of AQI data in the dataset. The data were divided
into a training set and a test set. The first 80% is the training set, and the remaining 20% is
the test set.
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It can be found from the figures above that the dataset used in the experiment is
strongly nonstationary. There are different patterns in the data change, which helps avoid
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overfitting in the training since the model does not almost fall into a particular pattern.
Meanwhile, the data size is large enough to cover different time series trends, which is also
a measure to avoid overfitting.

4.2. Experimental Environment and Settings

The experiments are conducted on a platform with a 64-bit Windows system. Its
memory is 16 GB, and the processor is AMD R7 4800H (2.9 GHz). The deep learning
framework is based on Tensorflow 2.0 and Keras 2.4.3. The code is in Python 3.7 program-
ming language.

To demonstrate the performance of the proposed CMBESN model, some typical
methods in time series prediction are set as the contrast. The contrast models include the
GRU, BLS, ESN, and CMBLS. The GRU is a classical model of RNN. The BLS, ESN, and
CMBLS are the basic models for the proposed CMBESN. Then the four models are selected
as the contrast.

The models above are trained for the two datasets to obtain relatively good results.
The models are determined after the training. Tables 2 and 3 show the parameters of models
for the two datasets. The parameters include the number of nodes in the mapping layer,
the number of nodes in the enhancement layer, the size of the reservoir in the ESN cell, the
spectral radius of the reservoir, the leakage rate, and the sparsity of the reservoir.

For the prediction of time series, the evaluation metrics of model regression are usually
chosen to verify the performance of the models. In this paper, the following metrics are
taken, mean absolute deviation (MAE) [47], mean square root error (RMSE) [48], symmetric
mean absolute percentage error (SMAPE) [49], and coefficient of determination R2 [50].
MAE, RMSE, and SMAPE reflect the deviation between the predicted and actual values.
The smaller these three values are, the better the model performance is. R2 demonstrates
the reasonableness of the final prediction model, and the closer R2 is to 1, the better the fit
of the prediction model is. The formulas of the evaluation indexes are as follows:

MAE =
1
n

n

∑
k=1

∣∣yr(k)− yp(k)
∣∣ (25)

RMSE =

√
1
n

n

∑
k=1

(yr(k)− yp(k))
2 (26)

SMAPE =
1
n

n

∑
k=1

∣∣yr(k)− yp(k)
∣∣

yr(k) + yp(k)
(27)

R2 =

(
n
∑

k=1
yr(k)·yp(k)− 1

n

n
∑

k=1
yr(k)

n
∑

k=1
yp(k)

)
(

n
∑

k=1
yr2(k)− 1

n

(
n
∑

k=1
yr(k)

)2
)(

n
∑

k=1
yp2(k)− 1

n

(
n
∑

k=1
yp(k)

)2
) (28)

where yr(k) denotes the actual value of the k′th sample, yp(k) represents the predicted
value of the k′th sample, yrv denotes the mean of the actual value, and n denotes the number
of samples.

4.3. Results
4.3.1. Results of MSO Dataset

The proposed CMBESN and the contrast models are applied in the prediction of the
MSO data. The prediction results are shown in Figure 9. In the figure, the curves in different
colors represent the models.
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To show the prediction results more obviously, the errors are drawn in Figure 10. In
the figure, each bar indicates the absolute error value between the predicted and real values.
It can be seen that the overall error value of CMBESN is small.
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To quantitatively analyze the performance of CMBESN, the evaluation metrics of
ESN, BLS, CMBLS, GRU, and CMBESN are presented in the form of numerical values, as
shown in Table 4.

Table 4. Evaluation metrics for each model in the MSO dataset.

Model Training Time(s) SMAPE MAE RMSE R2

ESN 3.7242 0.0525 0.0512 0.0634 0.9989
BLS 0.5952 0.0369 0.0326 0.0412 0.9995
GRU 71.6812 0.0360 0.0360 0.0409 0.9996

CMBLS 0.4175 0.0381 0.0335 0.0426 0.9995
CMBESN 109.6323 0.0349 0.0325 0.0405 0.9996

Figure 11 shows the decreased percentage of SMAPE, MAE, and RMSE and the
increased percentage of R2 when the CMBESN is compared with other models.
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From the error plot in Figure 10 and the evaluation metrics in Table 4, it can be found
that CMBESN improves the prediction accuracy. It can also be seen from Figure 11 that the
CMBESN model has the smallest prediction error.

4.3.2. Results of Air Quality Dataset

In this experiment of the air quality dataset, the predicted outputs are shown in
Figure 12. It can be seen that the result of the CMBESN is closer to the actual values than
other models in the general view.
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Figure 12. Prediction results of each model in the air quality data set of Fangshan District, Beijing.

For further comparison of the results, the outputs are plotted with the boxplots in
Figure 13. The middle horizontal line and the start point in each box represent the median
and mean of the data. The size of the box indicates the distribution of the data. As seen in
Figure 13, the mean and median of CMBESN are closest to the actual data.

For a clear comparison, the models’ errors are shown in Figure 14. It can be seen
that the error variation range of CMBESN is much smaller than that of CMBLS, ESN, and
GRU, which means that CMBESN has a higher prediction accuracy and fits the real curve
most closely.



Appl. Sci. 2022, 12, 6396 16 of 22Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 24 
 

 
Figure 13. Boxplot of the prediction results of each model for the air quality dataset. 

For a clear comparison, the models’ errors are shown in Figure 14. It can be seen that 
the error variation range of CMBESN is much smaller than that of CMBLS, ESN, and GRU, 
which means that CMBESN has a higher prediction accuracy and fits the real curve most 
closely. 

 
Figure 14. Errors of each model on air quality dataset. 

The evaluation metrics are shown in Table 5, which contains the training time, RMSE, 
SMAPE, MAE, and R2 for each model. 

Table 5. Evaluation metrics for each model on the air quality dataset. 

Model  Training Time(s) SMAPE MAE RMSE R2 
ESN 2.9911 0.2937 28.8061 40.8411 0.0881 
BLS 0.1120 0.3507 57.5135 62.1322 0.4730 
GRU 65.9890 0.0889 12.5609 26.2116 0.6062 

CMBLS 0.0717 0.1249 13.9013 24.8272 0.4889 
CMBESN 58.9831 0.1646 11.1110 13.5795 0.8959 

Figure 15 shows the decreased percentage of SMAPE, MAE, RMSE, and the increased 
ratio of R2 when the CMBESN is compared with other models on the air quality dataset. 

Figure 13. Boxplot of the prediction results of each model for the air quality dataset.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 24 
 

 
Figure 13. Boxplot of the prediction results of each model for the air quality dataset. 

For a clear comparison, the models’ errors are shown in Figure 14. It can be seen that 
the error variation range of CMBESN is much smaller than that of CMBLS, ESN, and GRU, 
which means that CMBESN has a higher prediction accuracy and fits the real curve most 
closely. 

 
Figure 14. Errors of each model on air quality dataset. 

The evaluation metrics are shown in Table 5, which contains the training time, RMSE, 
SMAPE, MAE, and R2 for each model. 

Table 5. Evaluation metrics for each model on the air quality dataset. 

Model  Training Time(s) SMAPE MAE RMSE R2 
ESN 2.9911 0.2937 28.8061 40.8411 0.0881 
BLS 0.1120 0.3507 57.5135 62.1322 0.4730 
GRU 65.9890 0.0889 12.5609 26.2116 0.6062 

CMBLS 0.0717 0.1249 13.9013 24.8272 0.4889 
CMBESN 58.9831 0.1646 11.1110 13.5795 0.8959 

Figure 15 shows the decreased percentage of SMAPE, MAE, RMSE, and the increased 
ratio of R2 when the CMBESN is compared with other models on the air quality dataset. 

Figure 14. Errors of each model on air quality dataset.

The evaluation metrics are shown in Table 5, which contains the training time, RMSE,
SMAPE, MAE, and R2 for each model.

Table 5. Evaluation metrics for each model on the air quality dataset.

Model Training Time(s) SMAPE MAE RMSE R2

ESN 2.9911 0.2937 28.8061 40.8411 0.0881
BLS 0.1120 0.3507 57.5135 62.1322 0.4730
GRU 65.9890 0.0889 12.5609 26.2116 0.6062

CMBLS 0.0717 0.1249 13.9013 24.8272 0.4889
CMBESN 58.9831 0.1646 11.1110 13.5795 0.8959

Figure 15 shows the decreased percentage of SMAPE, MAE, RMSE, and the increased
ratio of R2 when the CMBESN is compared with other models on the air quality dataset.
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As seen in Table 5, the BLS model performs the worst performance. CMBLS improves
performance over BLS. CMBESN improves accuracy over other networks. Meanwhile,
Figure 15 shows the decreased percentage in RMSE, SMAPE, and MAE and the increased
percentage in R2 for CMBESN, which means the CMBESN has a better performance. It can
also be seen that the CMBESN model has the slightest prediction error. The training time is
also shorter than GRU.

The proposed CMBESN Is tested in the experiment by comparing some related models.
It can be found from the results that the prediction accuracy of the CMBESN has been
improved. However, the training time has risen at the same time. Then the model should
be optimized, and the experiments are conducted in Section 4.4.

4.4. Optimization Experiments
4.4.1. Optimization Results of MSO Dataset

The proposed optimization method is tested based on the CMBESN model. Then a
CMBESN model is selected with 34 nodes in the mapping layer, 24 nodes in the enhance-
ment layer, and a reservoir pool size of 550 neural nodes. The optimized CMBESN is
abbreviated as CMBESN-OE, mentioned in Section 3.2.2.

The variation of RMSE and regularization coefficient λ of the CMBESN-OE model
during the optimization is shown in Figure 16. It is set that α = 0.1,β = 1.1 in Formula (22).
It can be seen that the first eight adjustments have a noticeable effect on the optimization
process. The RMSE shows a definite downward trend. When the regularization coefficient
λ is adjusted, the RMSE tends to be stable, which means the optimization saturation.

The prediction curves of the CMBESN and CMBESN-OE models are plotted in
Figure 17 when the RMSE tends to be stable in the optimization. For a clear compari-
son, the errors of the two models are shown in Figure 18.

The evaluation metrics of the prediction results are calculated, as shown in Table 6.
As seen in Table 6, the CMBESN-OE with the optimization performs better than the

CMBESN model. It proves that the optimization algorithm can improve the CMBESN
model to a certain extent on the MSO dataset.
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Table 6. Evaluation metrics of CMBESN and CMBESN-OE models on MSO dataset.

Model SMAPE MAE RMSE R2

CMBESN 0.0349 0.0325 0.0405 0.9996
CMBESN-OE 0.0357 0.0319 0.0401 0.9996

4.4.2. Optimization Results of Air Quality Dataset

Similar to the optimization experiment of the MSO dataset, the air quality dataset is
tested. A CMBESN model is selected with 36 nodes in the mapping layer, 28 nodes in the
enhancement layer, and a reservoir pool size of 600. The CMBESN-OE model is obtained
by optimizing the CMBESN with the optimization algorithm mentioned in Section 3.2.2
and setting α = 0.95,β = 1.1 in the subset.

The CMBESN-OE is used to optimize the regularization coefficient λ in Formula (19).
Then the trend of RMSE and λ is plotted in Figure 19, which shows that the RMSE has
reached a smaller value by the 34th adjustment and λ shows a decreasing trend in general.
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The CMBESN-OE model reaches a better state after 34 times of optimization. The
results are shown in Figure 20. It indicates that the CMBESN-OE generally fits the actual
data curve better.
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The evaluation metrics of the two models are shown in Table 7. It indicates that
CMBESN-OE performs better than CMBESN in all evaluation metrics.

Table 7. Evaluation metrics of CMBESN and CMBESN-OE models on air quality dataset.

Model SMAPE MAE RMSE R2

CMBESN 0.1646 11.1110 13.5795 0.8959
CMBESN-OE 0.0721 6.5313 8.3923 0.9602

5. Discussion and Conclusions

The CMBESN model proposed in this paper is validated on the simulation dataset of
MSO and Beijing air quality dataset. The classical deep learning network and the broad
learning system are compared. The CMBESN-OE model based on the optimization method
is also validated on both datasets. The model testing strategy uses a similar approach
to K-fold cross-validation, and the results shown in this paper are the better-performing
prediction data after the selection.

From the result curves in Figures 8 and 10, it can be seen that the CMBESN model
fits the actual data curve more closely than the BLS, ESN, CMBLS, and GRU models,
especially at the peaks. The errors between the predicted and actual values are shown in
Figures 10 and 14. The CMBESN model performs better, especially in the air quality dataset.
The models can be evaluated quantificationally using the metrics in Tables 6 and 7. For the
MSO dataset, the RMSE of CMBESN decreases by 36.1%, 1.7%, 0.98%, and 4.9% relative to
ESN, BLS, GRU, and CMBLS, respectively. The R2 improves by 0.01% and 0.07% relative to
BLS and CMBLS. For the air quality dataset, the RMSE of CMBESN decreases by 66.8%,
78.1%, 48.2%, and 45.3% relative to ESN, BLS, GRU, and CMBLS, respectively. However,
given the time cost, CMBESN takes more time to train the model. The tradeoff between
prediction accuracy and the time cost can be studied in the future.

The CMBESN-OE model derives from the CMBESN based on the optimization al-
gorithms. The concrete structure parameter and hyperparameter of the CMBESN are
determined with the algorithms in Section 3.2. The related experiments are shown in
Section 4.4. The results in Figures 18 and 20 show that the errors of the CMBESN-OE model
are smaller than the CMBESN. Figures 16 and 19 show the RMSE and the regularization
coefficient changing along the optimization process. The RMSEs decline obviously with the
variation of the optimized parameter. Similar conclusions can be found in Tables 6 and 7. It
proves that the optimization proposed in this paper is efficient. The proposed algorithms
can improve prediction accuracy by adjusting the structure and training parameters.

In this paper, a new network is designed and studied for time series prediction. The
broad echo state network is improved in the mapping and enhancement layers. It is proved
with the experiment that the proposed network can take advantage of the BLS and ESN.
Meanwhile, the optimization method is also studied to improve the prediction ability. In
the future, the theoretical foundation should be studied to explain the further reason for
the combination of the networks. Besides, the combination has taken more time, which can
be found in the experiments. Then, the proposed network should be improved from the
training time. An ideal network should be explored based on the proposed method in this
paper to balance the prediction accuracy and the computational resources.
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