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Abstract: In recent years, commercial platforms have embraced recommendation algorithms to
provide customers with personalized recommendations. Collaborative Filtering is the most widely
used technique of recommendation systems, whose accuracy is primarily reliant on the computed
similarity by a similarity measure. Data sparsity is one problem that affects the performance of the
similarity measures. In addition, most recommendation algorithms do not remove noisy data from
datasets while recommending the items, reducing the accuracy of the recommendation. Furthermore,
existing recommendation algorithms only consider historical ratings when recommending the items
to users, but users’ tastes may change over time. To address these issues, this research presents a Deep
Neural Network based on Time Decay (TD-DNN). In the data preprocessing phase of the model,
noisy ratings are detected from the dataset and corrected using the Matrix Factorization approach. A
power decay function is applied to the preprocessed input to provide more weightage to the recent
ratings. This non-noisy weighted matrix is fed into the Deep Learning model, consisting of an input
layer, a Multi-Layer Perceptron, and an output layer to generate predicted ratings. The model’s
performance is tested on three benchmark datasets, and experimental results confirm that TD-DNN
outperforms other existing approaches.

Keywords: collaborative filtering; deep neural network; noisy ratings; recommendation system; time
decay functions; matrix factorization

1. Introduction

A recommender system (RS) [1,2] is an intelligent system that provides recommenda-
tions to users based on their previous ratings. It can easily provide relevant information
to users from massive volumes of Internet data; as a result, it is widely used by many
platforms to recommend items, movies, music, books, etc. The accuracy of RS mainly
depends upon the recommendation algorithm, which is classified into Content-based (CB),
Collaborative Filtering (CF), Demographic-based, Knowledge-based, Community-based, or
hybrid [3,4]. The CB technique [5] generates recommendations based on the user and item
profiles. It has the advantage that it can quickly adjust recommendations in response to
changes in user preferences, but it suffers from a lack of recommendation novelty and cold
start problems and requires a detailed description of items and user profiles. The CF [6]
technique is the most popular and commonly used technique of RS, which determines
users of relevant interest by calculating the similarity, and it recommend items to them. It
makes accurate recommendations based on user–item interactions such as clicks, browsing
history, and ratings given. The advantages of the CF technique include scalability and that
it does not require much information about users or items to create a profile. Although
this method is simple and effective, its effectiveness drops due to the sparsity problem,
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which increases with the rapid increase in users and items. More importantly, it cannot
generate recommendations for a new item that has not received user ratings. Therefore,
many researchers have begun to look for other ways to improve the recommendation
system performance. Demographic-based RS [7] provides recommendations based on the
demographic profiles of users’ attributes, i.e., user’s country, education, gender, or age.
This technique is not complex and easy to implement, but profiles are rarely updated. In
Knowledge-Based RS (KBRS) [8], item recommendations are based on the domain knowl-
edge about a user’s needs and preferences. As the recommendations are independent of
the user ‘s preferences, a KBRS can quickly change its recommendations when a user’s
interest change. The limitation of KBRS is that it must understand the product domain well.
Community-based RS [7] suggests items based on the preferences of the user’s friends. A
hybrid recommendation system combines two or more techniques, as discussed above.

In recent years, Deep Learning (DL) [9] has made significant progress and achieved
notable success in many sectors such as healthcare [10], cybersecurity [10], natural language
processing [11], audio recognition [11], computer vision [12], etc. The promising capabil-
ities of DL have encouraged researchers to use deep architecture for recommendation
tasks [13,14]. For instance, Cheng et al. [15] introduced a deep architecture for google
play recommendations, Covington et al. [16] proposed a deep learning-based method for
the YouTube recommendations, and Okura et al. [17] used a Recurrent Neural Network
for news recommendations. These approaches have displayed remarkable success and
outperformed traditional RS methods.

Developing personalized RS using the Deep Neural Network (DNN) has become a
potential trend due to its high computing power and huge data storage capabilities. The
simplest DNN [13] consists of three layers, i.e., the input layer, the Multi-Layer Perceptron
(MLP), and the output layer. The input layer converts low-dimensional features into N-
dimensional features and passed them to the MLP layers. In MLP, n-dimensional features
are learned and passed onto the activation functions of each layer. Finally, the MLP’s
output is passed to the last layer, which predicts the ratings. Some researchers have recently
developed Deep Learning-based recommendation models to improve the system’s accuracy.
They make some experimental changes on the MLP layer or the output layer: for instance,
changes in the number of layers, activation, or loss function. Two or more approaches
are also merged to predict the ratings. However, to the best of our knowledge, there
is no study that performs preprocessing on data before providing it into the DNN. It is
important because input quality determines output quality. Therefore, the research focuses
on preprocessing the original data to improve the input data quality. This is completed as
follows: (1) identifying the dataset’s noisy (inconsistent) ratings and correcting them using
the matrix factorization approach; and (2) assigning weightage to the recent ratings using
the time function, i.e., Power. The resultant data matrix is provided as the input into the
DNN model for training purposes. The embedding layers are used in the DNN because
they reduce the input size and computational complexity, leading to faster training times.

As such, we summarize the contributions as follows:

1. In this paper, a Time Decay-based Deep Neural Network (TD-DNN) is proposed, in
which, firstly, the noisy ratings are identified from the dataset and corrected using the
Matrix Factorization approach. After this, to give the weightage to the most recent
ratings, a power decay function is used. The resultant data matrix is inserted as the
input into the DNN model for the training purposes.

2. The model incorporates the embedding layer to a Multi-Layer Perceptron to learn the
N-dimensional and non-linear interactions between users and movies. The Huber
loss function, which has shown outstanding efficacy across all the loss functions, is
used.

3. The experiment has been conducted on benchmark datasets to examine the new
model’s efficiency and compare it with the existing approaches. The results on the
MovieLens-100k, ML-1M and Epinions datasets show that the proposed TD-DNN ar-
chitecture enhances recommendation efficiency and solves the data sparsity problem.
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The paper is organized as follows: The literature review is examined in Section 2,
which is followed by the problem statement discussed in Section 3. The proposed model
is evaluated in Section 4, and the results are presented in Section 5. The paper comes to a
conclusion in Section 6.

2. Literature Review

This section discusses the state-of-the-art techniques used in recommendation systems.
The collaborative filtering technique-based recommendation algorithms are discussed first,
which is followed by the deep learning techniques for recommendation.

The collaborative filtering technique considers historical data to recommend items to
the target users. It is mainly categorized into memory-based and model-based techniques.
Out of these two, the memory-based approach is most popular and is subdivided into
user-based [18] and item-based [19] approaches. Many similarity measures, i.e., Modified
Proximity Impact Popularity (MPIP) [20], RJaccard [21], TMJ [22], etc., have been intro-
duced in recent years. The CF approach is popular because it is simple to implement;
nonetheless, it suffers from a data sparsity problem. Many model-based algorithms, such as
Bayesian models [23], Latent Semantic models [24], Regression-based models [25], Matrix
Factorization models [26], etc., have been proposed to overcome the challenge mentioned
above. Among these models, the most prominent is Matrix Factorization, which maps
the users and items into vectors representing the users’ or items’ latent features. Some
variants of the Matrix Factorization (MF) model are Nonparametric Probabilistic Principal
Component Analysis (NPCA) [27], Singular Value Decomposition (SVD) [28], and Proba-
bilistic Matrix Factorization (PMF) [29]. The latent features learned by matrix factorization
approaches are ineffective when the rating matrix is highly sparse. In addition, numerous
researchers construct an effective recommendation system using additional data, such as
time, trust, and location information. For instance, the authors in [30] utilized the user’s
trust and location information to improve the prediction accuracy of RS. Some researchers
incorporated time information at the similarity computation [31], prediction [32], or rating
matrix levels [33] of the recommendation process.

On the other hand, deep learning [34] is a growing field of machine learning research
that mimics the human brain’s behavior for interpreting data such as images, sounds, and
texts. It is a Multi-Layer Perceptron with multiple hidden layers stacked on each other.
Hinton et al. [35] introduced the concept of Deep Learning and proposed an unsuper-
vised algorithm based on deep belief networks (DBN). These Deep Learning techniques
have recently succeeded in many complex tasks, i.e., computer vision, natural language
processing, etc. Therefore, researchers have begun to apply Deep Learning algorithms to
recommending music [36], books [11], videos [16], medical [37], interfaces [38], etc. The
first Deep Learning-based recommendation model was Neural Collaborative Filtering
(NCF) [39], which targets the poor representation of MF in a low-dimensional space and
replaces it with neural network architecture. Since MF is a popular technique used in RS,
several works have been proposed using Matrix Factorization and Deep Neural Networks.
Xue et al. [40] proposed a Deep Matrix Factorization (DMF) model in which features are
extracted from the user–item matrix and integrated into the neural network. The author
also proposed a new loss function based on binary cross-entropy to minimize the error. A
new approach based on personalized Long and Short-Term Memory (LSTM) and Matrix
Factorization techniques is presented in [41]. In [42], the authors developed an improved
matrix factorization technique. A movie recommendation system that predicted the Top-N
recommendation list of movies using singular value decomposition and cosine similarity is
proposed in [43]. In the Deep Learning model for a Collaborative Recommender System
(DLCRS) [44], user and movie IDs are concatenated as one-hot vectors. Unlike the basic MF
approach, where inner products combine the user and movie ratings, DLCRS performs the
element-wise multiplication of user and movie ratings. A novel recommendation strategy
based on Artificial Neural Networks and Generalized Matrix Factorization is proposed
by Kapetanakis et al. [45]. It improves the overall quality of the recommendations and
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minimizes human intervention and offline evaluations. Wang et al. [46] propose a hierar-
chical Bayesian model to obtain content features and a traditional CF model to address the
rating information. A ConvMF model, which combines the Convolution Neural Network
with the Probabilistic Matrix Factorization, is proposed in [47]. Some more studies on the
recommendation system are given in [13,34].

3. Motivation

Among the various approaches used to develop the recommendation systems, the
memory-based Collaborative Filtering technique is most popular and widely used, but it
has some limitations as discussed below.

In the CF approach, the efficiency of the RS mainly depends upon finding the effective
neighbors which are based on the similarity calculated by a similarity measure. There are
various traditional and recently developed similarity measures, but they mainly suffer from
the sparsity, cold- start and scalability problems. Some traditional and popular similarity
measures in the CF technique compute incorrect similarity in some cases. For instance, the
cosine measure [48,49] computes the maximum similarity between users when they have
only rated only one item. Pearson Correlation Coefficient (PCC) calculates low similarity
regardless of the similar ratings of two users. The Jaccard measure [49] does not count the
absolute values of ratings, while the Mean Squared Difference (MSD) measure ignores the
proportion of common ratings. The combination of these two is JMSD, which does not
utilize all the ratings provided by both users. Some recently developed similarity measures,
i.e., Relevant Jaccard (RJaccard) and Relevant Jaccard MSD (RJMSD), compute inaccurate
similarity when the user rates the items with equal ratings. In addition, the accuracy of
the CF techniques is also affected when some inconsistency/noisy ratings [50] exist in the
dataset. In this case, similarity measures compute inaccurate similarity. These existing
CF algorithms only consider the historical ratings when computing similarity, but as time
goes by, users’ tastes may change; therefore, the generated recommendation might not
be relevant.

To address the aforementioned problems and improve the performance of recommen-
dation systems, a Time Decay-based Deep Neural Network (TD-DNN) has been proposed
in this paper. In this, firstly, we do some preprocessing on data to remove noise and give
weightage to the most recent ratings. For correcting the noisy ratings, the Matrix Factor-
ization approach is used, while the power decay function is used to give weightage to the
most recent ratings. The resultant data matrix is inserted as the input into the DNN model
for training purposes, and it produces the predicted ratings as output.

4. Proposed Methodology

Deep Learning [51] (also known as deep artificial neural networks) learns the latent
features of users and movies and inserts them as input into a multi-layered feed-forward
architecture to predict the ratings as output. DNN can learn the complex decision bound-
aries for classification and non-linear regression. A typical deep neural network has three
distinct functional layers [12]: the input layer, Multi-Layer Perceptron (MLP), and the
output layer. The output of each layer is promoted to the next layer in a multi-layer neural
network. For example, the output of the input layer is of user and item vectors, which
are sent to a Multi-Layer Perceptron. The MLP has large numbers of hidden layers and
is used to train the obtained N-dimensional non-linear features, and the output of this is
forwarded to the last layer to forecast the ratings. Unlike other Deep Learning models,
where the original/raw data matrix is inserted as input into the input layer of the model, the
proposed model takes into consideration a preprocessed data matrix. In the preprocessing
step, first, the noisy ratings are detected and corrected, and then, a time decay function is
applied to give weightage to the recent ratings. The resultant matrix is fed into the neural
network model to predict the ratings. The development of the proposed model constitutes
two phases.
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1. Data Preprocessing Phase
2. Constructing Deep Neural Network

The detailed description of each phase is given below.

4.1. Data Preprocessing Phase

Most recommendation algorithms calculate inaccurate similarity when noisy ratings
are present in the dataset. In addition, many CF-based measures do not adopt the time
information while computing similarity. As a result, the recommendation of low quality
might be generated. To avoid this, data preprocessing is applied in the proposed model in
two steps. In step 1, the noisy ratings (i.e., inconsistent data) are identified and corrected. A
time decay function is applied in the following steps to give weightage to the most recent
ratings. It may improve the performance because the user preferences change over time.
As the time stamp decreases, the weight decreases. Figure 1 explains the flow of the data
preprocessing step. A detailed description of each step is given below:

Figure 1. Data preprocessing steps.

4.1.1. Detecting and Correcting the Noisy Ratings

There are two types of noise [50]: malicious noise and natural noise. Malicious noise
is introduced by an external agent, whereas natural noise is what users introduce. It might
happen due to a user’s inconsistent or negligent behavior. This paper focuses on natural
noise because it is a relatively new issue that has received far less attention. It occurs due to
the inconsistency in the user preference and item ratings.

To identify natural noise/noisy ratings, the user, item, and ratings are classified into
predetermined classes (based solely on ratings). In this classification, if the user and item
fall in the same category, then the rating must also belong to the same category. If the
rating does not verify this, it is considered a noisy or noise or inconsistent rating. The noisy
ratings are determined as follows:

Firstly, users are categorized into Weak_user, Average_user, and Strong_user sets, and
items are categorized into Weak_item, Average_item, and Strong_item sets, as given in
Table 1. The belongingness of the users and items in their respective sets depends upon
the condition specified in Table. If the rating is less than the T1_u then add the rating to
the Weak_user set, if the rating is greater than or equal to T1_u and less than T2_u, then
add the rating to the Average_user set, and if the rating is greater or equal to T2_u, then
add the rating to the Strong_user set. In the same way, if the rating is less than T1_i, then
add the rating into the Weak_item set, if the rating is greater or equal to T1_i and less than
T2_i, add the rating to the Average_item set, and if the rating is greater than the T2_i, then
add the rating to the Strong_item set. In Table 1, T1_u and T2_u are the threshold values
of users, and T1_i and T2_i are the threshold values of items. These threshold values are
obtained through the formula specified in Table 2.
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Table 1. Categorized Users and Items into Sets.

Users Sets

If r (user, item) < T1_u add rating into Weak_user set
If r (user, item) ≥ T1_u and r (user, item) < T2_u add rating into Average_user set
If r (user, item) ≥ T2_u add rating to the Strong_user set

Item Sets

If r (user, item) < T1_i add rating into Weak_item set
If r (user, item) ≥ T1_i and r (user, item) < T2_i add rating into Average_item set
If r (user, item) ≥ T2_i add rating into Strong_item set

Table 2. Thresholds.

Thresholds Formula

T1_u or T1_i or T1 Rmin + round (1/3 × (Rmax − Rmin)
T2_u, or T2_i or T2 Rmax − round (1/3 × (Rmax − Rmin)

In Table 2, Rmin and Rmax are the minimum and maximum values in the rating scale,
respectively. After determining the threshold values, the users, items, and ratings are
classified into three categories, as displayed in Table 3. In the table, users are classified
into Critical, Average, and Benevolent. Items are classified into Weakly recommended,
Averagely recommended, and Strongly recommended, and ratings are classified into Weak,
Average, and Strong. A critical user is the one who gives a low rating to items, an average
user provides the average rating to items, and a benevolent user is the one who gives
a high rating to items. Similarly, if the majority of people dislike the item, it is Weakly
recommended, and if the majority of users averagely like it, it is Averagely recommended.
If most users prefer the item, it is categorized as Strongly recommended. Similarly, if the
rating is less than T1 (threshold value), it is a Weak rating. If the rating is greater or equal
to T1 and less than T2, it is an Average rating, and if the rating is greater than T2, it is a
Strong rating.

Table 3. User, Item and Rating Classes.

User Classes

If |Weak_user| ≥ |Strong_user| + |Average_user| User is Critical
If |Average_user| ≥ |Strong_user| + |Weak_user| User is Average
If |Strong_user| ≥ |Average _user| + |Weak_user| User is Benevolent

Item Classes

If |Weak_item| ≥ |Strong_item| + |Average_item| Item is Weakly recommended
If |Average_item| ≥ |Strong_item| + |Weak_item| Item is Averagely recommended
If |Strong_item| ≥ |Average_item| + |Weak_item| Item is Strongly recommended

Rating Classes

If r (user, item) < T1 Rating is Weak
If T1 ≤ r (user, item) < T2 Rating is Average
If r (user, item) ≥ T2 Rating is Strong

Table 4 defines the three categories of homologous classes according to the classes of
users, items, and ratings defined in Table 3. If the classes associated with the user and item
are similar, then the ratings must also belong to a similar category. If this does not happen,
we can say that the rating is noisy. For example, if the user is strong, the item is strongly
recommended, and if the rating is average, we can say that the rating is noisy.
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Table 4. User, Item and Rating Classes.

Categories User Class Item Class Rating Class

Category-1 Critical Weakly_recommended Weak
Category-2 Average Averagely_recommended Average
Category-3 Benevolent Strongly_recommended Strong

After detecting the noise/inconsistent rating, it is not removed but fixed. There are
many ways of dealing with natural noise [50,52–54]. For instance, O’Mahony et al. [53]
ignored the noisy ratings, while others [55,56] used some extra information, such as meta-
data, to correct the noisy ratings. Li et al. [57] detect the “noisy but non-malicious” users
by assuming that a user’s ratings on closely related items should have similar values. It
assesses underlying noise for each user profile, identifying those with the highest noise
levels. Toledo et al. [50] detected the noisy ratings by categorizing items and users accord-
ing to their ratings. To correct the noisy ratings, the author used the Pearson Correlation
Coefficient for similarity computation and predicted the new ratings for the noisy ratings.
In this approach, new ratings are determined at k’s value of 60, but this may differ de-
pending on the dataset. Thus, finding the k’s optimal value is a drawback; hence, the
Matrix Factorization [58] approach is used to correct the noisy rating. In this approach,
the user–item rating matrix is decomposed into two lower dimensionality rectangular
matrices, and a product is taken to obtain the new ratings for the noisy ratings. The matrix
factorization approach can be described in brief as follows:

R = P ×QT = R̂ (1)

In Equation (1), R is the actual rating matrix, R̂ is the predicted rating matrix, P (|U| × k)
matrix denotes the user–features association, and matrix Q (|I| × |k|) represents the item and
features association. The predicted ratings are the dot product of these two matrices. In the
process of correcting noisy ratings, if the difference between the predicted and noisy ratings
is greater than 1 (a threshold value, i.e., δ = 1), then only the predicted rating is accepted in
place of the noisy rating. The steps of detecting and correcting the noisy ratings are given in
Algorithm 1.

This process of detecting and correcting noisy ratings is illustrated by taking the
example given in Table 5.

Table 5 consists of four users and four items, and on them, Algorithm 1 is applied
with determined threshold values T1 = 2, T2 = 4. We classified users into Weak_user,
Average_user, Strong_user sets, and items into Weak_item, Average_item, and Strong_item
sets. With the help of the above-discussed sets, we identify each user’s and item’s classes.
As shown in Table 6, there are three benevolent users (1, 3, and 4) and one average user (2),
three strongly recommended items (2, 3, and 4), and one averagely recommended item (1)
in the taken example. The final step is to find the contradictions according to the categories
defined in Table 4. As a result, we found that the rating rU2 I1 is noisy, because the user
U2 is benevolent, item I1 is strongly recommended, but the rating is not strong; therefore,
we consider it a noisy rating. After the detection, the noisy rating is corrected using a
matrix factorization technique. According to the results displayed in Table 7, the Matrix
Factorization approach predicts rating 3 for the corresponding noisy rating.
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Algorithm 1: Steps of Detecting and Correcting Noisy Ratings

Inputs: set of available ratings {r(user, item)},
Threshold for Classification—T1_u, T2_u, T1_i, T2_i, T_u, T_i, δ = 1
1. Weak_user = {}, Average_user = {}, Strong_user = {},
2. Weak_item = {}, Average _item = {}, Strong_item = {},
3. Possible_noise = {}
4. for each rating in set of available ratings r(user, item)
5. if r(user, item) < T1_u
6. Add r(user, item) to the Weak_user set
7. else if r(user, item) ≥ T1_u and r(user, item) < T2_u
8. Add r(user, item) to the Average_user set
9. else
10. Add r(user, item) to the Strong_user set
11. if r(user, item) < T1_i,
12. Add r(user, item) to the Weak_item set
13. else if r(user, item) ≥ T1_i, and r(user, item) < T2_i
14. Add r(user, item) to the Average_item set
15. else
16. Add r(user, item) to the Strong_item set
17. end for
18. for each user in the r(user, item)
19. Classify each user into Critical, Average and Strong user as follows:
20. Critical user:
21. if |Weak_user| ≥ |Strong_user| + |Average_user|
22. Average user:
23. if |Average_user| ≥ |Strong_user| + |Weak_user|
24. Strong user:
25. if |Strong_user| ≥ |Average_user| + |Weak_user|
26. end for
27. for each item in the r(user, item)
28. Classify each item using the above discussed sets
29. Critical items:
30. if |Weak_item| ≥ |Strong_item| + |Average_item|
31. Average item:
32. if |Average_item| ≥ |Strong_item| + |Weak_item|
33. Strong item:
34. if |Strong_item| ≥ |Average_item| + |Weak_item|
35. end for
36. for each rating r(user, item)
37. if user is Critical, item is Weakly_recommended, and r(user, item) ≥ T1

38. Add r(user, item) to the {Possible_noise}
39. if user is Average, item is Averagely_recommended and (r(user, item) < T1or
r(user, item) ≥ T2)
40. Add r(user, item) to the {Possible_noise}
41. if user is Benevolent, item is Strongly_recommended, and r(user, item) < T2

42. Add r(user, item) to the {Possible_noise}
43. end for
#Correct the noisy ratings
44. for each rating r(user, item) in {Possible_noise}, predict a new rating R(user, item) using
Matrix Factorization approach
45. k = 3 # it represents the features
46. if (abs (R(user, item) − r(user, item)) > δ)
47. Replace r(user, item) by R(user, item) in the original rating set r
48. end if
49. end for

Output: r = {r(user, item)} − set of corrected ratings
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Table 5. An Example.

I1 I2 I3 I4

U1 3 5 4 4
U2 2 5 4 4
U3 3 3 2 5
U4 4 4 - 1

Table 6. User and Item Classification for the Given Example.

Classification Users |Weak_User| |Average_User| |Strong_User| Class

Users

U1 0 1 3 Benevolent
U2 1 0 3 Benevolent
U3 1 0 2 Average
U4 1 0 3 Benevolent

Items |Weak_item| |Average_item| |Strong_item| Class

Items

I1 1 2 1 Averagely recommended
I2 0 1 3 Strongly recommended
I3 1 0 2 Strongly recommended
I4 1 0 3 Strongly recommended

Table 7. Corrected Ratings for the Given Example.

I1 I2 I3 I4

U1 3 5 4 4
U2 3 5 4 4
U3 3 3 2 5
U4 4 4 - 1

4.1.2. Applying Time Decay Functions

The CF technique-based algorithms provide recommendations based on the user’s
historical rating data, but the user’s interest changes with time. Therefore, to give weightage
to the most recent ratings, a time decay function [59] is incorporated with ratings. These
time functions [60–62] determine the appropriate time weights and provide high weightage
to the recently rated items. In Table 8, a list of time decay functions is given, and they are
applied to the ML-100k dataset to identify the best option. The results are displayed in the
next section.

Table 8. List of Time Decay Functions.

Function Mathematical Expression References

Exponential e−µ|Tua ,k | [31,63]
Concave α|Tua ,k | [62]
Convex 1− βt−|Tua ,k | [62]
Linear 1− |Tua ,k |

t .γ [62]
Logistic 1

1+e−λ∗ |Tua ,k |
[33,59]

Power
∣∣Tua ,k

∣∣− ω [59]

Here, µ, α, β, ω, γ and λ are the tuning parameter, while t is the difference between
the recent timestamp and timestamp at which item is rated.

The first time-based recommendation algorithm was developed by Zimdars et al. [64],
who reframed the recommendation issue as a time series prediction problem. In CF, time
decay functions can be applied at the similarity computation, prediction, or rating matrix
levels. Since we are not predicting the ratings using a similarity measure in this paper, we
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can apply these time functions at the rating matrix level only. Here, the ratings closer to
the current time are given a larger weighting coefficient. The time-weighted ratings can be
retrieved as follows

Ru,i = ru,i × Time Decay Function (2)

where Ru,i is the predicted rating, ru,i is the actual ratings, and the time decay functions
are listed in Table 8. The results of time functions are displayed in Section 5.5, clearly
stating that the performance of the power decay function is superior; hence, it is used in
the research. With the help of the power time function, firstly, weights are computed and
then multiplied with the non-noisy rating dataset to give weightage to the most recent
ratings. Here, high weightage is assigned to recent timestamp ratings. The resultant non-
noisy-time weighted (NNTW) ratings are fed into the Deep Neural Network to improve
the recommendation system performance further. A brief description of the DNN model is
given below.

4.2. Constructing Deep Neural Network

A Deep Neural Network (DNN) [65] is an Artificial Neural Network with several
layers between the input and output layers. These neural networks come in various shapes
and sizes, but they all have the same fundamental components: neurons, weights, biases,
and functions. A typical DNN consists of three layers: an input layer, MLP, and output
layer. The description of each layer is given below.

4.2.1. Input Layer

Every Deep Neural Network architecture relies heavily on its input layer, whose
principal function is to process the data that has been provided. Unlike other Deep Learning
models, where the raw data matrix is provided in the input layer, we provided a Non-Noisy
Time Weighted (NNTW) rating matrix (that we obtained from the previous step) to the
input layer. In this layer, there are two input vectors Vu (for user u) and Vi (for item i). After
the input layer, there is an embedding layer with a bias term which is a fully connected layer
that turns a sparse vector into a dense one. The produced embedding may be considered as
the user/item latent vector that are concatenated to create an effective deep learning-based
recommender system.

x0 = concatenate(vu, vi) (3)

In Equation (3), the concatenate function () joins two vectors, i.e., users and movies.
The x0 is passed to the first hidden layer of MLP, whose description is given below.

4.2.2. Multi-Layer Perceptron

A feed-forward neural network with several (one or more) hidden layers between
the input and output layers is called the Multi-Layer Perceptron (MLP). Since a simple
vector concatenation is insufficient to represent the interactions between the user’s and
the item’s latent features, MLP is used. It add hidden layers to the concatenated vector to
easily modulate the non-linear interactions between users and items.

This work learns the N-dimensional non-linear connection between users and movie
vectors by a fully connected Multi-Layer Perceptron (MLP) architecture. We may utilize
functions such as sigmoid, hyperbolic tangent (tanh), and Rectified Linear Unit (ReLU)
to activate neurons in MLP layers, but each has its restrictions. For instance, the sigmoid
function does not have a zero-centric function, which may reduce the model’s efficiency. It
also suffers from a gradient vanishing problem. The tanh function, which has a zero-centric
function, is a rescaled variant of the sigmoid activation function. It is more computationally
expensive than the sigmoid function. Therefore, it is also not appropriate. On the other
hand, the ReLU activation function has no gradient vanishing problem and is less expensive.
In addition, it is well suited for sparse datasets and makes Deep Neural Networks tenable
to be overfitting; hence, it is used. To prevent the model from overfitting, L2 Regularizer is
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applied. Each neural network architecture follows the standard tower structure; there are
more neurons at lower levels and fewer at higher levels [66].

In the MLP’s forward propagation process, the first hidden layer output is obtained
by the following equation:

x1 = activation (W1x0 + b1) (4)

where x0 is the input layer’s output, W1 denotes the weight between the input and first
hidden layers, and b1 denotes a bias vector. The activation function makes a non-linear and
meaningful neural network. The ReLU [12,67] activation function is used since it is more
effective and easier to tune. The following is the output of the lth hidden layer:

xl = ReLU (Wl xl−1 + bl) (5)

The predicted ratings are determined by the size of the final hidden layer, which
indicates the model’s capabilities.

4.2.3. Output Layer

The aim of TD-DNN is to predict the user’s rating in the output layer, using the
equation below:

R̂u,i = sigmoid(Woutxh + bout) (6)

where R̂u,i represents the predicted rating of user u for an item i, h represents the number
of hidden layers, xh is the last hidden layer output, and Wout and bout represent the weight
and bias of the output layer, respectively. In Equation (6), the sigmoid activation function
is applied to the last layer. The Huber loss function is used in the training process to
evaluate the difference between the predicted ratings R̂u,i and actual rating ri,j. The Adam
optimizer is used to modify the weight, which helps reduce the overall loss and improves
accuracy. The Huber loss function and Adam optimizer are described in the next section.
The architecture of our Deep Neural Network is displayed in Figure 2.

Figure 2. Architecture of our Deep Neural Network model.

4.2.4. Training Process

Our proposed deep learning model includes the data preprocessing step in the basic
neural network architecture. The Deep Learning architectures compare the predicted
ratings with the actual ones and constantly refine the target loss to achieve the final optimal
fit. In the training of every neural network model, the loss function and optimizer are very
important, which are described below:

Loss Functions

The loss function measures the difference between the actual output and the model’s
predicted output. Selecting an appropriate loss function is most important. There are mainly
two types of loss function [11]: pointwise and pairwise loss function. The recommender
systems problem is transformed into a multi-classification or regression problem using a
pointwise loss function. In contrast, the problem is transformed into a binary classification
problem using a pairwise loss function. The pointwise loss functions include classification
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and ordinal regression, whereas pairwise loss functions includes Bayesian Pairwise Ranking
(BPR) [11] and Area Under the Curve (AUC). The proposed neural network model predicts
the ratings, which is a regression problem. So, the binary cross and multi-class information
are inappropriate for the model. We can employ squared, absolute, and any other common
pointwise regression losses [68], but the Huber loss function is used to mitigate the issues
of the squared and absolute loss functions. The drawback of the squared loss is that it
is particularly susceptible to outliers, whereas the absolute loss function can provide a
non-biased estimation of the arithmetic average. The Huber loss [11] is described as follows:

Huber Loss =

{
1
2 × (ru,i − Ru,i)

2, i f (|ru,i − Ru,i|) ≤ δ

δ× |ru,i − Ru,i| − 1
2 ∗ (δ)2, Otherwise

(7)

where the true value of user u invoking movies I is ru,i, Ru,i is the predicted rating of user
u invoking movies i and δ is the threshold value, which is set to 1.0.

Optimizer

An optimizer is a function that changes a neural network’s weight and learning
rate. As a result, it contributes to decreasing overall loss while also improving precision.
There are several optimizers [69,70], i.e., Gradient Descent, Stochastic Gradient Descent,
Adagrade, Adadelta, Adam, etc. Gradient Descent [69] updates weight and bias using the
entire training data. It is the simplest basic optimizer, which reduces the loss and reaches the
minima by simply using the derivative of the loss function and the learning rate. Stochastic
Gradient Descent [69] is a modified version of the GD method, where the model parameters
are updated on every iteration. Mini-batch [70] is a version of this GD technique in which
model parameters are changed in small batches. As a result, the model uses less memory
and has a low variance. Gradient Descent with Momentum [69] calculates an exponentially
weighted average of the gradients and update weights using that gradient. The learning
rate is constant in all of these optimizers. In the Adagrad optimizer [69], different learning
rates are used for each parameter. It adapts the lower learning rate to the parameters
associated with frequently occurring features and the larger learning rate for parameters
associated with infrequent features. Adadelta [71] is an Adagrad addition that aims to
slow down the program’s aggressive, monotonically declining learning rate. Instead of
accumulating all past squared gradients, Adadelta restricts the window of accumulated past
gradients to some fixed size. The RMSprop [71] optimizer is a momentum-based version
of the gradient descent technique. It limits oscillations in the vertical plane. As a result,
we can boost our learning rate to a horizontal direction and converge faster. The Adam
optimizer [11] is an extension of stochastic gradient descent which leverages the power of
adaptive learning rates methods to find individual learning rates for each parameter. Its
name comes from the fact that it adapts the learning rate for each neural network weight
using estimations of the first and second moments of gradient descent.

Apart from these, some fractional calculus-based new optimizers have been introduced
recently, i.e., Fractional Stochastic Gradient Descent, Moving Information-based Stochastic
Gradient Descent, and Normalized Fractional Stochastic Gradient Descent. The Fractional
Stochastic Gradient Descent (FSGD) [72] is implemented using fractional calculus ideas for
efficient matrix factorization. A fast and accurate form of SGD called Moving Information-
based Stochastic Gradient Descent (MISGD) [73] is introduced to successfully address
the fuzzy nature of preferences by capturing the collective effect of ratings from previous
update histories. The Normalized Fractional Stochastic Gradient Descent optimizer (NF-
SGD) [74] is a normalized form of F-SGD with a time-varying learning rate. It adapts the
learning rate and delivers quick recommendations based on users’ preferences.

Among the most popular optimizers, the Adam optimizer is [75] is simple to imple-
ment, computationally efficient, uses little memory, and can handle massive data sets and
parameters; hence, it is used in developing the model. The Adam optimizer combines
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two gradient descent methodologies [76]: Momentum and RMSProp, with Momentum
providing smoothing and RMSProp efficiently changing the learning rate.

The weight and bias update in Momentum are given by:

w = w− α·vdwb = b− α· vdb (8)

The weight and bias update in RMSProp are given by:

w = w− α ·
(
(∂L/∂w)/

√
sdw + ε

)
b = b− α·

(
(∂L/∂b)/

√
sdb + ε

)
(9)

where w and b are the weights and bias, respectively, vdw is the sum of gradients of
weights at time t, vdb is the sum of gradients of bias at time t, sdw is the sum of square of
past gradients of weights, sdb is the sum of square of the past gradients of bias, ∂L is the
derivative of loss function, ∂w is the derivatives of weight at time t, and ∂w is the derivative
of bias. Initially, vdw, sdw, vdb and sdb all are set to zero. On iteration t, they are computed
as follows.

vdw = β1 vdwt−1 + (1− β1)
∂L
∂w

vdb = β1 vdbt−1 + (1− β1)
∂L
∂b

sdw = β2 vdwt−1 + (1− β2)
(

∂L
∂w

)2

sdb = β2 vdbt−1 + (1− β2)
(

∂L
∂b

)2

(10)

In Momentum and RMSProp, initially, vdw, sdw, vdb and sdb were initialized to 0,
but it is observed that they become 0 when both β1 and β2 are near to 1. The Adam
optimizer [76] fixed this issue by using the corrected formula as given below. This is also
completed to keep the weights under control when they approach the global minimum.
The corrected formulas for vdw, sdw, vdb and sdb are given below:

vcorrected
dw = vdw

1−βt
1

vcorrected
db = vdb

1−βt
1

scorrected
dw = sdw

1−βt
2

scorrected
db = sdb

1−βt
2

(11)

Put these correct values in Equation (12) to compute the weight and bias in Adam optimizer.

wt = wt−1 + η
vcorrected

dw√
scorrected

dw +ε

bt = bt−1 + η
vcorrected

db√
scorrected

db +ε

(12)

where wt and wt−1 are the weights at time t and t− 1, respectively. β1 (=0.9) and β2 (=0.999)
are the moving average parameters, ε, usually of the order of 1 × 10−8 and η is a learning
rate, whose best values is tuned by performing experiments.

5. Experimental Evaluation
5.1. Data Description

Three real-world datasets [4,18] are taken to evaluate the performance of the proposed
NN model: MovieLens-100k, MovieLens-1M, and Epinions. The MovieLens-100k dataset
(http://grouplens.org/datasets/movielens/100k, 28 December 2022) was generated by the
University of Minnesota’s Group Lens Research Group. In this, every user assessed at least
20 films on a scale of one to five, with one being the worst and five being the best rated.

Another dataset is MovieLens-1M (http://grouplens.org/datasets/movielens/1m,
1 January 2022), in which users rated at least twenty items. We employed the Epinions
dataset (http://www.trustlet.org/epinions.html, 1 January 2022) to evaluate the proposed

http://grouplens.org/datasets/movielens/100k
http://grouplens.org/datasets/movielens/1m
http://www.trustlet.org/epinions.html
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model efficiency on a sparse dataset. Ratings are given on a scale of 1 to 5, with five being
the most highly regarded values. The statistics for the datasets are given in Table 9.

Table 9. Dataset Description.

Features ML-100k ML-1M Epinions

# of users (M) 943 6040 40,163
# of items (N) 1682 3952 139,738
# of ratings (R) 100,000 1,000,000 664,824
# of noisy ratings 10,602 112,938 53,247
# of corrected noisy ratings 3092 32,807 12,780
# of ratings per user 106.6 165.8 16.55
# of ratings per movie 59.5 253.03 4.75
Density Index 6.30 4.18 0.01
Time range Sep’97–Apr’98 Apr’00–Feb’03 Jul’99–May’11

5.2. Evaluation Measure

Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) [18] metrics
are used to test the accuracy of the TD-DNN proposed model. In both of them, the
predicted and actual ratings are compared, and obtaining a lower value for either model
means that the model is better. The MAE and RMSE metrics are calculated using the
following formulas:

MAE =
1
|E|

|E|

∑
i=1

∣∣R̂u,i − ru,i
∣∣ (13)

RMSE =

√√√√ 1
|E|

|E|

∑
i=1

∣∣R̂u,i − ru,i
∣∣ (14)

where ru,i is the actual rating of user u on item i, R̂u,i is the predicted rating of user u on an
item i and |E| is the cardinality of the test set.

5.3. Evaluation of TD-DNN Model

The following well-known and state-of-art recommendation algorithms are used to
compare the performance of the proposed TD-DNN model. These approaches are selected
as they are implemented in RS.

1. Item-based CF (IBCF) [77]: In the CF technique, the Adjusted Cosine (ACOS) measure
is used to compute the similarity between items. It is a modified version of vector-
based similarity that accounts for the fact that various users have varying rating
methods; in other words, some people may rate items highly in general, while others
may prefer to rate them lower.

2. User-based (UBCF) CF [20]: The performance of the proposed model is compared
with the user-based CF approach. To compute the similarity among users, a recently
developed MPIP measure is used. It combines the modified proximity, modified
impact, and modified popularity factors in order to compute the similarity.

3. SVD [28]: The SVD method is used to reduce the dimensionality for prediction tasks.
In this algorithm, the rating matrix is decomposed and is utilized to make predictions.
The SVD technique has the advantage that it can handle matrices with different
numbers of columns and rows.

4. DLCRS [44]: In the DLCRS approach, embedding vectors of users and movies are fed
into layers which consist of element-wise products of users and items. It then outputs
a linear interaction between user and movie. In contrast, in the basic MF model, the
dot products of the embedding vectors of users and items are faded.

5. Deep Edu [11]: This algorithm map features into the N-dimensional dense vector
before inserting them into a Multi-Layer Perceptron. It is applied to the movie’s
dataset to compare its performance with the proposed model.
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6. Neural Network using Batch Normalization (NNBN) [78]: This approach applies
batch processing on each layer to prevent the model from overfitting.

7. NCF [39]: NCF is the most popular deep learning technique used for movie recom-
mendations. Neural Collaborative Filtering replaces the user–item inner product
with a neural architecture. It combines the predicted ratings of Generalized Matrix
Factorization (GMF) and Multi-Layer Perceptron (MLP) approaches.

8. Neural Matrix Factorization (NMF) [45]: In this approach, pairs of users–movies
embeddings are combined using Generalized Matrix Factorization (GMF), and then,
MLP is applied to generate the prediction.

5.4. Selection of Hyper Parameters

Before beginning the experiment, we must define certain parameters that will be
utilized to train our model. For example, in the proposed TD-DNN model, an activation
function is used to determine whether a neuron should be activated or not. It is performed
by computing a weighted sum and then adding bias to it. The activation function is
included in an Artificial Neural Network to aid in the learning of complex patterns that
exist in the data. Some of the existing activation functions [79] are Linear, Tanh, Sigmoid,
ReLu, Leaky ReLU, SoftMax, etc. In the proposed model, the ReLU activation function is
used, since it does not activate all the neurons simultaneously; therefore, it is superior to
the other activation functions. A regularizer [12] is utilized to penalize the layer parameters
or layer activity while optimizing. A network optimizes the loss function by adding all of
these penalties together. The L1 and L2 are the two regularizers, where L1 penalizes the
sum of absolute values and produces multiple solutions, whereas L2 penalizes the sum of
square weights and produces a single solution. Out of the two, L2 Regularizer is chosen
because it can learn complex data patterns and provide more accurate predictions [11,12].
In addition, it is useful when we have features that are collinear or codependent.

Apart from these, some parameters’ best values have been discovered during experi-
mentation. For example, a loss function measures the difference between the actual output
and model’s predicted output. It accepts two inputs: our model’s output value and the
anticipated output. The output of the loss function tells how well our model predicted
the outcome. A higher loss value indicates that our model performed badly, and a lower
value of loss indicates that our model worked well. In the experiment, the performance of
Huber loss function is compared with the Absolute and Squared loss functions. Figure 3
shows the experimental findings, which indicate that the MAE and RMSE values of Huber
loss are lower than the Squared loss and Absolute loss; hence, it is utilized in the proposed
model. It is also deduced that the Absolute loss function performs better than the Squared
loss function.

Figure 3. Comparison between loss functions.

Another crucial parameter is the optimizer [69] that modifies the weights of a neural
network. As a consequence, it aids in the reduction in total loss while also increasing
accuracy. In the proposed work, the Adam optimizer [11] is used because it is simple to
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construct, computationally efficient, takes minimal memory, and can easily handle the large
data sets and parameters. Its performance is compared with the Adamax and Adagrade
optimizers. The experimental findings shown in Figure 4 depict that the Adam optimizer’s
MAEs and RMSEs are lower than the other two optimizers; hence, it is better.

Figure 4. Comparison between Optimizers.

In addition, determining the effective number of hidden layers is also an important
parameter. A neural network [11] is made up of neurons that are organized in layers, i.e., an
input layer, hidden layer, and output layer. The number of input and output layers in the
network is only one, but the hidden layers can vary according to the problem. The hidden
layers collect data from one set of neurons (input layer) and send it to a different set of
neurons (output layer); thus, they are hidden. The advantage of adding more hidden layers
is that we can allow the model to fit more complex functions. We employed our model with
three, four, and five MLP layers, where the number of neurons is present as <256, 64, 8>,
<512, 256, 64, 8>. and <512, 256, 128, 64, 8>, respectively. The MAE and RMSE results of
the experiment shown in Figure 5 indicate that our proposed approach achieves the lower
values when MLP is set to 4.

Figure 5. Comparison between Layers.

Another parameter is a learning rate [11], which depicts how well our model converges
to a local minima. It determines how rapidly a network’s parameters, such as weights
and biases, are updated. Since finding the optimal learning rate is most important, an
experiment is conducted to determine the optimal learning rate. Figure 6 shows that the
model produced a better result at a learning rate of 0.001 than 0.01 and 0.0001 learning
rates; hence, it is used.
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Figure 6. Comparison between Learning Rates.

In addition to these, there is also a term epoch that refers to the unit of time required to
train a neural network in one cycle, using all the training data. In an epoch, all of the data
were used exactly once. There are one or more batches in an epoch. The hyper parameters
used in the proposed model are displayed in Table 10.

Table 10. Hyper Parameters.

Parameters Values

Activation Function ReLU
Loss Function Huber
Optimizer Adam
Regularizer L2 (le−6)
Learning Rates 0.001
Total Hidden Layers 4
Neuron in Layers 512-256-64-8
Epochs 250

5.5. Experimental Results with Discussion

To evaluate the efficiency of the proposed method, an experiment has been carried
out on a variety of datasets, i.e., ML-100k, ML-1M and Epinions datasets. The performance
of the proposed method TD-DNN is compared with the eight existing techniques: ACOS,
MPIP, SVD, DLCRS, DeepEDU, NNBN, NCF, and NMF, through MAE and RMSE metrics.
Every dataset is split into a 20–80% ratio, where 80% of the data is utilized for training and
the remaining 20% is used for testing purposes. This method is performed five times, and
the final result is the average of all.

Unlike other Deep Learning models, where a raw matrix is inserted as input, a non-
noisy time weighted rating matrix is inserted as input in the proposed work. To acquire
this, firstly, noisy ratings from the dataset and then a time decay function is applied to give
weightage to the most recent ratings. The steps of removing the noisy ratings from the
dataset are depicted in Algorithm 1, and a list of time decay functions are given in Table 8.
Since there are lots of time decay functions, to identify which one is best, all of them are
applied to the ML-100k dataset. The findings displayed in Table 11 show that the power
decay function produces better outcomes for all k values (neighbors); hence, it has been
used in the proposed model.
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Table 11. MAE Results of Time-Decay Function.

Dataset Function 20 60 100 150 200

ML-100k

Concave 0.5109 0.5096 0.5101 0.5110 0.5120
Convex 0.5866 0.5869 0.5882 0.5901 0.5911
Exponential 0.5973 0.5985 0.6004 0.6021 0.6033
Linear 0.4785 0.4781 0.4785 0.4788 0.4794
Logistic 0.4662 0.4661 0.4664 0.4674 0.4680
Power 0.4261 0.4249 0.4256 0.4261 0.4270

Since power is an efficient time decay function according to the results displayed in
Table 11, therefore, using it, the weights are calculated and multiplied with the respective
non-noisy ratings. Then, resultant non-noisy time-weighted ratings are inserted as input to
the NN model for the training purposes, which produces the predicted ratings as output.
The performance of each model in terms of MAE and RMSE is shown in Table 12, clearly
indicating that the proposed TD-DNN method obtains a lower MAE and RMSE than each
comparable method; hence, it is superior.

Table 12. MAE and RMSE values of various models.

Methods
ML-100k ML-1M Epinions

MAE RMSE MAE RMSE MAE RMSE

IBCF 0.7897 1.0687 0.7795 1.0564 1.0075 1.3745
UBCF 0.7429 1.0240 0.7455 1.0245 0.9853 1.3510
SVD 0.7515 1.0024 0.7215 0.9295 0.8935 1.3365
DLCRS 0.7421 0.9993 0.7125 0.9112 0.8844 1.3122
Deep EDU 0.6725 0.8932 0.6571 0.8794 0.7634 0.9891
NNBN 0.7206 0.9134 0.6987 0.8858 0.8025 1.2452
NCF 0.6513 0.8710 0.6338 0.8532 0.7621 0.9835
NMF 0.7321 0.9916 0.7260 1.0362 0.8234 1.2912
TD-DNN (Proposed) 0.6275 0.8312 0.6196 0.8284 0.7364 0.9638

On the ML-100k dataset, the performance of the TD-DNN approach is best, while
item-based CF (using ACOS) is the worst, and our method gives almost 20% better results
than MAE and RMSE in comparison. After TD-DNN, the performance of NCF is better,
and our method yielded about four better results than that in terms of MAE and RMSE
comparison. Similarly, on the ML-1M dataset, our method achieved 20% better results than
the IBCF method. On the high-sparsity Epinions dataset, the TD-DNN method gives lower
MAE and RMSE values than all other methods. It produces better results than IBCF in
MAE (≈25%) and RMSE comparison (≈30%). On this dataset, the performances of NCF
and Deep EDU methods are almost similar.

6. Conclusions and Future Scope

In this paper, we propose a novel Time Decay-based Deep Neural Network (TD-DNN),
which takes the preprocessed data at the input layer of DNN. In the data preprocessing
step, firstly, the noisy ratings from the dataset are detected and corrected using the Matrix
Factorization approach, and then, a power function is applied to emphasize the most recent
ratings. The neural network model learns these non-noisy time weighted ratings and feeds
them into MLP to produce predicted ratings as output. Extensive experimentation on
real-world datasets demonstrates that our model achieves better outcomes than all other
models. Our method may greatly increase the accuracy of movie recommendations when
compared to existing collaborative filtering techniques.

In the future research, it is planned to extend another Deep Learning approaches such
as encoder, decoder to improve the performance and solve the data sparsity and cold start
problems. It is also planned to include the advanced tuning parameters with the other
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contextual data into the movie recommendation in future work. Apart from the time and
contextual data, trust is also an important parameter that helps in improving the accuracy
of RS; therefore, it will be considered in the development of RS.
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