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Abstract: Pain assessment is used to improve patients’ treatment outcomes. Human observers may be
influenced by personal factors, such as inexperience and medical organizations are facing a shortage
of experts. In this study, we developed a facial expressions-based automatic pain assessment system
(FEAPAS) to notify medical staff when a patient suffers pain by activating an alarm and recording
the incident and pain level with the date and time. The model consists of two identical concurrent
subsystems, each of which takes one of the two inputs of the model, i.e., “full face” and “the upper
half of the same face”. The subsystems extract the relevant input features via two pre-trained
convolutional neural networks (CNNs), using either VGG16, InceptionV3, ResNet50, or ResNeXt50,
while freezing all convolutional blocks and replacing the classifier layer with a shallow CNN. The
concatenated outputs in this stage is then sent to the model’s classifier. This approach mimics the
human observer method and gives more importance to the upper part of the face, which is similar
to the Prkachin and Soloman pain intensity (PSPI). Additionally, we further optimized our models
by applying four optimizers (SGD/ADAM/RMSprop/RAdam) to each model and testing them
on the UNBC-McMaster shoulder pain expression archive dataset to find the optimal combination,
InceptionV3-SGD. The optimal model showed an accuracy of 99.10% on 10-fold cross-validation, thus
outperforming the state-of-the-art model on the UNBC-McMaster database. It also scored 90.56%
on unseen subject data. To speed up the system response time and reduce unnecessary alarms
associated with temporary facial expressions, a select but effective subset of frames was inspected
and classified. Two frame-selection criteria were reported. Classifying only two frames at the middle
of 30-frame sequence was optimal, with an average reaction time of at most 6.49 s and the ability to
avoid unnecessary alarms.

Keywords: computer vision; deep learning; inceptionv3; pain assessment; ResNet-50; ResNeXt50;
transfer learning; VGG16

1. Introduction

Effective management of pain, including assessment and tracking overtime, is neces-
sary to study the effectiveness of different treatments [1,2] and to avoid reaching chronic
pain syndromes [2]. Pain can be assessed either by patients’ self-reporting or by medical
member observations [1,3]. The self-report method on a verbal or visual scale is the gold
standard of pain assessment [1,4], but this method can be inaccurate and challenging in
people with severely impaired communication ability (e.g., people with later stage demen-
tia [5], burn-injured adults [1], neonates [6], intensive care patients [7], etc.). There are
two common methods for pain assessment based on the observation principle: the Critical
Care Pain Observation Tool (CPOT) and the Pain Assessment in Advanced Dementia
Scale (PAINAD) [1]. The CPOT and PAINAD tools are designed for patients unable to
self-report [1]. The CPOT assesses facial expressions, body movements, ventilator com-
pliance, and muscle tension/rigidity, while the PAINAD assesses breathing, vocalization,
facial expressions, body language, and consolability [1]. Facial expressions form the basic
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components of pain assessment in both the CPOT and PAINAD tools. Studies have shown
that periodically monitoring patient pain level in intensive care units in hospitals improved
patient outcomes [8]. However, the medical member observations methods are highly
subjective; human observers may be influenced by personal factors [6] and observers need
to have the required experience [9]. Further, contentious pain assessment monitoring may
fail and not be sustained when there is a shortage of medical experts [9]. These causes show
the need for an automatic system to monitor a patient’s pain level [6,8,9], which can also
be used at home for elderly people [9]. A previous study that compared the performance
of a human observer’s pain assessment with that of an automated pain assessment from
facial expressions concluded that the latter outperforms the former and is more reliable [6].
However, the tasks of pain detection and assessment from the images is challenging due
to the diversity in head poses and environments, such as the illumination conditions and
intensive occlusion [8,9]. Furthermore, patients tend to show a high variance in their
reactions and facial expressions to the same level of pain [8].

The actions that form the facial expression of feelings, such as lowering the eyebrows
or squinting, are called action units (AU) and each is assigned a unique code (e.g., AU6
is lifting the cheeks). Regarding pain expression, six AU’s (AU4, 6, 7, 9, 10, and 43) have
been found to be the most representative [10]. By assigning numerical values to those six
AUs, pain can be calculated via the Prkachin and Soloman pain intensity (PSPI) equation,
as shown below:

PSPI pain = AU4 + max(AU6, AU7) + max(AU9, AU10) + AU43 (1)

This PSPI score determines pain intensity on a scale of 0 (no pain) to 16 (maximum pain).
Below is a detailed explanation of the valuation of the six AUs used in PSPI:

• AU4 is the intensity of lowering the eyebrows on a scale from 0 to 5 (0 = not lowered,
5 = maximally lowered).

• AU6 is the intensity of raising the cheeks on a scale from 0 to 5 (0 = not raised,
5 = maximally raised).

• AU7 is the intensity of tightening the eyelid on a scale from 0 to 5 (0 = not tight,
5 = very tight).

• AU9 is the intensity of wrinkling the nose on a scale from 0 to 5 (0 = not wrinkled,
5 = very wrinkled).

• AU10 is the intensity of rising the upper lip on a scale from 0 to 5 (0 = not raised,
5 = very raised).

• AU43 is whether the eyes are closed; represented as a binary value (0 = opened,
1 = closed)

In this paper, we developed a new facial-expression-based automatic pain assessment
system (FEAPAS). The model uses a dual convolutional neural network classifier to detect
pain from facial expressions. The dual model better imitates the human brain’s visual
perception [11]. In this new model, we used the upper partition of detected faces, namely
the eyes/brow area, and the full face as input images for our dual classifier. Because
our goal was to produce an online model with a fast response time to generate alerts in
a timely manner, we avoided an extensive computation time typically needed for deep
learning system by using the optimal one of four pretrained networks (VGG16, InceptionV3,
ResNet50, ResNeXt50) after freezing all the convolutional blocks and using the resulting
weight in our shallow dual CNN classifier (e.g., transfer learning).

Using a camera, the proposed FEAPAS monitors a patient in bed; the backend code
reads the video frame by frame and sends each frame to the classifier after detecting the
patient’s face and extracting the upper face area. An alarm is activated if the classifier
outputs a positive pain score. The specific frame is stored with the associated pain level,
date, and time to include in the report for the medical team.

To achieve a fast and robust FEAPAS, the following two challenges must be overcome.
First, the system’s performance heavily depends on the classifier’s performance; a classifier
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with high accuracy and a fast prediction process increases the system’s reliability. To obtain
an efficient classifier and overcome the limited face shapes in the system training dataset,
transfer-learning is used on four CNN models (VGG16, InceptionV3, ResNet50, ResNeXt50)
via freezing convolutional layers and replacing the prediction layer with a shallow CNN.
This is then tested with four different optimizers (SGD, ADAM, RMSprop, and RAdam).
The following two critical measurements were considered when developing the optimal
concurrent shallow CNN with VGG16/InceptionV3/ResNnet50/ResNeXt50 with frozen
layers, i.e., the accuracy of 10-fold cross-validation and the accuracy of test data for an
unseen subject. The resulting shallow model was embedded in our FEAPAS to generate
timely and accurate alerts.

The second challenge is to speed up the system’s response time. To do so, we selectively
sampled the frames being tested. Instead of testing every single frame in the input sequence,
we tested two frame-selection approaches. The first approach tests two segments from each
end of a video sequence (boundary test), while the second tests one segment in the middle
of the video sequence frames (middle test).

The rest of the paper is organized as follows: Section 2 reviews transfer learning
models and optimizers; Section 3 includes previous research on automatic pain assessment
in chronological order; Section 4 describes the dataset and the proposed models; Section 5
presents the experimental results; and Section 6 offers concluding remarks.

2. Background

The transfer learning method is used to speed up training process and improve the
performance of new untrained models by using the weights of an existing model [12].
The concept of transfer learning is modeled after human intelligence by using the current
knowledge to solve new problems faster or better [13]. In transfer learning, the top layers
of a pretrained model are frozen and specific layers above it are added to create a new
model [12]. However, the benefit of transfer learning is affected by the data and task of the
new model [13]. We chose to test the four VGG16, InceptionV3,RestNet50, and ResNeXt50
as possible platforms for classifier for FEAPAS because they have been widely successful in
image classification.

In the ILSVRC 2014 competition, Visual Geometry Group VGG16 was ranked the best
method in localization and second best in classification [12]. VGG16 addressed the depth
of CNN architecture by adding more layers with small filters (3 × 3). VGG16 was trained
on ImageNet with 1000 classes. The structure of VGG16 is shown in Figure 1 [14].
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InceptionV1 won the ILSVRC 2014 classification. It was proposed to overcome the
overfitting of the data in the deep convolutional neural networks by using multiple filters of
different sizes on the same level [15]. InceptionV3 is designed to optimize the performance
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of the previous versions of inception which suffer from high computations by applying
factorized convolutions and aggressive regularization [16].

The residual neural network (ResNet) won ILSVRC 2015 in image classification, de-
tection, and localization. Moreover, it won MS COCO 2015 detection and segmentation.
ResNet was inspired by VGG even though it is deeper and less complex [17].

Neural networks may become less efficient as the number of layers increase and the
model deepens [18–20]. ResNet adds a direct connection to the layers of the network to
solve the problem of vanishing gradients, which arises from the deep depth of the network.
This connection preserves a certain percentage of the output of the previous network
layers [18–20]. Deep neural networks have more layers where wide neural networks have
more kernels. However, a study comparing wider and deeper neural networks showed
that shallow networks outperformed the much deeper residual networks in classification
and segmentation [20]. In fact, the number of trainable parameters is the cause of ResNet
performance [20]. The structure of ResNet50 is shown in Figure 2 [17].
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ResNeXt was a runner up in ILSVRC 2015. It was designed to overcome the complexity
in ResNet, which emerge from staking the modules of the same topology. ResNeXt inspired
its structure from the inception model and used a simpler branch design method than
inception [21,22].

The optimizer algorithm plays a critical role in the neural network training process.
Studies have investigated the performance and declared a specific optimizer to work better
with a particular problem [23–25].

The stochastic gradient descent (SGD) is the popular algorithm for solving optimiza-
tion problems, but it requires manually adjusting the learning rate decay [23,24]. To
overcome this manual process in SGD, Diederik P. Kingma proposed adaptive moment
estimation (ADAM). ADAM makes the model converge faster and occupies little mem-
ory [24,25]. Root mean square propagation RMSProp is an optimization algorithm first
proposed by Geoffrey E. Hinton to speed up the model convergence through loss func-
tion optimization [24]. Where ADAM and RMSProp suffer from the variance in adaptive
learning rate, rectified ADAM (RAdam) has effectively solved it [26,27].

3. Related Work

The early studies in the field of pain assessment extracted the features from frames
using the active appearance model (AAM) and used a support vector machine (SVM) clas-
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sifier [28,29] to create automated pain assessment systems. Khan et al. [30] later compared
SVM in their proposed framework for pain along with three other classifiers (decision tree
(DT), random forest (RF), and 2 nearest neighbors (2NN) based on Euclidean distance).
Their framework detects the face from a frame, horizontally halves the detected face, and
uses the halves as the two inputs of the model; it employs the shape information using a
pyramid histogram of oriented gradients (PHOG) and the appearance information using a
pyramid local binary pattern (PLBP) to obtain a unique representation of the face. However,
more recent pain assessments utilize neural networks. Zhou et al. [31] utilized the recurrent
convolutional neural network (RCNN) to introduce a real-time regression framework for
automatic pain intensity estimation, while Rodriguez et al. [32] employed the advantage of
combining CNNs with long short-term memory (LSTM) in their model. Some researchers
even used dual models that consisted of a fusion structure of CNNs, such as Semwal and
Londhe, who used two shallow neural networks—spatial appearance network (SANET)
and shape descriptor network (SDNET)—in one model [9], and multiple neural networks
in another [33].

Inspired by Khan et al. [30], our proposed model used two inputs based on the
detected face parts to mimic the PSPI code; however, instead of using both halves of the
face we used the full face as one input and the upper face for the other input. We employed
neural networks for automatic feature extraction from frames, just as [31] and [32] did.
However, instead of RCNN or a combination of CNNs and LSTM, we employed the
VGG16, InceptionV3, ResNet50, and ResNeXt50 each with a shallow CNN replacing the
classifier layer.

The higher accuracy obtained by [9] and [33] encouraged us to adopt a fusion structure
of CNNs.

We compared our model’s performance to the aforementioned models [9,30,32,33]
that used the same dataset (UNBC-McMaster shoulder pain expression archive), as well as
the measurement strategy (the k-fold cross validation accuracy), as ours. Vaish and Sagar’s
state-of-the-art model [34], which employed Kaze algorithm to extract features from the
detected face, obtains a fisher vector and sends it to an SVM classifier. It also uses the same
testing dataset and metric measurements. Therefore, we compared our results against it.
The resulting optimal model is then embedded in our FEAPAS system.

4. Methodology
4.1. Dataset

In this study, we used a subset of the UNBC-McMaster shoulder pain expression
archive dataset [10]. To develop an automatic pain assessment system based on facial
expressions, researchers at McMaster University and the University of Northern British
Columbia recorded 200 sequences for 25 adult participants (12 males and 13 females) suf-
fering from shoulder pain. The recording sessions were conducted while the participants
were performing a series of active and passive physical tests on their affected and unaf-
fected limbs. The UNBC-McMaster shoulder pain expression archive dataset consists of
200 sequences with a total of 48,398 colored frames of 320 × 240 pixels.

The UNBC-McMaster shoulder pain expression archive dataset is highly imbalanced;
82.71% represents the “no pain” class with 40,029 images and only 17.29% represents the
different levels of pain with 8369 images. Thus, using the full dataset may result in a
biased classification, as shown in [9,33]. To avoid such potential bias, we used a subset with
6000 randomly selected frames of 24 participants. We classified the subset dataset into four
classes: no pain, low pain, moderate pain, and severe pain. Each had 1500 frames. The no
pain class included images with PSPI equals zero. The low pain class included images with
PSPI equals 1. The moderate pain class included images with a PSPI equal to 2. The severe
pain class included images with a PSPI equal to or greater than 3. Table 1 shows details of
our subset data.
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Table 1. Our subset data description.

The Class Label PISP Code Number of Images

1 No Pain 0 1500
2 Low Pain 1 1500
3 Moderate Pain 2 1500
4 Severe Pain 3+ 1500

The no pain class represents the normal situation, whereas the low pain, moderate pain,
and severe pain classes represent attention-drawing situations. Thus, the alarm should be
activated for these three classes. Additionally, 80% of the subset data was used for training
and 20% was used for validation. Figure 3 shows samples of the UNBC-McMaster shoulder
pain expression archive dataset.
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To test the data, we used all frames that belonged to the unseen participant. They were
coded as “064-ak064” and totaled 1611 frames.

To validate the FEAPAS, the consecutive frames in the unseen testing sequences were
merged using OpenCV library to create 6 test videos (one for each sequence) with 4 frames
per second each. Table 2 shows details of each video.

Table 2. Testing videos description.

The Video Label Number of Merged Frames Duration in Second

Video 1 Sever pain 397 99
Video 2 Sever pain 308 77
Video 3 Sever pain 337 84
Video 4 No pain 142 35
Video 5 Sever pain 263 65
Video 6 No pain 165 41

4.2. Data Preprocessing

Face detection is a critical process in pain assessment models. In [30,34], researchers
used the Viola Jones object detection algorithm [35] to detect the face before feeding the
data to the model. In [3,33], researchers used the multi-task cascades neural network
(MTCNN) [36] for face localization purposes as a milestone step in preparing the data.
Due to good results of MTCNN in detecting faces, especially when compared against Haar
Cascades, we used MTCNN for face detection and removed unnecessary information in
each image. The next step was to divide the detected face into two parts: an upper part,
which contained the eyes and eyebrows, and a lower part, which contained the nose, mouth,
and chin [30]. We used OpenCV for this task. Unlike in a previous study [30], where the
upper and lower parts of the detected face were used as inputs to the model, we used the
upper face and the full face as inputs to simulate the PSPI code as a way to focus more on
the eyes and brows than the lower face.

To measure the impact of illumination and head rotation in our model performance,
we used the OpenCV library to vary the brightness and rotation of the testing data of
unseen subject.

4.3. The Model

This study was conducted in two phases. First, we developed a robust classifier to
detect when a person was in pain. Second, we developed an efficient system capable of
detecting when a person was in pain, generating an alarm while minimizing false alarms.

4.3.1. Classifier

The UNBC-McMaster shoulder pain expression archive dataset, which we used to
train our system, resulted from experiments conducted on 25 participants, providing little
face-shape variation. To overcome the limitations of face shape variety and to combat
overfitting due to data scarcity, we used ImageNet weights to initialize our models before
fine-tuning our custom dataset. This approach yielded better results than training each
model from scratch on the domain dataset. Our model extracted features from the detected
face and the upper part of the detected face of our subset dataset using VGG16 in the first
experiment, InceptionV3 in the second experiment, ResNet50 in the third experiment, and
ResNeXt50 in the fourth experiment after freezing the convolutional blocks and dropping
the final prediction layers. Transfer learning processes in VGG16 and ResNet50 were
conducted by extracting the feature vectors and freezing all convolutional blocks, as well
as feeding the output to our new classifier (Figure 4).
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Using VGG16, ResNet50, or ResNeXt50 alone did not meet the desired accuracy. We
used them to extract the relevant features and replaced their prediction layers with a 4-layer
concurrent shallow CNN to increase the model accuracy. The features were extracted from
two inputs: the lower face and the upper face. They were sent to two identical shallow
CNNs, each consisting of four layers (Figure 5). The first layer was convolution (Conv2D),
which contained 16 neurons, a (3 × 3) filter, and Relu activation function. The second layer
was the max-pooling layer, which had a (2 × 2) filter. The third layer was the dropout with
a probability of 0.25. The fourth layer was a flattened layer. The output of each branch
of CNN was concatenated and sent to a dense layer with 2048 neurons, then to a fully
connected layer to classify the data. The shallow CNNs parameters above were chosen after
extensive experiments with different values. The InceptionV3 model is shown in Figure 6.
The models were trained with four optimizers (i.e., SGD-ADAM-RSMprop-RAdam). The
differentiation between these 16 models was based on the higher accuracy of 10-fold cross-
validation and testing data of the unseen subject. The best model was subjected to a few
more tests to measure its performance under different brightness and rotations. These
brightness/rotations tests were conducted on the modified testing data, as described in
Section 4.2.
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4.3.2. Facial Expression-Based Automatic Pain Assessment System FEAPAS

To avoid unnecessary alarms arising from temporary potential situations, such as the
blinking of the eyes, FEAPAS does not classify every frame in a video sequence. While we
tested various combinations, we herein report our results on testing two frame-selection
approaches. The first approach (the boundary test) tested two segments at the two ends
of a sequence of frames. The second approach (the middle test) tested one segment at the
middle of a sequence of frames. Figure 7a,b illustrate the two approaches, where N is the
length of the sequence (in the number of frames). Let 2∆ be the total number of frames
being tested. Then, for the boundary test, the first and last ∆ frames are classified. For the
middle test, 2∆ frames centered around the middle of the sequence (N/2) are classified.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 16 
 

 
Figure 5. The concurrent shallow CNN model using (VGG16/ResNet50/ResNeXt50) with frozen lay-
ers. 

 
Figure 6. The concurrent shallow CNN model using InceptionV3 with frozen layers. 

4.3.2. Facial Expression-Based Automatic Pain Assessment System FEAPAS 
To avoid unnecessary alarms arising from temporary potential situations, such as the 

blinking of the eyes, FEAPAS does not classify every frame in a video sequence. While we 
tested various combinations, we herein report our results on testing two frame-selection 
approaches. The first approach (the boundary test) tested two segments at the two ends 
of a sequence of frames. The second approach (the middle test) tested one segment at the 
middle of a sequence of frames. Figure 7a,b illustrate the two approaches, where N is the 
length of the sequence (in the number of frames). Let 2Δ be the total number of frames 
being tested. Then, for the boundary test, the first and last Δ frames are classified. For the 
middle test, 2Δ frames centered around the middle of the sequence (N/2) are classified. 

 
Figure 7. Frame selection approaches: (a) boundary test and (b) middle test. 

Figure 7. Frame selection approaches: (a) boundary test and (b) middle test.

The automatic pain assessment system reads the online video frame-by-frame and
selects 2∆ frames out of every N video sequence block based on the frame-selection ap-
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proach. The selected frames are then processed to obtain the inputs of the InceptionV3-SGD
classifier, which is the upper- and full-face partitions. If the classifier’s output is not set to
no pain for all tested frames in the N-frame sequence, then the alarm is activated. Figure 8
shows a high-level flow chart of the automatic pain assessment system, FEAPAS. In the
boundary testing frame-selection method, the final decision is taken after classifying the
last frame in the sequence, but, in the middle testing approach, the decision is immediately
released after reading half the number of frames in the sequence, which speeds up the
response time.
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We used Anaconda on a GPU Tesla P100-SXM2 [37] to build and train the models. To
test the selection frame approaches on FEAPAS, we used a CPU Intel Core i7-8750 (2.20GHz
and 8 GB RAM), with a Windows 10 64-bit operating system (Anaconda 5.3.1.) [38]; Library
Keras 2.2.4. [39]; Library OpenCV 4.4.0. [40]; and programming language Python 3.7.3.

5. Results

Table 3 shows the 10-fold cross validation results of the 16 models (precision, recall, and
F1-score). Table 4 shows the results of the phase that tested the two classifier platforms in
terms of the 10-fold cross validation accuracy and data of unseen subject for 16 assortments
made up of four models and four optimizers trained on the UNBC-McMaster shoulder pain
expression archive dataset. All 16 models showed high accuracy and achieved more than
96.00% for 10-fold cross validation, except for ResNeXt50 with SGD. For an unseen subject,
InceptionV3 with SGD and ResNeXt50 with SGD achieved 90.56% and 90.19, respectively,
whereas ResNet50 with ADAM and InceptionV3 with RAdam achieved 88.21% and 86.10%,
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respectively. The rest of the models achieved less than 85.00%. As shown in Figure 9, the
SGD optimizer was more stable and less fluctuating in InceptionV3 training comparing
with other optimizers (i.e., ADAM, RMSprop, and RAdam).

Table 3. The 10-fold cross validation results of VGG16, InceptionV3, ResNet50, and ResNeXt50 with
four optimizers.

The Model The Optimizer Precision Recall F1-Score

VGG16 SGD 98.42 98.58 98.47
ADAM 99.84 99.81 99.83

RMSprop 99.12 99.17 99.14
RAdam 99.30 99.84 99.81

InceptionV3 SGD 99.84 99.81 99.83
ADAM 97.33 96.94 97.05

RMSprop 99.94 99.93 99.96
RAdam 99.51 99.48 99.49

ResNet50 SGD 99.84 99.81 99.83
ADAM 99.84 99.81 99.83

RMSprop 99.84 99.81 99.83
RAdam 99.84 99.81 99.83

ResNeXt50 SGD 96.99 96.89 96.90
ADAM 99.68 99.65 99.67

RMSprop 99.84 99.81 99.83
RAdam 99.69 99.63 99.66

Table 4. Results of VGG16, InceptionV3, ResNet50, and ResNeXt50 with four optimizers.

The Model The
Optimizer

10-Fold Cross
Validation

Accuracy (%)

Accuracy of Unseen
Person (%)

Average
Accuracy (%)

VGG16 SGD 97.41 82.06 89.74
VGG16 ADAM 99.12 78.15 88.64
VGG16 RMSprop 97.90 66.05 81.98
VGG16 RAdam 99.30 65.80 82.55

InceptionV3 SGD 99.10 90.56 94.83
InceptionV3 ADAM 97.45 84.48 90.97
InceptionV3 RMSprop 98.27 82.37 90.32
InceptionV3 RAdam 96.93 86.10 91.52

ResNet50 SGD 96.58 76.10 86.34
ResNet50 ADAM 99.23 88.21 93.72
ResNet50 RMSprop 99.28 83.86 91.57
ResNet50 RAdam 99.27 83.61 91.44

ResNeXt50 SGD 89.85 90.19 90.02
ResNeXt50 ADAM 97.98 74.98 86.48
ResNeXt50 RMSprop 98.18 71.14 84.96
ResNeXt50 RAdam 98.40 80.76 89.58

Bold number shows the best result.

Analyzing the results of the trained models helped us decide which deep-learning
framework worked better with our FEAPAS system. Based on the combination of the two
accuracy values, InceptionV3 with SGD was selected as the models to be inserted in the
FEAPAS system. We therefore conducted more experiments on the FEAPAS system to
evaluate the overall performance.

Table 5 shows that our proposed approach outperformed previous approaches that
were also conducted on the same UNBC-McMaster shoulder pain expression archive
dataset and evaluated based on k-fold cross validation. The accuracy of the unseen subject
was not provided by previous publications, so we could not compare. Table 5 also shows
whether the study used entire images in the dataset, a subset, or a variation of subset plus
data collected from other sources.
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Table 5. Comparison with other approaches using UNBC-McMaster dataset.

Approach Use All Images
in Dataset

Number of
Used Images Number of Classes k-Fold Cross Validation

Accuracy (%)
Accuracy of Unseen

Subject (%)

Khan et al. [30] Yes 40,029 No pain
8369 Pain 2 96.40

P. Rodriguez et al. [32] No - 2 83.00
Semwal and Londhe [9] No 16,000 4 [0,1,(2 + 3),(4 + 5+)] 94.00

Semwal and Londhe [33]
No + collected data of
10 patients suffering
from pain in a clinic

16,000 from
UNBC-McMaster +

16,460 from the
collected data

4 96.00

Vaish and Sagar [34] No - 4 91.87
Proposed approach No 6000 4 [0,1,2,3+] 99.10 90.65

To measure the impact of brightness and head rotation on the InceptionV3 with SGD
model, we applied the model on the three adjusted testing data (unseen subject) and
recorded the accuracy for each testing data. Table 6 shows the impact of illumination and
head rotation of the dataset on the InceptionV3 with SGD model’s accuracy, as compared to
its 90.65% accuracy on the original testing data. As Table 5 shows, increasing the brightness
dropped the accuracy by 00.81% while decreasing the brightness and the head rotation had
no negative effect on the efficiency of the model.
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Table 6. The impact of brightness and head rotation on the InceptionV3_SGD model.

Dataset Accuracy (%) Performance (%)

The brightened images 89.75 −00.81
The dimmed images 91.56 +00.91

The images with a slight rotation. 91.17 +00.52

To test the response time of our system, we ran FEAPAS four times, i.e., twice for each
frame selection approach using sequence length values (N = 30).

The experiment was conducted by playing the test videos on a screen and directing
the laptop’s webcam to the screen to mimic a real live feed. A stopwatch was used to record
the time, at which point the alarm was activated.

We tested the following four scenarios with a sequence length of N = 30. The middle
and boundary frame selection strategies with a segment length of 2∆ are as follows:

• One frame at each end of the sequence: two-boundary test frames: 2-B, ∆ = 1
• Two frames at the middle of the sequence: two-middle test frames: 2-M, ∆ = 1
• Two frames at each end of the sequence: four-boundary test frames: 4-B, ∆ = 2
• Four frames at the middle of the sequence: four-middle test frames: 4-M, ∆ = 2

Table 7 shows the impact of frame selection approach in response time. The larger
segment length required more frames to be classified, which thus led to longer response
time. Finishing classification at the middle or at the end of the sequence was an important
factor and should be considered in future studies. Moreover, 2-M-30 showed the lowest
average response time of 6.49 s, and 4-B-30 showed the highest average response time of
29.86 s.

Table 7. The response time in seconds for four running, where B denotes boundary testing and
M denotes middle testing. Further, [2–4] is the number of testing frames and [30] is the length of
sequence. For example, 4-B-30 indicated that the FEAPAS tested four frames on the boundary of the
sequence with 30 frames for each decision. If all four frames are classified as pain, then FEAPAS
activates the alarm and stores the tested frames/images with date, time, and pain level.

2-B-30 2-M-30 4-B-30 4-M-30

Video 1 32.97 12.34 40.38 15.93
Video 2 03.33 02.95 06.70 12.45
Video 3 07.05 06.09 07.76 06.11
Video 4 No alarm No alarm No alarm No alarm
Video 5 48.31 06.89 51.96 07.11
Video 6 No alarm No alarm No alarm No alarm

The average 27.68 6.49 29.86 6.61

Figure 10 shows the output of FEAPAS on video 1 by using the 2-B-30 selected frame
strategy. The FEAPAS stored the captured frames and classified them as pain before saving
the date and time with the pain level.
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6. Conclusions

We developed a new facial expression-based automatic pain assessment system to
monitor patients and assist in the pain evaluation process. The FEAPAS was designed
to recognize four classes: no pain, low pain, moderate pain, and severe pain. When a
patient is detected to be in pain, FEAPAS activates an alarm to allow the medical team to
take steps. While developing FEAPAS, we focused on two main criteria: (1) the system
should be precise enough to not miss any true alarm and (2) fast enough to catch the pain
situations and activate the alarm. Our proposed FEAPAS consisted of two subsystems each
using a modified pretrained CNN. The modification included freezing the convolutional
block and replacing the prediction layer with a shallow CNN. Each subsystem takes one
of the two systems’ inputs (i.e., the full face and the upper face). Among the 16 tested
model combinations (four pretrained CNN options, VGG16, InceptionV3, ResNet50, and
ResNeXt50, and four possible optimizers, SGD, ADAM, RMSprop, and RAdam), the
model with a InceptionV3 and the SGD optimizer excelled with an accuracy of 99.10%
on 10-fold cross-validation, and a 90.56% score on the unseen subject data. (Future work
should explore other optimizers to further improve system performance.) To speed up
the response time in FEAPAS and avoid unnecessary alarms caused by momentary facial
expressions, we classified few selected frames instead of classifying every single frame.
Further, we tested, two frame selection approaches (i.e., at the two ends of the sequence and
in the middle of the sequence) using sequence lengths of 30 frames with segment-lengths
of two and four frames, respectively. FEAPAS correctly classified six online videos with
1611 frames (four videos recorded the severe pain situation and two other videos recorded
the no pain situation) with an average response time of less than 30 s.
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FEAPAS application. All authors have read and agreed to the published version of the manuscript.
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