The Challenge of Long-Distance Over-the-Air Wireless Links in the Ocean: A Survey on Water-to-Water and Water-to-Land MIoT Communication
Abstract
:1. Introduction
2. Wireless Communication for Maritime Applications
2.1. Communication between Sensors and Relays
2.1.1. WiFi HaLow
2.1.2. Bluetooth Low Energy
2.1.3. ZigBee
2.1.4. SigFox
2.1.5. LoRaWAN
Attributes | Wi-Fi HaLow | BLE | ZigBee | SigFox | LoRaWAN |
---|---|---|---|---|---|
Data Rate 1 | 150 kbps | 125 kbps | 10 kbps | 100 bps | 250 bps |
Range | 1 km | 100 m | 14.5 km | 10 km | 15 km |
Battery life [10] | Years | Years | Years | Years | Years |
Network topology [10] | Star | P2P | Mesh | Star | Star |
Standard | IEEE 802.11ah | Bluetooth SIG | IEEE 802.15.4 | Proprietary | Proprietary |
Subscription-based [10] | No | No | No | Yes | Yes |
2.2. Communication to On-Shore Base Station
Data Rate | Range | |
---|---|---|
VHF [7] | 1.2 kbps | 120 km |
Long-range Wi-Fi [7] | 3 Mbps | 20–50 km |
LTE [7] | 7.6 Mbps | 10 km |
GSM/GPRS [27] | 168 kpbs | 2–35 km |
Iridium [23] | 176–704 kbps | worldwide |
Starlink [28] | 100+ Mbps | worldwide (expected) |
2.3. Long-Range, No-Line-of-Sight Communication
3. Examples of Maritime Internet of Things Networks in Applications
4. Architecture of the Maritime Internet of Things
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huo, Y.; Dong, X.; Beatty, S. Cellular Communications in Ocean Waves for Maritime Internet of Things. IEEE Internet Things J. 2020, 7, 9965–9979. [Google Scholar] [CrossRef] [Green Version]
- Faria, C.L.; Goncalves, L.M.; Martins, M.S.; Lima, R. Energy Harvesting to Increase the Autonomy of Moored Oceanographic Monitoring Stations. In Proceedings of the 2018 OCEANSMTS/IEEE Kobe Techno-Oceans (OTO), Kobe, Japan, 28–31 May 2018; pp. 1–5. [Google Scholar]
- Matos, T.; Faria, C.L.L.; Martins, M.S.S.; Henriques, R.; Gomes, P.A.A.; Goncalves, L.M.M. Development of a Cost-Effective Optical Sensor for Continuous Monitoring of Turbidity and Suspended Particulate Matter in Marine Environment. Sensors 2019, 19, 4439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamo, F.; Attivissimo, F.; Carducci, C.G.C.; Adamo, L. Erratum: A Smart Sensor Network for Sea Water Quality Monitoring (IEEE Sensors Journal). IEEE Sens. J. 2016, 16, 855. [Google Scholar] [CrossRef]
- Albaladejo Perez, C.; Soto Valles, F.; Torres Sanchez, R.; Jimenez Buendia, M.; Lopez-Castejon, F.; Gilabert Cervera, J. Design and Deployment of a Wireless Sensor Network for the Mar Menor Coastal Observation System. IEEE J. Ocean. Eng. 2017, 42, 966–976. [Google Scholar] [CrossRef]
- Martins, M.S.S.; Barardo, C.; Matos, T.; Goncalves, L.M.M.; Cabral, J.; Silva, A.; Jesus, S.M.M. High Frequency Wide Beam PVDF Ultrasonic Projector for Underwater Communications. In Proceedings of the OCEANS 2017, Aberdeen, UK, 19–22 June 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Chen, W.; Li, C.; Yu, J.; Zhang, J.; Chang, F. A Survey of Maritime Communications: From the Wireless Channel Measurements and Modeling Perspective. Reg. Stud. Mar. Sci. 2021, 48, 102031. [Google Scholar] [CrossRef]
- Yang, T.; Chen, J.; Zhang, N. AI-Empowered Maritime Internet of Things: A Parallel-Network-Driven Approach. IEEE Netw. 2020, 34, 54–59. [Google Scholar] [CrossRef]
- HMS Industrial Networks. Wireless Technologies for Industrial Communication; HMS Industrial Networks AB: Halmstad, Sweden.
- WiFi Alliance Wi-Fi HaLowTM: Wi-Fi® for IoT Applications. 2020. Available online: https://www.wi-fi.org/downloads-registered-guest/Wi-Fi_HaLow_White_Paper_20200518_0.pdf/36881 (accessed on 29 June 2021).
- WiFi Alliance Wi-Fi HaLowTM Technology Overview. Available online: https://www.wi-fi.org/downloads-registered-guest/Wi-Fi_CERTIFIED_HaLow_Technology_Overview_20211102.pdf/36879 (accessed on 29 June 2021).
- Rohde & Schzwarz From Cable Replacement to the IoT Bluetooth 5 White Paper. Available online: https://cdn.rohde-schwarz.com/pws/dl_downloads/dl_application/application_notes%5C%5C/1ma108/1MA108_3e_Bluetooth_WhitePaper%5C~1.pdf. (accessed on 21 June 2021).
- Digi International Demystifying 802.15.4 and ZigBee. Available online: http://www.mouser.com/pdfdocs/digi-wp_zigbee.pdf (accessed on 21 June 2021).
- Zigbee Protocol. Available online: https://www.sciencedirect.com/topics/engineering/zigbee-protocol (accessed on 29 June 2021).
- Digi DIGI XBEE SX 868. Available online: https://www.digi.com/products/embedded-systems/digi-xbee/rf-modules/sub-1-ghz-rf-modules/digi-xbee-sx-868 (accessed on 21 June 2021).
- Sigfox ETSI Mode White Paper. Available online: https://support.sigfox.com/docs/sigfox-device-etsi-mode-white-paper (accessed on 21 June 2021).
- Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. A Comparative Study of LPWAN Technologies for Large-Scale IoT Deployment. ICT Express 2019, 5, 1–7. [Google Scholar] [CrossRef]
- LoRa Alliance LoRaWAN Security–Full End-to-End Encryption for IoT Application Providers. Available online: https://pages.services/pages.lora-alliance.org/lorawan-security/ (accessed on 21 June 2021).
- Laird. Sentrius Series; Laird: London, UK, 2020. [Google Scholar]
- Lavric, A.; Popa, V. Performance Evaluation of LoRaWAN Communication Scalability in Large-Scale Wireless Sensor Networks. Wirel. Commun. Mob. Comput. 2018, 2018, 6730719. [Google Scholar] [CrossRef] [Green Version]
- LoRa Alliance A Technical Overview of LoRa ® and LoRaWANTM. Available online: https://lora-alliance.org/resource-hub/what-lorawantm (accessed on 21 June 2021).
- Woods, G.S.; Ruxton, A.; Huddlestone-Holmes, C.; Gigan, G. High-Capacity, Long-Range, Over Ocean Microwave Link Using the Evaporation Duct. IEEE J. Ocean. Eng. 2009, 34, 323–330. [Google Scholar] [CrossRef]
- Iridium Iridium Network. Available online: https://www.iridium.com/network/ (accessed on 1 July 2021).
- Iridium Iridium Core 9523. Available online: https://www.iridium.com/products/iridium-core-9523/ (accessed on 1 July 2021).
- Iridium Iridium 9602. Available online: https://www.iridium.com/products/iridium-9602/ (accessed on 1 July 2021).
- Mann, A.; Pultarova, T. Starlink: SpaceX’s Satellite Internet Project. Available online: https://www.space.com/spacex-starlink-satellites.html (accessed on 4 February 2022).
- Saad, C.; Mostafa, B.; Ahmadi, E.; Abderrahmane, H. Comparative Performance Analysis of Wireless Communication Protocols for Intelligent Sensors and Their Applications. Int. J. Adv. Comput. Sci. Appl. 2014, 5, 76–85. [Google Scholar] [CrossRef] [Green Version]
- McKetta, I. Starlink Expands but Q3 2021 Performance Flattens in Some Areas. Available online: https://www.speedtest.net/insights/blog/starlink-hughesnet-viasat-performance-q3-2021/ (accessed on 4 February 2022).
- Zainuddin, Z.; Wardi; Nantan, Y. Applying Maritime Wireless Communication to Support Vessel Monitoring. In Proceedings of the 2017 4th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), Semarang, Indonesia, 18–19 October 2017; pp. 158–161. [Google Scholar] [CrossRef]
- Jo, S.W.; Shim, W.S. LTE-Maritime: High-Speed Maritime Wireless Communication Based on LTE Technology. IEEE Access 2019, 7, 53172–53181. [Google Scholar] [CrossRef]
- Gricius, G.; Drungilas, D.; Andziulis, A.; Dzemydiene, D.; Voznak, M.; Kurmis, M.; Jakovlev, S. Advanced Approach of Multiagent Based Buoy Communication. Sci. World J. 2015, 2015, 569841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, F.; Sun, J. Integrated Marine Environment Observation System Based on Iridium Satellite Communication. In Lecture Notes in Electrical Engineering; Springer: Singapore, 2021; Volume 706, pp. 126–134. ISBN 9789811584572. [Google Scholar]
- Zaidi, K.S.; Jeoti, V.; Iqbal, A.; Awang, A. Feasibility of Trans-Horizon, High-Capacity Maritime Wireless Backhaul Communication Link. In Proceedings of the 2014 5th International Conference on Intelligent and Advanced Systems (ICIAS), Kuala Lumpur, Malaysia, 3–5 June 2014; pp. 2–7. [Google Scholar] [CrossRef]
- Iqbal, A.; Jeoti, V. Feasibility Study of Radio Links Using Evaporation Duct over Sea off Malaysian Shores. In Proceedings of the 2010 International Conference on Intelligent and Advanced Systems, Kuala Lumpur, Malaysia, 15–17 June 2010; Volume 10, pp. 2–6. [Google Scholar] [CrossRef]
- Pérez, C.A.; Jimenéz, M.; Soto, F.; Torres, R.; López, J.A.; Iborra, A. A System for Monitoring Marine Environments Based on Wireless Sensor Networks. In Proceedings of the OCEANS 2011 IEEE—Spain, Santander, Spain, 6–9 June 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Zhu, X.; Li, D.; He, D.; Wang, J.; Ma, D.; Li, F. A Remote Wireless System for Water Quality Online Monitoring in Intensive Fish Culture. Comput. Electron. Agric. 2010, 71, S3. [Google Scholar] [CrossRef]
- Wang, J.; Ren, X.; Shen, Y.; Liu, S. A Remote Wireless Sensor Networks for Water Quality Monitoring. In Proceedings of the 2010 International Conference on Innovative Computing and Communication and 2010 Asia-Pacific Conference on Information Technology and Ocean Engineering, Macao, China, 30–31 January 2010; pp. 7–12. [Google Scholar]
- Najafi-Jilani, A.; Nik-Khah, A. Development of Integrated Marine Monitoring Network on Southern Coastline of Caspian Sea. Int. J. Nav. Archit. Ocean Eng. 2011, 3, 136–140. [Google Scholar] [CrossRef] [Green Version]
- Menon, G.S.; Ramesh, M.V.; Divya, P. A Low Cost Wireless Sensor Network for Water Quality Monitoring in Natural Water Bodies. In Proceedings of the 2017 IEEE Global Humanitarian Technology Conference (GHTC), San Jose, CA, USA, 19–22 October 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Lu, H.; Cheng, C.; Cheng, S.; Lo, W.; Cheng, Y.; Nan, F.; Chang, S. A Low-Cost Buoy System with Artificial Intelligence (AI) for Offshore Aquaculture. In Proceedings of the 2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Hualien City, Taiwan, 16–19 November 2021; pp. 2021–2022. [Google Scholar]
- Kageyama, T.; Miura, M.; Maeda, A.; Mori, A.; Lee, S.S. A Wireless Sensor Network Platform for Water Quality Monitoring. In Proceedings of the 2016 IEEE Sensors, Orlando, FL, USA, 30 October–3 November 2016; pp. 31–33. [Google Scholar] [CrossRef]
- Kim, H.; Sewaiwar, A.; Chung, Y. Maritime Visible Light Communication with Sea Spectrum Models. Int. J. Commun. 2015, 9, 67–70. [Google Scholar]
- Cho, H.; Yu, S.C. Performance Evaluation of a Long-Range Marine Communication System for Fishing Buoy Detection. In Proceedings of the 2019 IEEE Underwater Technology (UT), Kaohsiung, Taiwan, 16–19 April 2019. [Google Scholar] [CrossRef]
- Cho, H.; Yu, S.C. Development of a Long-Range Marine Communication System for Fishery Buoy Searching. In Proceedings of the OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 22–25 October 2018; pp. 8–12. [Google Scholar] [CrossRef]
- Teixeira, F.B.; Oliveira, T.; Lopes, M.; Leocádio, C.; Salazar, P.; Ruela, J.; Campos, R.; Ricardo, M. Enabling Broadband Internet Access Offshore Using Tethered Balloons: The BLUECOM+ Experience. In Proceedings of the OCEANS 2017—Aberdeen, Aberdeen, UK, 19–22 June 2017; pp. 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kageyama, T.; Miura, M.; Maeda, A.; Mori, A.; Lee, S.S. Improvement of the Sensor Node for Wireless Sensor Network System to Monitor Natural Water Quality. In Proceedings of the 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Singapore, 22–26 April 2018; pp. 553–556. [Google Scholar] [CrossRef]
- Song, Y.; Shin, H.; Koo, S.; Baek, S.; Seo, J.; Kang, H.; Kim, Y. Internet of Maritime Things Platform for Remote Marine Water Quality Monitoring. IEEE Internet Things J. 2021, 4662, 1–13. [Google Scholar] [CrossRef]
- Mashino, J.; Tateishi, K.; Muraoka, K.; Kurita, D.; Suyama, S.; Kishiyama, Y. Maritime 5G Experiment in Windsurfing World Cup by Using 28 GHz Band Massive MIMO. In Proceedings of the 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy, 9–12 September 2018; pp. 1134–1135. [Google Scholar] [CrossRef]
- Zhou, M.; Hoang, V.; Harada, H.; Pathmasuntharam, J.; Wang, H.; Kong, P.; Ang, C.; Ge, Y.; Wen, S. TRITON: High-Speed Maritime Wireless Mesh Network. IEEE Wirel. Commun. 2013, 20, 134–142. [Google Scholar] [CrossRef]
- Silva, S.; Nguyen, H.N.; Tiporlini, V.; Alameh, K. Web Based Water Quality Monitoring with Sensor Network: Employing ZigBee and WiMax Technologies. In Proceedings of the 8th International Conference on High-capacity Optical Networks and Emerging Technologies, Riyadh, Saudi Arabia, 19–21 December 2011; pp. 138–142. [Google Scholar] [CrossRef]
- Lopes, M.J.; Teixeira, F.; Mamede, J.B.; Campos, R. Wi-Fi Broadband Maritime Communications Using 5.8 GHz Band. In Proceedings of the 2014 Underwater Communications and Networking (UComms), Sestri Levante, Italy, 3–5 September 2014; pp. 5–9. [Google Scholar] [CrossRef]
- Sendra, S.; Parra, L.; Lloret, J.; Jiménez, J.M. Oceanographic Multisensor Buoy Based on Low Cost Sensors for Posidonia Meadows Monitoring in Mediterranean Sea. J. Sens. 2015, 2015, 920168. [Google Scholar] [CrossRef] [Green Version]
Reference | Communication | Implementation | |
---|---|---|---|
Nodes to Coordinator | To Base Station | ||
[4] | GSM/2.4 GHz ISM | Field tests (Italy, Sea) | |
[5,35] | ZigBee | GPRS | Field tests (Spain, Sea) |
[29] | LR Wi-Fi | Field tests (Indonesia, Sea) | |
[30] | LTE | Field tests (Korea, Sea) | |
[31] | Zigbee | GSM | Field tests (Lithuania, Sea) |
[32] | Iridium | Field tests (China, Sea) | |
[36] | Wi-Fi | Field tests (aquaculture tanks) | |
[37] | ZigBee | CDMA | Field tests (China, Lake) |
[38] | Satellite VHF/UHF | Wire | Field tests (Iran, Sea) |
[39] | LoRaWAN, 4G, Wi-Fi, ZigBee | Field tests (India, River) | |
[40] | LoRaWAN | Lab tests | |
[41] | 3G | Field test (Japan, Lake) | |
[42] | VLC (visible light communication) | Simulation | |
[43,44] | LoRaWAN | Field tests (Korea, Sea) | |
[45] | IEEE 802.11a/g/n/ac and GPRS/LTE | IEEE 802.11g | Field tests (Portugal, Ocean) |
[46] | ZigBee | 3G | Field tests (Japan, Lake) |
[47] | Wi-Fi/LoRaWAN | Field tests (Korea, Sea) | |
[48] | 5G | Field tests (Japan, Sea) | |
[49] | IEEE 802.16 (5.8 GHz) | Field tests (Singapore, Sea) | |
[50] | ZigBee | WiMax | Lab tests (man-made lake) |
[51] | IEEE 802.11n (5.8 GHz) | Field tests (Portugal, Sea) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinis, H.; Rocha, J.; Matos, T.; Gonçalves, L.M.; Martins, M. The Challenge of Long-Distance Over-the-Air Wireless Links in the Ocean: A Survey on Water-to-Water and Water-to-Land MIoT Communication. Appl. Sci. 2022, 12, 6439. https://doi.org/10.3390/app12136439
Dinis H, Rocha J, Matos T, Gonçalves LM, Martins M. The Challenge of Long-Distance Over-the-Air Wireless Links in the Ocean: A Survey on Water-to-Water and Water-to-Land MIoT Communication. Applied Sciences. 2022; 12(13):6439. https://doi.org/10.3390/app12136439
Chicago/Turabian StyleDinis, Hugo, João Rocha, Tiago Matos, Luís M. Gonçalves, and Marcos Martins. 2022. "The Challenge of Long-Distance Over-the-Air Wireless Links in the Ocean: A Survey on Water-to-Water and Water-to-Land MIoT Communication" Applied Sciences 12, no. 13: 6439. https://doi.org/10.3390/app12136439
APA StyleDinis, H., Rocha, J., Matos, T., Gonçalves, L. M., & Martins, M. (2022). The Challenge of Long-Distance Over-the-Air Wireless Links in the Ocean: A Survey on Water-to-Water and Water-to-Land MIoT Communication. Applied Sciences, 12(13), 6439. https://doi.org/10.3390/app12136439