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Abstract: This study aimed to compare the dosimetric effect of traditional metallic ports and radio
frequency identification (RFID) ports (Motiva Flora®) on post-mastectomy volumetric modulated
arc therapy (VMAT) planning for left-sided breast cancer. Computed tomography (CT) simulation
was performed on an anthropomorphic torso phantom by attaching two types of tissue expander
on the left chest wall. For the comparison of CT artifacts, five points of interest were selected and
compared: point A = central chest wall, B = medial chest wall, point C = lateral chest wall, point
D = axilla, and point E = left anterior descending artery. VMAT planning using two partial arcs with
a single isocenter was generated, and dosimetric parameters were investigated. Compared to metallic
ports, RFID ports tremendously decreased distortion on CT images, with the exception of point D.
The V5Gy, V10Gy, V15Gy, V20Gy, V30Gy, and Dmean values of the heart in RFID ports were lower than
those in metallic ports. The V5Gy, V15Gy, V20Gy, V30Gy, and Dmean values of the ipsilateral lung in
RFID ports were also lower than those in metallic ports. RFID ports showed superior dosimetric
results for doses to the heart and lungs as compared to that in metallic ports.

Keywords: tissue expander; breast cancer; radiotherapy; volumetric modulated arc therapy

1. Introduction

Breast reconstruction is a cosmetic option for patients receiving mastectomy. Since the
introduction of breast implants as an option for immediate breast reconstruction following
mastectomy in the 1960s, the use of prostheses has exceeded that of autologous tissue
reconstruction in the early 2000s [1]. The most commonly practiced form of implant-
based breast reconstruction to date is the two-stage rather than single-stage direct-to-
implant reconstruction [2]. The two-stage prosthetic breast reconstruction process involves
insertion of a tissue expander into the pocket created after mastectomy. The expander
undergoes saline inflation to stretch the dimensions of the retained skin envelope and to
avoid wound contraction during wound maturation. Once the skin is sufficiently stretched,
the expanders are removed and replaced with breast implants. Moreover, the development
of tissue expanders by Radovan has created new possibilities in immediate and delayed
reconstructions [3,4]. Currently, more than 70% of all breast reconstruction cases are implant-
based, which has become the most popular method of breast reconstruction following
mastectomy [5–7].

Post-mastectomy radiation therapy (PMRT) is often delivered to patients who undergo
breast reconstruction using temporary tissue expanders (TEs). Most traditional TEs contain
an injection port, which commonly consists of a metal needle guide and a central magnet
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that aids in locating the injection site. However, since dose distribution is calculated on
computed tomography (CT), these high-density materials may lead to altered dosimetry
and inaccurate dose distribution during RT planning [8]. Recently, TEs that make use of a
radio frequency identification (RFID) port have been developed (Motiva Flora®), which
have replaced ferromagnetic materials with copper rings and metal needle guides with
plastic. Therefore, it can be assumed that these structural differences will reduce the
distortion of CT images and improve the accuracy of the dose calculation algorithms. As
such, there is a need to dosimetrically study strategies designed to reduce the effect of
metallic ports.

The purpose of this study was to compare the dosimetric effect of traditional metallic
ports and RFID ports on post-mastectomy volumetric modulated arc therapy (VMAT)
planning for left-sided breast cancer.

2. Materials and Methods
2.1. Tissue Expander

To evaluate the dosimetric effect of metallic and RFID ports on post-mastectomy
VMAT planning, two products were tested: a conventional TE with a magnetic port and
a magnet-free TE with an RFID port (Motiva Flora® TE (Establishment Labs®, Alajuela,
Costa Rica)). Compared to magnet ports, RFID ports offer conditional magnetic resonance
imaging (MRI) compatibility, thereby reducing the frequently encountered artifacts in
conventional TEs [9]. The characteristics of each port are summarized in Table 1, and the
schematic diagram of the RFID port is shown in Figure 1.

Table 1. Characteristics of breast tissue expanders.

Parameter Traditional Expander Motiva Flora®

Identification of port location Magnet RFID coil
Material Neodymium Copper
Density 7.01 g/cm3 8.96 g/cm3

Diameter 13.3 mm * Outer: 24.7 mm
Inner: 20.3 ± 0.2 mm

Height 4.4 mm * 2.150 ± 0.1 mm

Needle guide
Material Stainless steel Polyetheretherketone
Density 7.5~8 g/cm3 1.3 g/cm3

Diameter 36.5 mm *
Dome: 40.1 mm *,

Needle stop: 26.8 mm *
Base: 42.5 mm *

Height 10.0 mm * 12.9 mm *
Thickness 2.1 mm * 1.5 mm *

* Average value of five individual measurements. RFID, radio frequency identification device.

2.2. Computed Tomography Simulation

CT simulation was performed on an anthropomorphic torso phantom (CT torso phan-
tom CTU-41, Kyoto Kagaku America Inc., Torrance, CA, USA) using a Philips Brilliance CT
scanner (Philips Medical Systems, Cleveland, OH, USA) (Figure 2). This was used since
phantom materials with radiation absorption approximates to human tissue (heart, aorta,
and vena cava: 40 Hounsfield unit (HU); pulmonary vessels: 8 HU; rib cartilage: 90 HU;
and liver: 70 HU) and allows scanning under actual clinical settings. To reproduce TE
insertion following mastectomy, a male phantom was used with two types of TE, which
were equally set to 345 cc and attached on the left chest wall. TEs were adjusted to be in
the same position by referring to three-plane CT imaging. Afterwards, 2.5 mm thick axial
images were acquired for RT planning. To reduce CT artifacts caused by the metal implants,
a commercial metal artifact reduction for orthopedic implants (O-MAR, Philips Medical
Systems, Cleveland, OH, USA) was also applied to the CT images.
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Figure 2. Computed tomography simulation. A tissue expander was attached to the left chest wall of
the phantom.

2.3. Radiation Therapy Planning

Delineation of the clinical target volume and planning target volume (PTV) was
carried out by a physician (M.K.) in accordance to the European Society of Therapeutic
Radiology and Oncology-Advisory Committee for Radiation Oncology Practice (ESTRO-
ACROP) guidelines [10]. The whole heart was delineated superiorly, starting inferior to
the left pulmonary artery and inferiorly blending with the diaphragm [11]. RT planning
was performed using the EclipseTM treatment planning system for HalcyonTM (Varian
Medical Systems, Palo Alto, CA, USA). The prescription dose to PTV, which was 50 Gy
in 25 fractions, was given at the isodose line, encompassing at least 95% of the PTV while
limiting maximum doses to less than 107%. Furthermore, the heart, ipsilateral lung,
contralateral lung, whole lung, and contralateral breast were delineated as organs at
risk (OAR).
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Dose constraints were prescribed based on institutional guidelines (heart: V30Gy
(volume receives 30 Gy) < 5%, Dmean (mean dose) < 5 Gy; contralateral breast: Dmean < 3 Gy;
ipsilateral lung: Dmean < 7 Gy; contralateral lung: Dmean < 3 Gy; whole lung V20Gy < 10%,
Dmean < 5 Gy). A 5 mm thick bolus was created and placed on the surface of the TEs for
each CT image using the EclipseTM treatment planning system.

VMAT planning using two partial arcs (collimator angle: 130–285) with a single
isocenter was generated using a 6 MV flattening-filter-free photon beam with a maximum
dose rate of 800 MU/min. The VMAT plan was further optimized using the Eclipse
photon optimization algorithm, and the Acuros XB algorithm (version 16.1) was used for
dose calculation.

2.4. Computed Tomography Image Analysis

To compare CT artifacts, five points of interest were selected by the physician:
point A = central chest wall, point B = medial chest wall, point C = lateral chest wall,
point D = axilla, and point E = left anterior descending artery (LAD). The main target
volume of PMRT is the chest wall (Points A, B, and C). The axillary lymph nodes are often
the location most affected by breast cancer and are represented by point D as axilla level I.
Radiation dose to LAD is possible risk factor for cardiac complication. Although it was not
possible to contour the LAD exactly, it was contoured to represent the position in relation to
human anatomy. The HUs of each point were measured on 10 consecutive slices (Figure 3),
and the average HU between the RFID and metallic ports were compared. Using a 10 mm
diameter cursor on each slice, the corresponding reference CT numbers within the points
were determined on the phantom without the tissue expanders to prevent metal artifacts
on the same image set. The HUs were measured on the same CT images as described in
Section 2.3 without bolus insertion.
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Figure 3. An example of the CT image (a) RFID port, (b) metallic port analysis using the five reference
points; point A—central chest wall (blue), point B—medial chest wall (green), point C—lateral chest
wall (yellow), point D—axilla (red), point E—left anterior descending artery (brown).

2.5. Assessment of Plan Quality

As proposed by the Radiation Therapy Oncology Group (RTOG), the homogeneity
index (HI), conformity index (CI), and quality of coverage (QOC) were used to evaluate
dose distribution, which represents the conformance between the prescription dose and
PTV, the degree of uniformity inside the PTV, and the dose fall-off outside the PTV [12]. HI
was calculated with the formula: HI = Imax/RI, where Imax is the maximum isodose in the
target, and RI is the reference isodose. CI was calculated with the formula: CI = VRI/TV,
where VRI is the reference isodose volume, and TV is the target volume. Lastly, QOC was



Appl. Sci. 2022, 12, 6461 5 of 9

calculated with the formula: QOC = Imin/RI, where Imin is the minimum isodose in the
target. Parameters for OAR were also compared.

2.6. Statistical Analysis

To compare the parameters between the RFID and metallic ports, the percentage
difference was calculated, which was defined as the absolute value of the change in value
divided by the average of the two values as seen in Equation (1). The HU differences were
calculated using Equation (2).

% difference = |Value 1 − Value 2| ÷ ([Value 1 + Value 2]/2) × 100 (1)

HU difference = HU in CT without tissue expander − HU in CT with tissue expander. (2)

The quality of CT images was compared using the Wilcoxon signed-rank tests. For all
statistical analyses, the IBM SPSS Statistics for Windows, version 25.0 (IBM Corp., Armonk,
NY, USA) was used, and results were considered statistically significant at p < 0.05.

3. Results

Table 2 summarizes the results of CT image analysis. As compared with metallic ports,
RFID ports tremendously decreased the distortion on CT images, with the exception of
point D (axilla). In point E (LAD), the average HU difference for the reference values of
the RFID and metallic ports were −2.86 (p = 0.059) and −15.16 (p = 0.005), respectively.
In addition, both ports showed statistically significant average HU differences for the
reference values in points A, B, and C on the chest wall.

Table 2. Comparison of Hounsfield units.

Points of the Reference ROIs

RFID Port Metallic Port

Averaged HU Averaged HU
Difference p-Value Averaged HU Averaged HU

Difference p-Value

A (central chest wall) −2.73 −18.33 0.043 118.57 −139.63 0.007
B (medial chest wall) −19.36 8.17 0.028 −34.62 23.43 0.017
C (lateral chest wall) −37.36 14.93 0.028 −74.37 51.94 0.005
D (axilla) −0.92 −15.14 0.005 −12.32 −3.74 0.169
E (left anterior descending artery) 32.41 −2.86 0.059 44.71 −15.16 0.005

ROI, region of interest; RFID, radio frequency identification device; HU, Hounsfield unit.

Table 3 summarizes the results of the dosimetric parameters for PTVs and OARs
between the RFID and metallic ports. Dose distributions for the RFID and metallic ports
in the axial view are shown in Figure 4. The volumes of PTVRFID and PTVmagnet were
921.65 cm3 and 951.9 cm3, respectively. The optimization algorithm was balanced for
the PTV coverage, and planned PTV coverage for both the metallic and RFID ports was
acceptable. The percentage differences between HI, CI, QOC, and V95 of the PTV for
both ports narrowly ranged from 0 to 2.19. However, V107 of the PTV was 71.70% for
RFID ports and 80.80% for metallic ports, indicating a percentage difference of 11.93. The
V5Gy, V10Gy, V15Gy, V20Gy, V30Gy, and Dmean values of the heart in the RFID ports were
lower than those in the metallic ports. Specifically, the percentage differences between the
RFID and metallic ports was 25.97 (22.91% vs. 29.75%) for V5Gy, 54.66 (6.54% vs. 11.46%)
for V10Gy, 56.84 (2.77% vs. 4.97%) for V15Gy, 65.70 (1.39% vs. 2.75%) for V20Gy, 98.90
(0.23% vs. 0.68%) for V30Gy, and 18.66 (4.08 Gy vs. 4.92 Gy) for Dmean. Similarly, the V5Gy,
V15Gy, V20Gy, V30Gy, and Dmean values of the ipsilateral lung in the RFID port were also
lower than those in the metallic port. For the ipsilateral lung, the percentage differences
between the RFID and metallic ports was 7.41 (36.08% vs. 38.86%) for V5Gy, 13.63 (12.85%
vs. 14.73%) for V15Gy, 14.47 (7.50% vs. 8.67%) for V20Gy, 23.16 (1.87% vs. 2.36%) for V30Gy,
and 7.62 (6.94 Gy vs. 7.62 Gy) for Dmean. Our results showed that higher VDGy values were
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associated with greater percentage differences in the heart and ipsilateral lung. Dose-
volume histogram for PTV and OARs in RT plans of both RFID port and metallic port are
shown in Figure 5.

Table 3. Assessment of plan quality.

Parameter RFID Port Metallic Port Percentage Difference

PTV
HI 1.31 1.32 0.76
CI 0.95 0.95 0
QOC 0.92 0.90 2.19
V95, % 98.40 98.10 0.30
V107, % 71.70 80.80 11.93

Heart
V5Gy, % 22.91 29.75 25.97

V10Gy, % 6.54 11.46 54.66
V15Gy, % 2.77 4.97 56.84

V20Gy, % 1.39 2.75 65.70
V30Gy, % 0.23 0.68 98.90
Dmean, Gy 4.08 4.92 18.66

Ipsilateral lung
V5Gy, % 36.08 38.86 7.41
V15Gy, % 12.85 14.73 13.63
V20Gy, % 7.50 8.67 14.47
V30Gy, % 1.87 2.36 23.16
Dmean, Gy 6.43 6.94 7.62

Contralateral lung
Dmean, Gy 2.44 2.51 2.82

Whole lung
V20Gy, % 3.69 4.25 14.10

Dmean, Gy 4.40 4.68 6.16
Contralateral breast
Dmean, Gy 2.58 2.68 3.80

RFID, radio frequency identification device; PTV, planning target volume; HI, homogeneity index; CI, conformity
index; QOC, quality of coverage; VD, percentage volume receiving D% of the prescribed dose; VDGy, percentage
volume of a given structure receiving a radiation dose of D Gy; Dmean, mean dose.
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4. Discussion

Our study compared two types of tissue expanders: those with traditional metallic
injection ports and those with RFID ports. We focused on how the dose of RT affected the
heart in left-sided breast cancer. We also analyzed how different types of injection ports
influenced RT planning and how the dosimetry affected the surrounding normal tissues.
In comparison to the metallic ports, the RFID ports showed superior results in terms of RT
doses to the heart and lungs as well as in the dosimetric factors related to the target volume.

Currently, most RT planning systems have been developed for CT. However, in the
presence of metal implants within or around the target volume, metal artifacts may affect the
accuracy required for dose calculation. In fact, many authors have reported on the effects
of metallic ports on PMRT. Damast et al. [13], for one, reported their preference of using a
permanent implant over TE due to the potential dosimetric effects. Their investigation of
single-beam film dosimetry showed that the Magna-Site may attenuate a standard 6 MV
photon beam by as much as 22% and a 15 MV beam by 16%. Considering the difference
in beam attenuation despite the minimal volume of tissue affected, they recommended
the use of a 15 MV photo beam rather than a 6 MV photon beam. Asena et al. [14] also
reported reductions of approximately 20% in the photon tangent treatment and 56% in
electron boost fields immediately downstream of the implants with magnetic disks.

When treating patients with left-sided breast cancer, measures should be taken to
reduce the dose to the heart, as this may increase the risk of heart diseases [15–19]. In
addition to this, the present study analyzed the RT doses to the surrounding critical organs.
On analysis, RFID ports showed superior results for the doses to the heart and lungs,
supporting the notion to keep radiation dose to the heart as low as reasonably achievable.
Although metal artifacts vary depending on the size and composition of the metallic port
inside the TE, RIFD ports make use of copper rings instead of a solid magnet, thereby
reducing the metal volume. Moreover, the RFID ports in this study uses a plastic material,
polyetheretherketone (PEEK), as the needle guide, which differs from the stainless steel in
conventional TEs. As PEEK has a relatively lower HU than other metals, this potentially
reduces the artifacts on CT imaging [20].

Despite these findings, one limitation of the study is that a phantom was used for
analysis, which does not accurately reflect the varying chest contours and distance between
the heart and target volume in actual practice. Therefore, the comparison of RFID and
metallic ports should be further applied and analyzed in different clinical situations. An-
other limitation was that the metal artifacts were not completely eliminated despite the use
of O-MAR.
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5. Conclusions

The RFID ports (Motiva Flora®) showed superior dosimetric results for doses to
the heart and lungs, as compared to traditional metallic ports. Given that PMRT are
usually for patients with more advanced breast cancer, minimizing damage to surrounding
healthy tissues is more critical. It is expected that risk of side effects may be reduced by
decreasing the radiation dose to the heart and lungs by applying an RFID port. However,
further studies are needed to assess how RFID ports may affect different types of radiation
techniques and clinical outcomes.
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