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Abstract: As the large amount of video surveillance data floods into cloud data center, achieving load
balancing in a cloud network has become a challenging problem. Meanwhile, we hope the cloud data
center maintains low latency, low consumption, and high throughput performance when transmitting
massive amounts of data. OpenFlow enables a software-defined solution through programing to
control the scheduling of data flow in the cloud data center. However, the existing scheduling
algorithm of the data center cannot cope with the congestion of the network center effectively. Even
for some dynamic scheduling algorithms, adjustments can only be made after congestion occurs.
Hence, we propose a proactive and dynamically adjusted mixed-flow load-balanced scheduling
(MFLBS) algorithm, which not only takes into account the different sizes of flows in the network but
also maintains maximum throughput while balancing the load. In this paper, the MFLBS problem
was formulated, along with a set of heuristic algorithms for real-time feedback and adjustment.
Experiments with mesh and tree network models show that our MFLBS is significantly better than
other dynamic scheduling algorithms, including one-hop DLBS and static scheduling algorithm
FCFS. The MFLBS algorithm can effectively reduce the delay of small flows and average delay while
maintaining high throughput.

Keywords: software-defined network; cloud data center; hybrid scheduling; real-time systems;
network topology

1. Introduction

With the support of the internet of things (IoT) and cloud computing, new-generation
information systems have gained increasing prominence in recent decades. Among them,
intelligent video surveillance applications require massive computing and storage re-
sources [1–7] to offer a high quality of service. However, the complexity of video surveil-
lance task and the diversity of data in different dimensions, such as volume, variable, and
velocity, inevitably cause a heavy burden on the network. Therefore, with a large amount
of video surveillance data flooding to the cloud center, cloud data center networks are
facing increasing data transmission problems [8]. At this time, the network throughput
has become the bottleneck of video surveillance transmitting massive data. What needs
to be solved urgently is the issue of traditional hardware devices and static scheduling
algorithms finding it difficult to handle the transmission task for such massive amounts
of information. The emergence of software-defined networking (SDN) [9] solves the prob-
lems of traditional hardware, which is non-programable. SDN uses methods including
centralization of network control and separation of control logic and underlying switches,
allowing researchers to use related technologies (OpenFlow [10]) to focus on the network
flow scheduling algorithm to meet different needs.

One of the highly recognized schemes is load-balanced scheduling [11]. Load-balanced
scheduling increases the network throughput and reduces the end-to-end delay of the
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flow by balancing the traffic transmitted on the network link. Dynamic load-balanced
scheduling algorithms can better adapt to the real-time changing state of the network
when compared with the inextensibility of traditional static scheduling algorithms [12].
Nowadays, some load-balanced scheduling algorithms have been proposed for data center
networks [13,14]. Nevertheless, some of these algorithms only care about the overall
throughput of the network and perform the same processing for all flows in the network [15].
Not specifically considering the characteristics of different flows results in high latency for
small flows in some conditions. Furthermore, some of the dynamic adjustment algorithms
rely on the corresponding feedback mechanism after the network is blocked. Therefore,
the performance of the network is closely related to the selected corresponding threshold,
which is a critical value defined by different articles to measure network performance [12].
A relatively low threshold will add extra overhead to the network, whereas a relatively high
threshold will not significantly alleviate the network congestion. The algorithm is passive
if it only adjusts when it meets the congestion threshold. In a word, the diversity and
uncertainty of network tasks lead to more complex scientific problems. A single strategy
cannot achieve the goal well, so a composite adaptive method is needed.

Inspired by the above situation, the MFLBS algorithm is designed to prevent network
congestion through a proactive scheduling mechanism and dynamically adjusted on rout-
ing and bandwidth allocation in real time to maximize network throughput and reduce
delay, according to the network situation. We split the entire network into two sub-nets:
first, tune into the dynamic routing network of the flow to balance the network load and
take into account the delay of the small flow, and then, enter the static routing network
to actively prevent network congestion, according to the network status. Meanwhile, the
MFLBS algorithm is tested in the widely used tree and mesh network topologies [16] to
observe its universality. The specific contributions of this article are as follows:

• A new cloud data center scheduling algorithm (MFLBS) is proposed and formulated
to achieve the goal of maximizing throughput.

• Considering the characteristics of both large and small flows, we integrate active
congestion control and real-time dynamic scheduling methods, and originally divide
the traditional network into two sub-nets, performing network transmission according
to the characteristics of different streams and different stages of scheduling. The two
sub-nets can adjust the bandwidth allocation ratio V(α) on each link according to
different transmission tasks and topological structures.

• A heuristic algorithm is designed for the MFLBS problem and tested on two highly
versatile network topologies: the partial mesh model and the three-layer non-blocking
fully populated network model.

• A simulation experiment is designed for the cloud data center, and the MFLBS al-
gorithm is compared with two other algorithms: the dynamic scheduling algorithm
one-hop DLBS [17] and the static load-balanced scheduling algorithm FCFS [18]. The
result proves that our algorithm can significantly improve the throughput and effec-
tively reduce the average delay of the flow.

The remaining content of the article is as follows. Section 2 reviews related work, and
Section 3 details the network model of the data center used in this article and formulates
the MFLBS problem. The scheduling mechanism of the two sub-nets and our MFLBS
algorithm is described in Section 4. Subsequently, designs of the simulations are put
forward in Section 5 to test the MFLBS algorithm and compare the MFLBS algorithm with
other scheduling algorithms. Finally, Section 6 includes the summary of our research and
future work.

2. Related Work

Flow scheduling has always been a popular research direction in the network. In the
following section, we will review the different research results obtained by the predecessors.
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2.1. Flow Scheduling

Existing algorithms can be roughly divided into static scheduling and dynamic
scheduling algorithms, according to whether they can feedback the network status in
real time and perform corresponding adjustments. Static algorithms, such as the classic
FCFS algorithm, have been developed and applied in different scenarios. J. P. Champati
et al. studied the distribution of AOI in two-hop WNCS in Ref. [18] and devised a problem
of minimizing the tail of the AoI distribution with respect to the frequency of generating
information updates, i.e., the sampling rate of monitoring a process, under first-come-first-
serve (FCFS) queuing discipline. The Baraat system designed by Dogar F R et al. [19],
although based on the static scheduling algorithm FIFO, combined with the task-aware
network, is a typical dynamic scheduling scheme.

With the diversification of transmission tasks and requirements, more and more
researchers turn their attention to achieving superior performance through the innovation
of transmission units. The author puts forward PRISM in Ref. [20], a fine-grained perception
of the MapReduce scheduler, and divides it into stages to improve the resource utilization of
Hadoop when the job is running. Y. Wang et al. [21] considered the budget and deadline of
the MapReduce job and designed a task-level scheduling algorithm based on this constraint.
Having successfully optimized a cost-effective budget through the greedy strategy, F.
Carpio et al. proposed a new load-balancing solution: DiffFlow [22]. This is a mechanism
to forward packets by distinguishing long and short streams and using random packet
spraying (RPS) with the help of SDN. However, this situation will potentially lead to a
disorderly arrival of data packets.

Moreover, researchers can also design algorithms with better performance by design-
ing different underlying frameworks. Li and Xu [23] classified the load-balancing strategies
in SDN based on different architectures. In the centralized architecture, a controller man-
ages the connected network devices to concentrate the load-balancing work on the data
plane. In the distributed architecture, multiple controllers are used to exchange and connect
to each device, or studies such as Refs [24,25] improve their goals by using MPTCP from
the perspective of network protocol.

In a word, researchers have explored different angles and methods to improve the
performance of network transmission, and most of the mainstream research is based
on OpenFlow.

2.2. OpenFlow-Based Schemes

As a popular technology in software-defined networking, OpenFlow is used by re-
searchers as the basis to achieve more innovative integrations. F. Tang et al. [17] used the
calculation of the link threshold congestion to perform global dynamic rerouting and trans-
ferred the largest flow from the link that exceeded the threshold. Therefore, two algorithms
called DLBS are proposed to adapt to different tree structures. This method with load
balancing as the goal improves the utilization of network bandwidth. X. Cao et al. intro-
duced SDN/OpenFlow technology into the complex and difficult-to-control ops network
and proposed an OF-OPS network structure combined with the OpenFlow control process.
Through the perception of competition for tasks in the network, the routing/rerouting
strategy is combined to distribute traffic under the premise of load balancing [26].

With the development of cloud computing, the problem of data center traffic transmis-
sion has also become a research hotspot. Hedera [27] is a representative centralized control
scheduling system to dynamically manage the flow and effectively improve the utilization
of resources. Chowdhury M. [28] proposed a data-intensive framework Varys, combining
Coflows and effective heuristics (SEBF) to improve network utilization and ensure freedom
of starvation. Ramos R. M. proposes SlickFlow [29], a flexible routing method based on
OpenFlow for fast error recovery. This mechanism simplifies the forwarding task in the
switch and can effectively recover from failures. In [30], considering that streaming media
requires a lot of resources, R. Bhattacharyya et al. develop QFlow, a platform that standard-
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izes this feedback loop and initiates a variety of control policies over it. The experiments
on YouTube verify its high-quality service guarantee.

In summary, the existing algorithms based on flow scheduling cannot actively control
network congestion. The static algorithm has insufficient scalability, only executing the
scheduling algorithm at the beginning of the transmission, which cannot adapt well to
the real-time changing network state. The existing dynamic load-balanced algorithms can
provide adjustment locally or even globally, but they can only adjust a network that has
reached the performance bottleneck after the fact, according to the feedback mechanism. A
single strategy cannot achieve the goal well, so a composite adaptive method is needed.
Our work focuses on dynamic load-balancing algorithms for proactive congestion control.

3. Network Model and Problem Statement

We firstly introduce two common network models used in our experiments and then
formulate the mixed-flow load-balanced scheduling (MFLBS) problem.

3.1. Network Model

We model the cloud data center as an undirected graph G = <V, E>, where V is the
collection of all switches s and hosts h in the network, and E is the collection of links
connecting these switches and hosts. All links adopt a full-duplex communication mode,
which means that data can be simultaneously transmitted on the same link.

Considering the actual application and the simulation of network performance, we
adopt the following two models accepted by most researchers [31–34].

The first one is the network center model with three-tier architecture. h1~h8 are
clients and nodes that generate data transmission tasks. s1~s10 are switches, forming a
hierarchical inter-networking model with core layer, convergence layer, and access layer.
This three-layer non-blocking fully populated network is at the center of today’s network.
It has a wide range of applications [35], shown in Figure 1.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 20 
 

combining Coflows and effective heuristics (SEBF) to improve network utilization and 

ensure freedom of starvation. Ramos R. M. proposes SlickFlow [29], a flexible routing 

method based on OpenFlow for fast error recovery. This mechanism simplifies the for-

warding task in the switch and can effectively recover from failures. In [30], considering 

that streaming media requires a lot of resources, R. Bhattacharyya et al. develop QFlow, a 

platform that standardizes this feedback loop and initiates a variety of control policies 

over it. The experiments on YouTube verify its high-quality service guarantee. 

In summary, the existing algorithms based on flow scheduling cannot actively con-

trol network congestion. The static algorithm has insufficient scalability, only executing 

the scheduling algorithm at the beginning of the transmission, which cannot adapt well 

to the real-time changing network state. The existing dynamic load-balanced algorithms 

can provide adjustment locally or even globally, but they can only adjust a network that 

has reached the performance bottleneck after the fact, according to the feedback mecha-

nism. A single strategy cannot achieve the goal well, so a composite adaptive method is 

needed. Our work focuses on dynamic load-balancing algorithms for proactive conges-

tion control. 

3. Network Model and Problem Statement 

We firstly introduce two common network models used in our experiments and then 

formulate the mixed-flow load-balanced scheduling (MFLBS) problem. 

3.1. Network Model 

We model the cloud data center as an undirected graph G = <V, E>, where V is the 

collection of all switches 𝑠 and hosts ℎ in the network, and 𝐸 is the collection of links con-

necting these switches and hosts. All links adopt a full-duplex communication mode, 

which means that data can be simultaneously transmitted on the same link. 

Considering the actual application and the simulation of network performance, we 

adopt the following two models accepted by most researchers [31–34]. 

The first one is the network center model with three-tier architecture. h1~h8 are cli-

ents and nodes that generate data transmission tasks. s1~s10 are switches, forming a hier-

archical inter-networking model with core layer, convergence layer, and access layer. This 

three-layer non-blocking fully populated network is at the center of today’s network. It 

has a wide range of applications [35], shown in Figure 1. 

 

Figure 1. Three-layer non-blocking fully populated network model. 

In the second type of network topology shown in Figure 2, we use a two-layer archi-

tecture, where s1~s9 are the core layer switches, and each switch has its own access layer 

and client. For example, s1 and its corresponding components are a group of networks; 

S11 and s12 are access layers; and h1~h4 are clients. In real life, this network topology 

Figure 1. Three-layer non-blocking fully populated network model.

In the second type of network topology shown in Figure 2, we use a two-layer archi-
tecture, where S1~S9 are the core layer switches, and each switch has its own access layer
and client. For example, S1 and its corresponding components are a group of networks; S11
and S12 are access layers; and h1~h4 are clients. In real life, this network topology covers
fewer networks and ranges but reduces the workload of deployment and maintenance.

All the switches in this article support the OpenFlow protocol, which means that the
packets in the flow have sequence numbers to record their position in the flow. If the flow
changes the corresponding path during transmission, the packet will arrive at a random
time node. However, there is no need to retransmit the packets that have been transmitted
before; instead, after all the flows are transmitted, the packets are reordered according to
the sequence number.
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3.2. MFLBS Problem

The goal of MFLBS is to balance the traffic load of the data center through the use of
sub-net division and a combination of dynamic and static mechanisms to maximize the
throughput of the entire network.

Assuming that there are K flows K = { f1, f2, f3 · · · · · · fk} in a certain time slot t0 in the
network, then a fk (t0) represents the traffic transmitted from the source to the destination
of a single flow fk in this time slot t0. In other words, we divide the continuous time T
into time slots t(t = 1, 2, . . . , T), and the total network transmission traffic can be expressed
as ∑T

t=1 ∑K
k=1 a fk (t). For any switch i, its outgoing traffic and incoming traffic are the

same, that is, the traffic ∑T
t=1 ∑K

k=1 a fk (t) from i to the neighboring switch si should be
balanced with the traffic ∑T

t=1 ∑K
k=1 a fk∗(t) from the neighboring switch si to this switch

i. It is worth noting that a fk here refers to the actual allocated bandwidth. Because it is
limited by the actual network environment, its value may be different from the original
required bandwidth.

To achieve network load balancing, we set up an ordered set for each single flow
fk, such as fk{1, 2 . . . , s}, to record its planned path. The values stored in the set are the
numbers of the switches that pass through in the sequence during fk scheduling, and the
ordered pair <i,j> are two adjacent elements in the ordered set. The orderly assembly of the
path is adjusted according to the load situation of the network by adopting dynamic and
static mechanisms.

The notations for the MFLBS problem formulation are listed in Notations.
Based on the above analysis, we first give the target formula of the MFLBS problem:

Max
1
T ∑T

t=1 ∑K
k=1 a fk (t) (1)

∑T
t=1 ∑K

k=1 α
fk
i,j(t) = ∑T

t=1 ∑K
k∗=1 α

fk∗
j,i (t) i, j ∈ V(s) (2)

γ
fk
i,j(t) ≥ 0 i, j ∈ V(s) ∩ E( fk) (3)

∑K
k=1 α

fk
i,j ≤ Ci,jγ

fk
i,j(t) ≥ α

fk
i,j(t)< i, j > ∈ V(s) ∩ E( fk) (4)

γ
fk
i,j(t) ≥ α

fk
i,j(t)i, j ∈ V(s) ∩ E( fk) (5)

Equation (1) shows that the optimization direction of the MFLBS problem is to maxi-
mize the average throughput of the network. The left side of the equal sign in Equation (2)
represents the sum of the outgoing traffic of all switches in the network; the right side of
the formula represents the incoming traffic; and V(S) is the set of switches, which means
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that the incoming and outgoing bandwidth needs to be balanced for the entire network.
Equation (3) indicates that the required bandwidth for any flow in the survival time slot
must be a positive number. Equation (4) ensures that the sum of the actual bandwidth
allocated on any link cannot exceed the total bandwidth of its own. Equation (5) reveals
that the actual allocated bandwidth may be less than the bandwidth requested by the
client under the influence of the network environment; if the network is not overloaded, it
is equal.

4. Mixed-Flow Load-Balanced Scheduling (MFLBS)

In this section, we introduce our own MFLBS method, which roughly consists of two
stages: when a flow arrives in the network, it first enters (1) the dynamic routing network
for scheduling, and then, the flow that meets some conditions enters (2) the static routing
network for transmission until the end. (1) The dynamic routing network and (2) static
routing network will be shown in Sections 4.1 and 4.2, respectively. Section 4.3 will explain
which flows will be selected into the static routing network and the relationship between
the bandwidth allocation in the two networks.

4.1. Dynamic Routing Network

According to the literature, most of the flows in data centers are short flows [36]. Al-
though they account for a small part of the total amount of data transmitted in the network,
unreasonable scheduling will cause great delays to these flows, which will further cause
congestion and affect network performance. In view of the suddenness and unpredictability
of the network, we treat all network flows as short flows at the beginning, which must be
scheduled by the dynamic routing network. Sections 4.1.1 and 4.1.2, respectively, introduce
the method of initial path and rerouting, and Section 4.1.2 gives the Algorithm 1 for the
flow in a single time slot to enter the dynamic routing network.

4.1.1. Initial Path Selection

Data centers have different requirements for stream transmission services. We adopt
the highest weight first served (HWFS) strategy to assign the corresponding priority p fk

to the newly arrived stream fk in the network, and then, the switch will execute the tasks
in descending order according to the priority of the flow in the queue. We use Dijkstra’s
algorithm to determine the best initial path of fk according to the current network utilization
state to make full use of the free bandwidth in the network and achieve the purpose of
load balancing. It is worth noting that the priority of each stream is not fixed and can
be modified according to the deadline, service requirements, network state, etc., but the
priority determined in the current time slot is used for routing selection.

4.1.2. Dynamic Routing Mechanism

In each time slot, the switch will transmit data according to the priority. If the band-
width on the initial path in this time slot has been allocated, fk will wait until the higher-
priority flow transmission task in the queue ends, and the excess bandwidth is left before
its transmission can be started.

This situation seriously affects the performance of the network and will further ag-
gravate the local congestion of the network. Therefore, we need to reroute the paths of
these flows. First, we need to maintain two tables (Table 1. Remaining bandwidth table
and Table 2. Maximum flow allocation table) to obtain global information and update
the contents of the table in real time during the scheduling process. The remaining band-
width table records the unallocated traffic on the path between the two shortest connection
switches, and the maximum allocated flow table records the current flow allocated to the
most traffic on the shortest link.
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Table 1. Remaining bandwidth table.

Links
Remaining Available Bandwidth

t = 1 t = 2 t = 3 . . .

S1→S5 300 280 132 . . .
S1→S6 300 300 240 . . .
S1→S7 300 120 54 . . .
S1→S8 300 84 84 . . .
S2→S5 300 210 260 . . .
S2→S6 300 140 20 . . .

. . . . . . . . . . . . . . .

Table 2. Maximum flow allocation table.

Links
The Flow Allocation with Max Bandwidth

t = 1 t = 2 t = 3 . . .

S1→S5 f1 f2 f2 . . .
S1→S6 f2 f1 f1 . . .
S1→S7 f4 f4 f6 . . .
S1→S8 f5 f8 f8 . . .
S2→S5 f9 f9 f9 . . .
S2→S6 f7 f10 f10 . . .

. . . . . . . . . . . . . . .

Then, we schedule in order of the priority and query the remaining bandwidth table,
in turn, according to each link of the initial path of the flow fk. If the remaining traffic on
the corresponding link in the table is less than the required bandwidth γ fk of fk, mark the
flow of the maximum allocated bandwidth that has been obtained on this link and update
the final actual bandwidth a fk of fk.

Algorithm 1. Dynamic Routing Network Scheduling

Input: remaining bandwidth and maximum allocation flow table
Output: load-balanced scheduling
1. E← the route of the marked flow in Maximum allocation flow table;

2. R← the set of remaining allocatable bandwidth on the link in Remaining bandwidth table;

3. update E;

4. reset R;

5. new flows arrive on the network;

6. K← total number of flows on the network;

7. arrange all flows in the network in descending order of priority: f1, f2, . . . fk;

8. for k 1 to K by 1, do

9. route based on R for unrouted flows;

10. find the remaining bandwidth on the path, mb← the minimum value of the remaining
bandwidth on the path;

11. if (mb ≥ γ fk (t))

12. a fk (t)← γ fk (t) , allocate the required bandwidth to fk;

13. else

14. mb← γ fk (t), allocate the maximum allocatable bandwidth on the link to fk;

15. mark the flow corresponding to the first link that does not meet the required bandwidth in E;

16. update E and R;

17. end.
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Finally, we determine the new route for these marked flows according to the network
state and the Dijkstra algorithm in the next time slot. In the following section, we outline
the important steps of dynamic routing network scheduling in a time slot.

4.2. Static Routing Network

As the data flow and network status change from time to time, in the dynamic routing
network, there may be a situation in which the flow fk occupies a large bandwidth ratio
of the link, or the transmission duration is too long, causing the routing times to increase
continuously. This will increase the extra network overhead and waste resources consid-
erably. For the flow from the dynamic network to the static network, we fix the path and
adjust the bandwidth allocation to achieve the goal of optimizing the average throughput.
In Section 4.2.1, we introduce the method of bandwidth allocation between different flows,
and Section 4.2.2 introduces the calculation of the bottleneck bandwidth of the flow fk in
detail. Therefore, we provide the Algorithm 2 for the static routing network in a time slot
in Section 4.2.2.

4.2.1. Bandwidth Allocation

For different flows on the same link, we allocate bandwidth according to the max–
min fairness algorithm. In order to avoid starvation caused by the delay in obtaining the
corresponding bandwidth for the flow with low priority, some literature provides a method
to adjust the priority to adapt to the new network conditions.

Here, we give the right to fair competition for bandwidth to all flows entering the
static routing network.

p fk′ = p fk k′ = k ∈ (1, 2, . . . , K) ∀ < i, j >∈ fk{. . .}∩ < i, j >∈ fk′{. . .} (6)

where, if the flow fk and flow fk′ have the same link segment in their respective routes,
their priorities will be the same.

Therefore, the two newly arrived flows fk and fk′ on the same link li,j in Figure 3 will
equally divide the link bandwidth Ci,j with the flow f1 that originally exists on the link li,j.
The three flows each obtain 10 Gb/s at this time, but the required bandwidth of fk 8 Gb/s
is less than the obtained bandwidth 10 Gb/s, and the bandwidth obtained by fk and f1 has
not reached the corresponding required bandwidth 20 Gb/s, so the links li,j will take back
the excess 2 Gb/s of fk and distribute it equally to fk′ and f1 again. Finally, f1, fk, and fk′

on li,j obtain actual bandwidths of 11 Gb/s, 8 Gb/s, and 11 Gb/s, respectively.
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4.2.2. Bottleneck Bandwidth Calculation

We all know that flows are subject to different restrictions on different link segments,
and the bandwidth obtained on the most restricted link is the bottleneck bandwidth of
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this flow. For example, in Figure 4, f2 shares bandwidth with f3 on lj,k, and exclusive
bandwidth on links li,j, so the bottleneck bandwidth is the 15 Gb/s obtained on lj,k.
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Figure 4. The bottleneck bandwidth of f2 and f3.

The bottleneck bandwidth deeply affects the obtained bandwidth of the flow. We give
the formulation a fk = min(e fk , γ fk ), that is, the obtained bandwidth takes the smaller value
of the required bandwidth and the bottleneck bandwidth. In order to obtain e, we need
to calculate the restricted speed of the flow link by link, according to the route of the flow,
and maintain an allocatable resource table to simulate the remaining network state after
the bandwidth has been allocated. Two values are recorded on each link in the Table 3: the
number of flows with unallocated bandwidth li,j

∗(N) and the remaining bandwidth Bi,j.
Different from the real-time recording of the remaining bandwidth table of the network
status in the dynamic routing network, the allocatable resource table is used to calculate
the bandwidth allocation of the flow in advance. Each time the actual allocated bandwidth
of a flow is determined, the allocatable bandwidth table needs to be updated. Each time
slot needs to maintain a new table.

Table 3. Allocatable resource table.

Links
Remaining Available Bandwidth and Unallocated Flow Numbers

∅ f1 f7 . . .

S1→S5 6300 5180 5180 . . .
S1→S6 7300 7300 7300 . . .
S1→S7 3300 3300 3300 . . .
S1→S8 2300 2300 1210 . . .
S2→S5 5300 5300 5300 . . .
S2→S6 4300 4300 4300 . . .

. . . . . . . . . . . . . . .

We process the flows in ascending order according to the required bandwidth. First,
we need to query the route E( fk) of the flow fk. For a certain link li,j, 〈i, j〉 ∈ E( fk) in the
routing, we first assume that the flow does not restrict the flow on this link but normally
performs the max–min fairness algorithm with other flows to allocate bandwidth. From this,
we can calculate the limited bandwidth E = Bi,j/ li,j

∗(N). We repeat the above calculations
for the other link segments in E( fk) sequentially and finally obtain a set V(E). The smallest
value in the set is the flow bottleneck bandwidth e fk . Finally, we need to update the
remaining bandwidth Bi,j of the link segment passed by fk in the table according to the
allocated bandwidth a fk and reduce the value of li,j

∗(N) by one. Repeat the above process
until the bandwidth of all flows in this time slot has been determined.

In the following algorithm, we outline the important steps of static routing network
scheduling in a time slot.
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Algorithm 2. Static Routing Network Scheduling

Input: allocatable resource table
Output: load-balanced scheduling
1. new flows arrive on the network;

2. R← the set of remaining allocatable bandwidth on the link in Allocatable resource table;

3. k← unallocated flow numbers in Allocatable resource table;

4. K← total number of flows on the network;

5. arrange all flows of the network in ascending order of required bandwidth: f1, f2, . . . fk;

6. reset and update R and k;

7. for k 1 to K by 1, do

8. route the unrouted flow according to R and k;

9. calculate the minimum limit flow rate of each segment of 〈i, j〉 for the path of fk
E = Bi,j/ li,j(N)∗ to form a set V(E);

10. e fk ← min {V(E)};

11. a fk ← min (e fk , γ fk );

12. update R and k;

13. end.

4.3. Mixed-Flow Load-Balanced Scheduled Network

In the section above, we separately introduced the dynamic and static routing network
scheduling algorithms, and MFLBS is deployed to coordinate the balance between these
two networks to maximize the average throughput. At this point, we still need to solve
two problems: (1) the transition for the flow from the dynamic routing network to the static
network through scheduling; (2) the bandwidth allocation between the dynamic routing
network and the static routing network. The above two points will be elaborated on in
Section 4.3.1. And Section 4.3.2 will give the complete algorithm of MFLBS.

4.3.1. Important Parameters

Definition 1. Set a time scalar λ. When the flow in the network survives longer than λ in the dynamic
routing network, it will be transferred to the static routing network for subsequent transmission.

λ =
∑K

K=1 t fk

K
(7)

where Equation (7) counts the data in the past period. K is the sum of the number of flows scheduled
during this period, and t fk

represents the duration of the flow fk from arriving at the network to
leaving the network. So, λ represents the average survival time of the scheduled flow in the past
period. In this way, we can have a convenient and simple judgment on the determination of short
flow and long flow in the future network. When t fk

< λ, it is judged to be a short flow and scheduled
in a dynamic routing network; as the survival time increases, when t fk

> λ, it is considered to be a
long flow and enters the static network for transmission.

Definition 2. When the number of times a flow that changes routes in a dynamic routing network
exceeds µ, regardless of whether its survival time exceeds λ, it is transferred to the static routing
network for the remaining transmission.

Unlimited rerouting not only fails to solve the congestion but also increases additional
overhead. So, we record the number of rerouting of each flow; when it exceeds µ, the path
is fixed. In this article, we set µ as 3.
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Definition 3. V(α) is a collection of bandwidth coefficients on different links. Different α〈i, j〉
values in the set divide the bandwidth of dynamic and static routing networks on different shortest
links 〈i, j〉.

RCi,j = α < i, j > ×Ci,j (8)

SCi,j = Ci,j − RCi,j (9)

Equation (8) shows that the bandwidth of the dynamic routing network on li,j is equal
to the total bandwidth of the network multiplied by the coefficient ratio α on the depen-
dent links. Therefore, the static routing network in Equation (9) occupies the remaining
bandwidth on the link.

Then, we discuss how to determine the value of a. After the above analysis, the short
flow will complete the transmission in the dynamic routing network in an ideal state, and
the long flow will be transmitted through the two networks. So, a dynamic routing network
not only calculates the sum of short-flow traffic but also adds the amount of traffic that is
allocated during the period when a long flow stays in the dynamic network. In this way,
we know that the dynamic routing network occupies all the short-flow traffic and part of
the long-flow traffic.

α < i, j >=
∑K

k=1 α
fk
i,j + λ∑K′

k′=1
α

fk′
i,j

t fk′

Ci,j
(10)

Combining Equations (7) and (8), we can deduce the value of a in Equation (10).
Among them, the short flow fk is the flow that completes the transmission in the dynamic
routing network, and the long flow fk′ is the flow that completes the transmission in the
static routing network. In addition, not only λ, but α can also be calculated and adjusted
based on a period of historical data.

4.3.2. Mixed-Flow Load-Balanced Scheduled Network Algorithm

Below, we outline the Algorithm 3 of single-flow fk scheduling in the case of MFLBS.

Algorithm 3. MFLBS Algorithm

Input: λ, µ, V(α),
Output: load-balanced scheduling
1. flow fk arrives at mixed-flow load-balanced scheduled network;

2. while ( fk does not end the transmission)

3. if (t fk
< λ && rerouting times < µ)

4. fk enters the dynamic routing network;

5. else

6. fk enters the static routing network;

7. end while

8. flow fk leaves mixed-flow load-balanced scheduled network;

When the flow fk enters the network, it first enters the dynamic routing network
for scheduling. When some of its properties reach the threshold, such as the number of
scheduling times greater than the set value µ or the transmission time exceeds λ within
this period, it will be transferred to the static routing network for scheduling until all
transmissions are completed.

In addition, every 600 s, we update λ, V(α), µ, and other information based on the
historical information in the network. It is worth noting that we only focus on the transport
flow in the network and ignore the control flow, and we believe that the global control
signal has no delay.
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5. Performance Evaluation

We designed simulations to evaluate the mixed-flow load-balanced scheduled network
algorithm for FPN and partially meshed data center networks. In Section 5.1, we outline the
simulation schemes and then explain the environmental settings of the system in Section 5.2.
Finally, we compare and analyze the experimental results in Section 5.3.

5.1. Evaluation Schemes

The performance of MFLBS can be reflected by the throughput and average delay in
two different network models.

We compare the MFLBS algorithm with the following two algorithms, which simply
represent the scheduling methods of the two sub-nets in our proposed model, respectively,
evaluating our algorithm from the perspectives of global routing switching and specific
bandwidth allocation:

• One-hop DLBS. This is an algorithm that dynamically adjusts the network load.
Through real-time monitoring of the network status, the unbalanced flow on the
link is dynamically scheduled to maximize the network throughput.

• First come first server, FCFS/first in first out, FIFO. This is a classic single-objective
task algorithm, which gives priority to meeting the task requirements of the data flow
that arrives at the network first.

In this article, we adopt the following two transmission models [37] to simulate the
transmission patterns in the network:

• Uniform pattern. Each host is equally likely to send and receive data in each time slot.
The flow is evenly distributed in the network.

• Semi-central pattern. Each experiment selects a fixed half of the number of hosts to
send data packets and randomly sends them to each host on the network, that is, all
hosts have the same probability of receiving data packets.

• We will evaluate our algorithm from the following three main evaluation indicators:
• Average throughput. This is an important indicator to measure network throughput.

Here, we divide the total task volume by the time when the scheduling ends to
obtain the average throughput of the network. It is worth noting that the unit of the
throughput characterization in the figure below is a bit.

• Average delay. Delay is a classic indicator to measure the scheduling algorithm. The
calculation method of average delay in this article is the average time interval from a
source node to a destination node of data packets. The small flow delay is the average
of the sum of all ping delays.

• Global real-time load. The utilization of network bandwidth can be observed from the
load. Here, we divide the throughput of the entire network per unit time by the sum
of the bandwidth of each link in the topology.

5.2. Experimental Environment Settings

We deploy the MFLBS algorithm to the following two network models, and their
detailed configuration is as follows:

• FPN model. It consists of two core switches, four aggregation layer switches, and four
access layer switches. This network is fully populated, and the access layer switch
connects with the client host.

• Partial mesh network model. It is mainly composed of nine core switches, and its
specific topology is shown in Figure 2. Each switch is connected to its access layer
switch, and the access layer switch connects with the client. We will focus on the mesh
topology, so the access layer switches are not interconnected.

We conducted simulations in Visual Studio Code (Version 1.61) on the Windows 10
system. Additionally, to simulate the real workload, we also built a cluster group of
Hadoop 2.7.3 and HBase 1.2.4 to test the data volume of tasks, such as range queries in
KD-Trees and ping. We set the network link bandwidth as 15 MBps and send data flows
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for 500 s, generating 10 flows per second in the network. In addition, we send a 100 Mb
ping command per second to simulate small flows. The host on the sending end and the
host on the receiving end are equally possible and random. For the reliability of the results,
we repeated the simulation experiment 20 times and averaged it. Most of the experimental
parameters are listed in the Table 4 below.

Table 4. Parameters.

Parameter Value

Time slot 1 (s)
Link bandwidth 15 (MBps)

Duration of flow generation 500 (s)
The number of new generating flows per time slot 10

The number of pings per time slot 1

5.3. Results and Analysis
5.3.1. Performance under the Topology

In the tree topology FPN, we use 1 MB as the step size in the uniform and semi-central
modes, and we increase the task of sending data from 5 MBps to 10 MBps.

Combining the average throughput of each algorithm under different task volumes
in the FPN model in Figure 5c and Table 5, we can analyze: at the beginning, the network
under uniform pattern can fully accommodate the flow of 5~7 MB tasks, so the average
throughput of these three algorithms is almost the same; but, with the increase in network
congestion, one-hop DLBS cannot effectively reduce the congestion despite re-selecting
the path for the flow. Therefore, it degenerates to the FCFS algorithm. As the one-hop
DLBs and FCFS networks reach the bottleneck, the rise of average throughput stops. When
the MFLBS algorithm has a size of 10 MB at the sending end, the average throughput
has increased by about 9.8% compared to the 9 MB data flow sent. Under the semi-
central pattern in Figure 2, the average throughput of one-hop DLBS and FCFS maintains
a relatively stable value under the task volume of 5~10 MB as shown in Figure 6c and
Table 6. It can be speculated that the performance of network scheduling at this time has
reached the bottleneck. In contrast, although MFLBS has a trend of first increasing and then
decreasing with the increase in the task volume, its value always maintained a relatively
high throughput. Analyzing the reason, the average throughput of MFLBS improves with
the increase in the total workload of the network under the task volume of 5~7 MB. As
the task volume continues to increase to 10 MB, the link congestion also intensifies, so the
average throughput declines. Therefore, the MFLBS algorithm has better adaptability and
tolerance to the consequent increase in network tasks.
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Table 5. Average throughput (MB) in FPN model under uniform pattern.

Size MFLBS One-Hop DLBS FCFS

5 47,050,514 47,238,341 47,238,341
6 56,448,090 56,560,537 56,560,537
7 65,944,101 65,683,967 65,683,967
8 74,353,672 69,931,149 69,931,149
9 83,871,673 69,231,756 69,231,756
10 92,123,527 68,790,931 68,991,780
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Table 6. Average throughput (MB) in FPN model under semi-central pattern.

Size MFLBS One-Hop DLBS FCFS

5 46,343,422 36,381,752 36,381,752
6 55,448,964 36,797,292 36,797,292
7 55,700,158 36,177,649 36,177,649
8 47,494,114 35,966,003 35,966,003
9 48,504,502 36,400,611 36,400,611
10 43,418,924 35,534,674 35,534,674

In the uniform mode of the FTP model in Figure 1, the data flow delay in MLFLBS is
not sensitive to network congestion, and its growth rate, as the amount of data flow tasks
increases, is significantly lower than the one-hop DLBS algorithm and the FCFS algorithm.
Like the FCFS algorithm from 5 MB to 10 MB, the average delay increased by 3620.7%, while
the MFLBS algorithm only increased by 209.5%. Compared with the delay of one-hop DLBS
and FCFS under uniform mode, which increases approximately exponentially, the delay
of one-hop DLBS and FCFS under semi-central pattern increases linearly in Figure 6a,b.
Although the delay of MFLBS under the semi-central pattern is less than that of the other
two algorithms, its average delay increases by 31,554.6% under the task load from 5 MB
to 10 MB, which shows that its performance is inferior to the performance under uniform
pattern, since under the semi-central pattern, more flows are restricted to a relative range
of links for transmission. Therefore, in the static routing network, more flows are allocated
bandwidth equally, and each flow will obtain less bandwidth, thereby increasing the delay
and shortening the average throughput of the entire network.

Similarly, in the partial mesh topology, we repeat the above experiment in uniform
and semi-central modes. But to adapt to the mesh topology with better connectivity, we
use 1 MB as the step size this time, increasing from 15 MBps to 20 MBps to send data task.

For the average throughput, we can observe from Figure 7c and Table 7: one-hop
DLBS and FCFS maintain a relatively stable value in the task change interval from 15 MB to
20 MB, while the average throughput of the MFLBS algorithm is significant in the interval
increase. However, in the semi-central mode environment of Figure 8 and Table 8, although
the average throughput of MFLBS has always maintained a relatively high value, its change
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in the interval is not obvious. Instead, one-hop DLBS and FCFS display linear growth
under the task volume of 15–20 MB. It can be speculated that in this case, in the semi-central
mode mesh structure topology, the performance of the MFLBS algorithm reaches a higher
bottleneck value very early and is running at such a bottleneck performance. Therefore,
the MFLBS algorithm has a large difference in performance for different data transmission
modes under a partial mesh topology.
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Table 7. Average throughput (MB) in mesh topology under uniform pattern.

Size MFLBS One-Hop DLBS FCFS

15 139,907,132 140,184,725 140,184,725
16 149,922,066 149,046,504 149,046,504
17 156,089,605 153,972,110 153,972,110
18 168,041,654 152,381,859 152,109,261
19 174,644,435 157,415,945 157,415,945
20 183,855,203 154,583,258 154,583,258
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Table 8. Average throughput (MB) in mesh topology under semi-central pattern.

Size MFLBS One-Hop DLBS FCFS

15 138,298,465 122,962,006 122,962,006
16 143,945,056 117,622,948 117,258,790
17 143,836,667 124,642,008 124,448,464
18 128,924,876 115,946,286 115,946,286
19 135,906,736 124,005,139 124,005,139
20 139,260,103 125,773,262 125,773,262

In Figures 7 and 8, relative to the average delay, MFLBS has a significant effect on the
reduction in the small flow delay. It can be seen that in Figures 7a and 8a, the small flow
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delays of FCFS and one-hop DLBS are nearly equal under the task size of 20 MB. At this
time, compared with the other two algorithms in Figures 7a and 8a, the small flow delay
of MFLBS is reduced by nearly 47.5% and 57.8%, respectively. Combined with the above
analysis, it can be inferred that the MFLBS algorithm can effectively reduce the small flow
delay compared to the one-hop DLBS and FCFS algorithms in any state. The average delay
is closely related to its average throughput. We can observe that in Figure 8b, under the
task size of 20 MB, the average delay of the three algorithms is almost the same. It can
be analyzed that in the partial mesh topology and semi-central transmission mode, as the
transmission tasks gradually increase, the one-hop DLBS and FCFS algorithms gradually
reach their bottleneck performance and catch up with the MFLBS algorithm.

It is worth noting that, because the flow is evenly distributed in the network un-
der uniform pattern and transmitted on the links within the relative range under semi-
central pattern, the FCFS algorithm and the one-hop DLBs have similar performance and
trends. At this point, we can understand that one-hop DLBs degenerate into the FCFS
algorithm approximately.

5.3.2. Performance under Oversized Tasks

In a mesh topology with good connectivity, we designed two sets of large-scale tasks.
In the first group, we set the size of the long flows to be sent to 40 MB, and in the second
group, we sent a long flow of 20 MB for medium tasks. We observed the performance of
the algorithm from the four perspectives of average throughput, the average delay of ping,
average delay, and global real-time load.

It can be observed that the average throughput of MBLFS is significantly higher than
the other two algorithms in a congested network environment. Compared with the other
two algorithms in Figures 9a and 10a, it is improved by nearly 12% and 58%, respectively.
In Figures 9b and 10b, the average time delay of small flow can also be significantly reduced,
shortening by 53% and 68%, respectively. It can be seen that the MFLBS algorithm under
the mesh topology network model is less sensitive to small flows than the one-hop DLBS
and FCFS in the case of network congestion. The MFLBS algorithm not only reduces the
delay of small flows but also effectively reduces the average delay. Observing the detailed
information of the global real-time load in Figures 9c and 10c, MFLBS has obviously
maintained a higher utilization rate than the other two algorithms in Figure 5. Although
this feature is not obvious in Figure 10c, the overall load of MFLBS can maintain a relatively
stable state in both cases of 40 MB and 20 MB. The turbulence of the broken line is smaller
than that of the one-hop DLBS and FCFS algorithms, and it can end the scheduling faster.
Comparing the overall results of Figures 9 and 10, we found that the overall performance
of MFLBS is better when the task is heavier, and the blockage is more serious.
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In summary, we found that our MFLBS algorithm has a higher throughput when the
network task load is relatively large, and it can take into account the transmission of small
flows, effectively reducing the average delay of the data flows.

6. Conclusions and Future Work

In the research of this article, we address the traffic transmission problem in the cloud
data center network through a proactive dynamic load-balanced scheduling method. Addi-
tionally, we test it in two highly universal topologies: partial mesh network topology and
tree network topology FPN. Compared with the existing static load-balancing algorithm
FCFS and dynamic load-balancing algorithm one-hop DLBS, our algorithm has the follow-
ing three main advantages: first, we take into account the delay-sensitive characteristics
of small flows and use dynamic routing networks to filter out large flows, so as to ensure
the bandwidth allocated to small flows and reduce delay; second, we adopt proactive
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congestion control, calculating the bandwidth allocated to each flow in advance according
to the network conditions; third, we can adjust the bandwidth allocation ratio of the two
sub-nets to better adapt to different network conditions and transmission tasks.

The simulation results prove that our MFLBS algorithm performs better than the
representative static load-balanced scheduling algorithm FCFS and dynamic load-balanced
scheduling algorithm one-hop DLBS. For example, in the FPN network model, the MFLBS
algorithm can maintain high throughput and low latency in a wider range of tasks than
the other two algorithms; and in the partial mesh model, compared to the one-hop DLBS,
our MFLBS improves throughput by 58% and reduces average latency by 20%. These
results show that our MFLBS algorithm can effectively proactively control congestion and
significantly improve network throughput and reduce the delay by dynamically balancing
the traffic.

In the future, we plan to expand our existing work from the following two perspectives:

• Network model. The existing algorithms perform better in networks with higher
node connectivity. Therefore, we hope to improve the bandwidth allocation method
of the flow and improve the performance of the node in the network model with
low connectivity.

• Identification of the stream. As the number of tasks increases and the types of mixed
flows increase, we plan to further distinguish and identify different types of flows and
perform network scheduling in consideration of transmission requirements in detail.
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Notations

Notations Descriptions
i, j Switches i, j
li,j Link between switches i, j
li,j(N) The numbers of the flows passing through the link li,j at this moment
l fk The survival time of the fk in the network
Ci,j Capacity of the link li,j between i and j
γ fk (t) The required bandwidth of flow fk in time slot t
p fk Priority of fk
E( fk) The collection of paths the flow fk passes through
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