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Abstract: The Digital Twin (DT) concept in the manufacturing industry has received considerable
attention from researchers because of its versatile application potential. Machine Learning (ML) adds
a new dimension to DT by enhancing its functionality. Many studies on DT in the manufacturing
industry have recently been published. However, there is still a lack of a systematic literature
review on different aspects of ML-based DT in the manufacturing industry from a bibliometric
and evolutionary perspective. Therefore, the proposed study is mainly aimed at reviewing DT
in the manufacturing industry to identify the contribution of ML, current methods, and future
research directions. According to the findings, the contribution of ML to this domain is significant.
Additionally, the results show that the latest ML technologies are being used in the DT domain; neural
networks have evolved based on application-specific requirements. The total number of papers and
citations per paper on ML-based DT is increasing. The relevance of ML in DT has increased over time.
The current trend is to use ML-based DT for data analytics. Additionally, there are many unfilled
gaps; certain gaps include industrial applications of DT, synchronisation with real-time data through
sensors, heterogeneous data management, and benchmarking.

Keywords: advanced manufacturing; digital twin; machine learning; bibliometric analysis; evolutionary
analysis

1. Introduction

Digital Twin (DT) technology is being applied in different areas. The first application
was in the aerospace industry. However, it is now being used in healthcare, manufacturing,
networking, communication, etc. [1]. In the manufacturing industry, the DT is used for ma-
chine health monitoring [2], predicting failure [3], product design [4], and human–machine
collaboration [5].

Conversely, data produced in manufacturing have been used to schedule maintenance
or create product logs [6]. These data have fostered machine learning (ML) and artificial
intelligence (AI) applications in DT for manufacturing systems. AI algorithms such as
genetic algorithms, particle swarm optimisation (PSO) [7,8], and fuzzy logic [9] have
been widely used in various applications. A primary screening of manufacturing-domain
publications showed that most AI-based studies focused on ML. There has been a sharp
rise in the scientific study of DT in the manufacturing industry from the ML perspective.
The reviews that have already been published on DT in the manufacturing domain focus
on broad areas such as the current research state, role of AI, ML, and applications.

There has been no review narrowing down bibliometric and evolutionary analysis of
ML-based DT in the manufacturing industry. Evolutionary analysis captures changes in the
characteristics and structure of a system, product, or algorithm over the trajectory of time.

In NASA’s Apollo program, a DT of a space vehicle was created for the first time.
The target of this creation was to check the physical space vehicle’s condition during
missions [10]. Michael Grieves from Michigan University has been widely acknowledged
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as the person who first coined the term DT in 2002 [11]. Grieves described DT as “The
Digital Twin is a set of virtual information constructs that fully describes a potential or
actual physical manufactured product from the micro atomic level to the macro geometrical
level”. The DT concept has received popularity since then, and other definitions have been
published. Tao and Zhang [12] described DT as a means of converging physical and virtual
spaces. Yuqian and Chao [13] described DT as a representation of a physical object which
merges cyberspace and physical space through near-real-time synchronisation. According
to Glaessegen and Stargel [14], DT is a simulation of physical space. Reifsnider and
Majumdar [15] described DT as an ultra-high-fidelity simulation of its physical counterpart.

An ML-based DT can be defined as “an application-specific DT which is comprised of
components such as physical entity, ML model, ML data, real time synchronisation, IoT
and used for tasks such as process control, scheduling and prediction” The differences
between ML-enabled DT and AI-enabled DT are

• ML-enabled DT is a subset of AI-enabled DT.
• ML-enabled DT involves algorithms such as ANN, RF, kNN, whereas AI-enabled DT

involves algorithms such as genetic algorithm, ant colony optimization, and particle
swarm optimization, in addition to ML algorithms.

• ML-enabled DT is primarily used for process control, scheduling and prediction, whereas
AI-enabled DT is primarily used for optimization, scheduling, and resource allocation.

• ML-enabled DT is more abundant than AI-enabled DT

Grieves defined a three-dimensional DT architecture with a set of tests called the test
of virtuality (GTV) to examine the fidelity of a DT. These three dimensions are (a) physical
entity (PE), (b) virtual entity, and (c) the connection between physical and virtual worlds.
However, Grieves did not define any auxiliary technology needed to build DT. With
the advancement of sensor technology, IoT, and the introduction of big data and ML,
DT architecture has evolved into a five-dimensional architecture. These five dimensions
are (a) PE, (b) virtual entity, (c) services, (d) Digital Twin data, and (e) connection [2].
These five dimensions have evolved over time to eight dimensions: (a) integration breadth,
(b) connectivity mode, (c) update frequency, (d) CPS intelligence, (d) simulation capabilities,
(e) digital model richness, (f) human interaction, and (g) product lifecycle according to
CIRP Encyclopaedia [16]. An analysis of these architectures shows that DT has been
evolving over time with the incorporation of data, CPS, simulation, and humans. The CIRP
Encyclopaedia dimensions have been considered in the proposed review because of their
versatile dimensions.

The specific characteristics/dimensions of DT in manufacturing are:

• DT in the manufacturing life cycle.

– Manufacturing design.
– Manufacturing service.
– Manufacturing process management.

• Simulation of manufacturing process.
• Big data associated with manufacturing.
• Cyberphysical system.
• Human-integrated manufacturing.

A network analysis was performed using vosviewer on the most relevant 500 bibli-
ographic datapoints from Web of Science, with primary keywords: (“Manufacturing” or
“Production,” or “Operation”) AND (“Digital Twin” or “DT”). The connections between
the keywords are shown in Figure 1. Each keyword is represented by a circle, with a larger
circle representing a higher occurrence of the keyword. Additionally, the connecting lines
represent connections among keywords and a thicker line represents a stronger correlation.
In the figure, a Digital Twin co-occurs with the keywords smart manufacturing, industry
4.0, and simulation in most cases. However, the keyword “machine learning” has emerged.
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Figure 1. DT in manufacturing. Network graph of keywords. Each keyword is represented with a
circle and connections between keywords with connecting lines.

2. Related Review Studies

Kritzinger et al. [17] classified current publications in the manufacturing industry
based on the DT integration level. The authors showed a distinction between Digital
Shadow, (DS), Digital Model (DM) and Digital Twin (DT). Additionally, they concluded
that literature related to DT is scarce, whereas literature relating to DS and DM is abundant.
Following the study by Kritzinger et al. [17], Chiara et al. [18] attempted to identify the
missing part between the implemented and theoretical DT, including the integration level of
the manufacturing execution system (MES). This review identifies different applications in
the manufacturing domain and DT development in a laboratory to overcome the identified
gap. The connection between these two publications [17,18] is that they both focused on
the DT integration level and the missing part in the current research.

Finding the missing part in the current study is a popular track. However, the overview,
definition, and application of characteristics to create a common base have also been of
interest to the scientific community [16,19].

Barbara et al. [19] defined DT as an artificially intelligent virtual replica of a phys-
ical entity. The review results provide an overview of definitions, characteristics and
applications of DT based on scientific publications published before July 2019 in several
application areas.

Jones et al. [16] attempted to consolidate DT research studies in the manufacturing
industry by analysing 92 research studies to create a common base for future researchers.
Thirteen characteristics, including physical entity/twin, virtual entity/twin, physical envi-
ronment, virtual environment, state, realisation, metrology, twinning, twinning rate, and
physical-to-virtual connection/twinning, were analysed to create consolidated knowledge.

Bin et al. [20] discussed sustainability and the associated technologies of intelligent
manufacturing. Certain review criteria include intelligent manufacturing equipment,
systems, and services. The applications reviewed in this study were

• DT in product design,
• Manufacturing,
• Product service,
• Digital twin-driven sustainable intelligent manufacturing etc.
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A framework for digital-twin-driven sustainable intelligent manufacturing is proposed
in this study. Mengnan et al. [21] identified and classified 240 academic publications to
identify the concepts, technologies, industrial applications, research status, and key enabling
technologies associated with DT. Based on this analysis, the authors showed different lifecycle
phases as future recommendations. Similarly to Bin et al. [20], Mengnan et al. [21] considered
the design phase, manufacturing phase, concept, technology, application, digital model,
and so on. According to the authors, the Digital Twin is stepping out of its infancy with
regard to a widely accepted definition, unified creation, and deployment. The difference
between the studies by Mengnan et al. [21] and Bin et al. [20] is that Mengnan et al. con-
sidered concepts, technologies, industrial applications, research status, and key enabling
technologies associated with DT, whereas Bin et al. reviewed intelligent manufacturing
equipment, systems, and services. A framework for digital-twin-driven sustainable intelli-
gent manufacturing was proposed by Bin et al., while Mengnan et al. presented different
lifecycle phases as future recommendations.

Mazhar et al. [1] reviewed 117 studies on AI ML-based DT. This review provides an
overview of the standards and technologies used to create a DT relationship and of AI–ML, big
data, IoT, digital twinning, related applications, the role of AI–ML and big data in DT, the tools
needed to create AI-enabled DT, challenges, and future directions of digital twinning. Eight
multidisciplinary electronic bibliographic databases, including (1) IEEE Xplore (IEEE, IET),
(2) ACM digital library, (3) Scopus (ScienceDirect, Elsevier); and (4) SpringerLink (Springer)
were used to collect the papers. This paper outlines future research directions by creating a
reference AI–ML and big-data-enabled digital twinning system.

Many review studies have been published in recent years focusing on gaps in current
research, unified definition, identification of dominant technology, future recommendations,
and so on. However, a review focusing on bibliometric and evolutionary analysis of
ML-based DT in the manufacturing industry is lacking. The proposed literature review
fills this gap. The scope of the proposed study is ML-based DT in the manufacturing
industry. The scope of the proposed study does not cover other industries such as healthcare,
transportation, energy or DT that does not use ML. The main purpose of the proposed
literature review is to explore ML-based DT in the manufacturing industry and create a
path for future research.

Difference between Proposed Literature Review Study and State-of-the-Art Studies

The study that is most similar to the proposed literature review is that by Mazhar et al. [1].
The difference between that study and the proposed one is that Mazhar focused on Artificial
Intelligence (AI), ML, and big data in DT, whereas the proposed literature review study
only focuses on ML-based DT. Mazhar et al. [1] focused on different application domains
such as manufacturing, medical, transportation, power and energy fields, etc. Conversely,
the proposed study focuses only on manufacturing. The extracted data are the quantitative
and qualitative statistics, tasks performed by ML, ML algorithms used and their evolution
in ML-based DT, role of ML in DT development, contribution of ML to DT dimensions,
contribution of ML-based DT to PLM, evolution of future research direction and future
research direction in ML-based DT in manufacturing processes.

Barbara et al. [19] and Jones et al. [16] reviewed the definitions and characteristics of
DT in different domains. Conversely, one of the findings of the proposed literature review
study is DT dimensions that are enhanced by ML in the manufacturing industry.

3. Methodology

The proposed review study is based on scientific publications published from 2015
to March 2022 in the manufacturing domain. A systematic literature review (SLR) was
performed by following the steps shown in Figure 2 [22]. SLR has three stages:

• Planning the review,
• Conducting the review,
• Reporting the review.
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Figure 2. Systematic Literature Review steps. Systematic Literature Review steps shown with the
help of four boxes and connecting arrows.

The necessity of a systematic literature review was identified early in the planning of
the review. The research questions were defined in later stages. In the following stage, the
review was conducted by accumulating recent publications, extracting data, performing
a questionnaire survey, and analysing the data extracted from articles. This stage was
followed by the reporting stage, where the outcome of the data analysis was reported.
The final review report was obtained in the last stage.

The strategy provided in [23] was used to identify the primary studies. It comprises
two steps: (a) automatic search, and (b) manual search. A search string was defined
based on the research questions of the automatic search. The search string consists of the
following: the primary keywords: (“Manufacturing” or “Production”, or “Operation”)
AND (“Digital Twin” or “DT”) AND (“Machine Learning” or “ML”) . These keywords
were used with shifting positions and replacing them with synonyms. The databases used
in the proposed study are: Scopus, Web of Science, Springer, IEEE, ScienceDirect, and
ACM Digital Library. In the manual search, a backward citation search strategy was used.
The proposed study is based on publications published between 2015 and March 2022.
This period was chosen to include the most recent studies in this domain. The process to
identify primary studies (for data extraction) is shown in Figure 3.

The search string described in the previous section resulted in 1050 publications.
After several screenings, 71 publications were found to be most relevant based on the
inclusion and exclusion criteria. In the next stage, the primary publications were carefully
read and data were extracted carefully. The derived data were saved in an Excel file for
detailed analysis.
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Figure 3. The process to identify the primary studies. Screening method shown with help of numbers,
icons and connecting arrows.

Research Questions

• RQ1: What are the quantitative statistics, such as citation trends, author productivity,
journal productivity, and qualitative trends, such as thematic evolution and topic
clusters associated with ML-based DT of manufacturing systems?

• RQ2: What tasks are performed by ML in the ML-based DT of manufacturing systems?

– RQ2.1 Which ML algorithms are used? How are these algorithms evolving
over time?

• RQ3: What is the role of ML in developing the DT?

– RQ3.1 What DT dimensions are enhanced by ML?
– RQ3.2 What is the contribution of ML-based DT in Manufacturing Product lifecy-

cle management (PLM)?

• RQ4: How do open issues associated with ML-based DT evolve over time? What are
the possibilities for future research?

4. Research Question Results
4.1. First Research Question

The first research question focuses on bibliometric analysis of the collected publications.
Bibliometric analysis was performed using the ‘bibliomatrix’ package in R. Table 1 describes
corpus summary.

As shown in the table, there are 71 documents from 47 sources (journals, confer-
ences, etc.), with an annual growth rate of 20.09%. The documents’ average age of 2.11 years
indicates that ML-based DT is a relatively new research field. The authors’ keywords’ fre-
quency distribution is 249, which implies that 249 keywords are frequently used by authors
of ML-based DT research. It can be concluded from this that versatile technology has
not yet been incorporated into ML-based DT, resulting in a higher number of keywords.
Documents with international collaboration comprise 12.68% of the total corpus, while
the number of multi-authored publications is 68. This implies that robust collaborative
research in this field is ongoing.
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Table 1. Summary of corpus.

Timespan 2015–2022

Documents 71
Sources 47

Annual Growth Rate % 20.09
Document Average Age 2.11

Average citations per documents 104.5
Average citations per year per document 27.56

Keywords Plus (ID) 61
Author’s Keywords (DE) 249

Authors 246
Authors of single-authored documents 3
Authors of multi-authored documents 68

Docs with international collab % 12.68

Figure 4 depicts citation trends with total paper number within a 7-year period.
A linear increase in the number of publications from 2015 to 2019 can be seen. After 2019,
there was a sharp increase in publication number. The most publications were published in
2021. This trend is supposed to continue in 2022. Conversely, citations per paper was zero
in the year 2015. In 2016, only two publications were published [10,11].

Figure 4. Citation trend from 2015 to 2022. Citation trend and paper production rate change over
years shown with two lines.

However, these publications received a significant number of citations, with 500 cita-
tions per paper. In 2017, the number of citations per paper peaked because of two highly
cited publications by Fei Tao et al. [4,12]. After 2017, the average number of citations per
paper decreased due to an increase in the number of publications.

Figure 5 depicts percentage of publications by subject category. According to the
figure, most publications belong to ‘Computer Science’. Other popular subject categories
are: ‘Engineering’, ‘Operations Research And Management Science’, and ‘Automation And
Control Systems’.
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Figure 5. Percentage of publications by subject category. Bar chart with each bar representing a
subject category. Size of the bar implies percentage of publications included in the category.

Figure 6 depicts the top 10 authors considering total publications (TP) and total
citations per year (TC). According to the figure, Fei Tao is the most productive (six pub-
lications) [2–4,12,24,25] and most cited author (300 average citations). Following Fei Tao,
Jiakun Li [5,25] is the most productive and cited author. Most authors published three
papers in the same year and stopped publishing afterwards.

Figure 7 represents the top 10 journals and conferences considering total papers
(TP). M2VIP is an abbreviation of Proceedings of the 2018 25th international conference on
mechatronics and machine vision in practice, while ICNSC is an abbreviation of 2018 IEEE 15TH
International conference on networking sensing and control. Additionally, the Figure shows the
impact factors of the journals and conferences. The most productive journal is the Journal of
manufacturing systems, with seven publications, and it has the highest impact factor 8.63.
The Journal of manufacturing systems is followed by IEEE access, with six publications and
an impact factor of 3.36. Additionally, other high-impact-factor journals are Robotics and
computer-integrated manufacturing, and computers in industry. The trends in publication
quantity and impact factor imply that ML-based DT is being focused on by the scientific
community with increased significance.

4.1.1. Topic Cluster

A conceptual structure of the author keywords is drawn with help of Multiple
Correspondence Analysis (MCA) and named as Co-word Analysis through Correspon-
dence Analysis.

Co-word analysis is a technique for content analysis of textual data. The result is
several clusters created based on certain scientific aspects. Each cluster comprises textual
information of scientific topics with similar semantic or conceptual information.

MCA is a technique to find relative relationships among qualitative variables. In corre-
spondence analysis, residuals of a variable’s value from the expected value indicates its
association. A significant positive number indicates a stronger relationship.

For example, publication A has author keywords “Digital Twin”, “Machine Learning”,
and “manufacturing”. Therefore, a variable named publication-A is created with values:
“Digital Twin”, “Machine Learning”, and “manufacturing”. Similarly, each publication
in the corpus contributed one variable with respective author keywords as the variable
value. These newly created variables are used in MCA. Co-occurrence frequency of these
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newly created variable values determine their association. Variable values with higher
associations are placed in the same cluster.

A natural language processing (NLP) routine in addition to Porter’s stemming al-
gorithm is used to extract words from author keywords. Porter’s stemming algorithm
identifies inflected and derived words. In the topic dendrogram, four clusters can be
identified. The keywords in cluster 1 have the highest association, whereas keywords in
cluster 4 have the least.

The four identified clusters are: (a) Cluster 1: Computer-integrated manufacturing,
(b) Cluster 2: Industry 4.0, (c) Cluster 3: Smart manufacturing, and (d) Cluster 4: Data models.

Cluster 1: Computer-integrated manufacturing. Computer integration into manufac-
turing (red cluster in Figure 8) has paved the way for sustainable, robust, and economically
efficient manufacturing. Fei Tao et al. [12] proposed DT shop floor (DTS) with four com-
ponents: (a) physical shop floor, (b) virtual shop floor, (c) shop-floor service system, and
(d) shop-floor DT data. In a subsequent study by Fei Tao et al. [4], they used DT for product
lifecycle management, that is, design, manufacturing, and service. The difference between
these two studies is that one [12] focuses on the DT architecture, while the other [4] focuses
on DT application scenarios.

Figure 6. Top authors with citation. A chart with circle size representing number of articles and circle
colour representing citation rate for top authors.
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Figure 7. Top journal and conference productivity and impact factor. Top journal and conference
productivity shown with bar chart and impact factor shown with line.

Figure 8. Topic dendrogram with four clusters. A dendrogram with four clusters of author keywords.
Distance between keywords is directly proportional to co-occurrence rate.

Zhang et al. [26] discussed the DT architecture and combined a DT and stacked
auto-encoder (SAE) to monitor product quality. The results showed an improvement
in performance. Gaikwad et al. [27] proposed a gray-box DT model for laser powder
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bed fusion (LPBF) and directed energy deposition (DED) by combining simulation, in
situ sensor data, and ML. This architecture improves performance. The timeline analysis
shows that in 2017, the focus was on DT architecture [12] and application scenarios [4],
whereas in 2020, the focus was on improved performance [27]. Certain review papers have
been published, such as one [19] by Barricelli et al., which emphasises the DT definition,
characteristics, and application domains. Similar to Barricelli et al. [19], Cimino et al. [18]
performed a literature review on DT applications and gaps in the current state of the art. In
addition, the authors proposed simulation-based DT to fill the identified gap.

Conversely, Rathore et al. [1] tried to identify the role of AI/ML, big data in the
creation of DT, and challenges associated with future studies. The reviews that belong
to this cluster emphasise DT characteristics [19], DT applications [18,19], and the role of
specific technology in DT creation [1]. The analysis of these publications indicates that
in 2019, the primary research focus was to create a common base of DT through unified
definitions, characteristics, and applications, whereas in 2021, the focus was more on the
application of advanced technology to DT.

Cluster 2: Industry 4.0. Industry 4.0 is a buzz word in the manufacturing industry (blue
cluster in Figure 8). Certain technologies applied to enhance Industry 4.0 are cloud computing,
big data, and cyberphysical systems (CPS). To achieve industry 4.0, Fei Tao et al. [12] proposed
a DT shop floor (DTS) with four components, (a) physical shop floor, (b) virtual shop floor,
(c) shop-floor service system, and (d) shop-floor DT data.

Following the track of Fei Tao, Zhang et al. [7] proposed a conceptual model of Cyber-
physical Production Systems (CPPS) which is based on DT for job scheduling. This system
converges to physical and virtual spaces similar to those in reference [12]. However, the
proposed model has (a) a physical layer, (b) network layer, (c) database layer, (d) model
layer, and (e) application layer. In 2021, Lugarsi et al. [28] advanced the concept of DT using
automatic model generation from the data. This increases the fidelity of the DT. Compared
to [7,12], Lugarsi et al. [28] focused on one of the characteristics of DT instead of the total
architecture. Lugarsi et al.’s work contributes to the domain of Industry 4.0 with a robust
DT. This cluster deals with several architectures and characteristics of the DT for Industry
4.0. Additionally, this cluster focuses on the convergence of physical and virtual spaces.

Cluster 3: Smart manufacturing. This cluster is shown in green in Figure 8. A
study [6] by Jiafu Wan contributed to this cluster. The author of this publication used big
data for preventive maintenance, in which the cloud environment plays an important role
in data processing. Another contributing document is by Fei Tao et al. [12], in which the
authors proposed a conceptual DT shop floor (DTS) to enhance smart manufacturing. In this
case, cloud computing, cyberphysical systems (CPS), and data models play important roles.
Both [6,12] implement smart manufacturing through cutting-edge technologies.

Cluster 4: Data models. This cluster is coloured purple (Figure 8) and includes author
keywords: data models, deep learning, and reinforcement learning. Deep learning and rein-
forcement learning were the most common keywords. The publication by Cronrath et al. [29]
in 2019 helped compensate for data errors in the DT model with the help of reinforcement
learning (RL). This work helped increase DT fidelity. However, another study [30] used
deep learning for data analytics, that is, fault diagnosis, instead of data error compensation.
In 2020, Lacueva et al. [31] used machine learning for fault prediction following this theme.

4.1.2. Thematic Evolution

An evolutionary analysis based on author keywords within the three periods was
performed. These are Period 1 (2015–2017), Period 2 (2018–2019), and Period 3 (2020–2022).

In the proposed study, co-word analysis was performed on author keywords in three
time periods and returned several word clusters. These clusters of keywords are named
as themes.

Each theme has two parameters: “density” and “centrality” . The placing of a theme
in one of the four quadrants depends on these parameters. They indicate the similarity of
items within and between themes. The similarity of an item can be calculated based on
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keywords’ co-occurrence frequency. Density implies Callon’s density [32], which measures
the strength of a keyword’s interaction with other keywords within a theme. Conversely,
centrality implies Callon’s centrality [32], which measures strength of interactions of
a keyword in a theme to keywords in other themes. Therefore this value indicates the
importance of the theme in the development of the target research domain, whereas density
implies the themes’ development stage [33].

An evolutionary map consists of four quadrants (i.e., Figure 9):

• Upper-right quadrant: motor themes—higher values of development and relevance
define motor themes. These themes are well-developed and relevant to the domain.

• Lower-right quadrant: basic themes—higher values of relevance and lower values
of development define basic themes. These themes are significant for the domain;
however, they are not well-developed.

• Lower-left quadrant: emerging or declining themes—lower values for relevance and
development define emerging or declining themes. These themes are not directly
connected to the domain, and full development has not been achieved.

• Upper-left quadrant: very specialized/niche themes—lower-relevance values and
higher development values define niche themes. These themes are highly developed,
but their relevance to the domain is marginal.

Figure 9. Thematic evolution period 1, 2015–2017. A figure with four quadrants representing specific
relevance and development degree. Two themes in period 1, 2015–2017.

Period 1 (2015–2017): In Figure 9, the circle with keyword “Digital Twin” and “man-
ufacturing” is a transversal theme that is related to different research fields of the man-
ufacturing domain. The circle size indicates that these keywords (“Digital Twin” and
“manufacturing”) are emphasised by the authors in Period 1 more than “big data” and
“cloud computing”.

Period 2 (2018–2019): In Period 2 (Figure 10), the keywords “Digital twin”, “machine
learning,” and “Internet of things” are emphasised as emerging themes. Additionally,
“manufacturing”, “data models”, and “deep learning” are considered as emerging themes.
The trajectory through these two time periods (Period 1 and Period 2) indicates that DT
is evolving from only applications in the manufacturing domain to a robust architecture.
A new motor theme appeared in period 2: “smart manufacturing”, “cyber physical sys-
tems”, and “virtual reality”. This theme is highly relevant and has been developed for the
manufacturing domain. Another motor theme appeared in Period 2, which is “artificial
intelligence”, with high density and centrality.
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Figure 10. Thematic evolution period 2, 2018–2019. A figure with four quadrants representing
specific relevance and development degree. Several motor themes and emerging themes in period 2,
2018–2019.

Period 3 (2020–2022): In period 3 (Figure 11), deep learning remained an emerging
theme, similarly to in Period 2. Conversely, “artificial intelligence,” “big data,” and “smart
manufacturing” degraded from the motor theme (Periods 1 and 2) to the basic theme (Pe-
riod 3). Additionally, ML, DT, and the data model evolved from emerging themes (Period 2)
to basic themes (Period 3). Several new themes that appeared as basic themes were “solid
modelling”, “real-time systems”, “reinforcement learning”, “simulation”, “machining”,
and “process mining”.

Figure 11. Thematic evolution period 3, 2020–2022. A figure with four quadrants representing specific
relevance and development degree. Several basic themes in period 3, 2020–2022.

It can be seen from the analysis of the three time periods that DT evolves from a
basic shadow of a physical system to a cutting-edge digital counterpart. Several recent
technologies, such as real-time systems, simulation, ML, and big data, contribute to the
convergence of physical and virtual spaces. Analysis of the trajectory over three time
periods shows that big data and ML remained as the research focus, while simulation
emerged as a contributing technology after 2020.
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4.2. Second Research Question

A summary of the ML algorithm applied to DT is shown in Figure 12. As shown in the
figure, ML algorithms can be classified into several classes based on their working strategy,
that is, (a) synaptic connectionists, which work based on the synaptic signalling method
of the human nervous system, for example, an artificial neural network. (b) Evolutionary:
Based on Charles Darwin’s theory of natural evolution, for example, genetic algorithms.
(c) Multirelation learning: representation of knowledge-preserving linguistic meaning, for
example, the kg embedding model. (d) Logical inference: process of logical conclusion
from premises, for example, decision tree or rule mining. (e) Analogy-based: separates
data points based on analogical features, for example, Support Vector Machine (SVM). (f)
Probabilistic: inferring the probability of an event or variable based on a few values of that
variable or event, for example, Bayesian learning and Markov-chain-based models.

Figure 12. Summary of ML Algorithm over time.

It has been shown that synaptic connectionist ML algorithm, i.e., neural network,
is dominant in the period 2015–2022. In 2015 and 2016, no work was published on ML-
based DT. However, over time, neural networks have been used for data fusion [12], data
error compensation [29], real-time control [34], etc. The neural network architecture has
become application-oriented over time, such as in the conventional neural network in
2018 [3], Bayesian neural network [29] in 2019, deep Q network [35] in 2020, GAN [36] in
2021, and Gaussian kernel extreme-learning machine [37] in 2022 (Figure 13).

Figure 13. Neural network evolution. Figure with arrows indicating change in ANN over time.

Neural network architecture is evolving by incorporating new types of transfer func-
tion, uncertainty, and optimization. All these changes can be mapped to application-specific
requirements and improved performance. Additionally, logical inference-based algorithms
such as random forest, extra random forest, and AdaBoost, and analogy-based algorithms
such as SVM and k-means were discussed in the publications. However, random for-
est and SVM clustering have marginal variation over time, thus they are excluded from
Figure 13. In the future, ML-based automation applications will be dominant in reducing
pandemic effects, demand-based manufacturing, and human- and computer-integrated
manufacturing.
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The tasks performed by ML algorithms in ML-based DT can be classified into three
categories (shown in Figure 14)

• Data analytics.

– Predictive data analytics.
– Descriptive data analytics.
– Prescriptive data analytics.

• Model-based task.
• Data-based task.

Figure 14. Evolution of tasks performed by ML algorithm. A sanky diagram showing evolution of
the task over three periods of time.

Data analytics: As can be seen from the figure, for the period 2015–2017, predictive
data analytics were limited to machine monitoring. However, both in 2018–2019 and
2020–2022, predictive maintenance emerged as fault prediction method, with a significant
number of publications focusing on it.

In the period 2020–2022, predictive maintenance evolved into resource performance
prediction and machine availability prediction.

In the case of descriptive data analytics, the period 2015–2017 showed basic tasks, such
as machine monitoring [12,38]. In the period 2018–2019, only one publication was published
with descriptive analytics, which was job scheduling [7]. Conversely, in the period 2020–
2022, several descriptive analytics emerged, such as visualisation [39], rescheduling [24],
and analysis [25].

No publication in the period 2015–2017 focused on prescriptive data analytics. How-
ever, in the period of 2018–2019, control and optimisation of the manufacturing system
was the focus [29,34]. In the period 2020–2022, high-level adaptive control and closed-loop
control with the help of ML was focused on [9,35,40–42].

Model-based task: In the period 2015–2017, only one publication focused on model-
based tasks, such as design, manufacturing, and service (PLM) [4]. Several models have
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been proposed, including geometric and definition models [7] in the period 2018–2019.
In the following period, 2020–2022, several models were implemented, such as the be-
haviour model [40]. Additionally, the focus was on model improvement and expert knowl-
edge incorporation [27,43–46].

Data-based task: This was the least-focused-on area. Data error compensation [29]
was performed using ML-based DT during the period 2018–2019. However, in the period
2020–2022, training data generation [26], data augmentation [36], and collaborative data
management [47] were implemented using ML-based DT.

Data analytics has been the most-focused-on area from the past to the present. Ver-
satile prediction tasks are performed to move from responsive maintenance to predictive
maintenance. Conversely, a data-based task associated with an ML-based DT was the
least-focused-on area. In the future, this area will emerge as a game changer because
high-quality data are a prerequisite for good performance.

4.3. Third Research Question

In the reviewed publications, nearly 70% of the ML models played a primary role (Figure 15)
such as training of the DT model [24,26,34,39,48,49], fault prediction [3,27,30,31,39,41,50–52], pro-
cess planning [53,54], and classification [26,50]. ML performed the task directly mapped to the DT
task in a primary role.

Figure 15. ML’s role in DT.

Conversely, nearly 30% of the publications showed ML in a supportive role, such
as data quality enhancement [12,29], DT as environment [12], approximation and plan-
ning [55,56], and data mining [57].

The eight dimensions of DT described by the CIRP encyclopaedia [16] are listed in
Table 2. The ML tasks contributing to the DT dimensions are listed in the Table. The criteria
column states the criteria that need to be fulfilled by ML to consider the ML task as a
contribution to the DT dimension [16,58]. Major ML contributions map to CPS intelligence.
This contribution ranged from central control, maintenance, and prediction to quality
inference in 2020 and 2021. Apart from this digital model, richness, simulation capability,
and connectivity mode are the DT dimensions contributed to by the ML.
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Table 2. ML contributing to DT dimensions.

DT 8 Dimensions Dimension Criteria ML Contributing to DT Dimensions

Integration breadth Interaction of physical world with virtual world in the form of
data acquisition and scheduling

Data acquisition: acquire process knowledge. Scheduling: schedule manufacturing tasks, identify optimal
actions [53]

Connectivity mode Context-aware, bidirectional or unidirectional connection in
between physical and virtual word

Context-aware connection: fault diagnosis, deep transfer learning (DFDD), real-time monitoring, and
predictive maintenance. [30] Real-time controlling instruction [34], optimal process plan. Bidirectional

connection: real-time synchronisation [54]

Update frequency Event-driven, hourly, daily or monthly update of digital model Event-driven update: real-time controlling instruction [34]

CPS intelligence Cyberphysical System enhanced by AI, cognition, and automation

AI: rule mining, data fusion [12], fault prediction [3], predicting energy efficiency [37], predictive maintenance,
feature extraction [30], compensating data errors in DT [29], failure prediction [31], prediction [39], resource
performance prediction [41], cutting tool wear prediction [51], prediction [39]; Cognition and automation:

product quality inference, accuracy evaluation [59], layer defect analysis [47], optimal process plan [54],
improved decision [60], process-parallel monitoring [46], providing cognitive abilities [52], production quality

classification [26], real-time monitoring [30], visualization [39], production control and resource
maintenance [41], classification [27], behavior analysis [25], adaptively control manipulated variables [53], data

analytics [61], tool wear analysis [24], optimized process plans and workflows [62], and visualization [39].

Simulation capabilities Simulation of physical process on ad hoc or continuous basis process simulation [63], automated simulation model generation, [64]

Digital model richness Robustness, resilience, self-adaption, fidelity of virtual model Robustness, resilience, self-adaption, fidelity [44], DT fidelity [53], fidelity [61], DT behaviour model [37],
high-fidelity of DTs [64]

Human interaction Bridging human and machine Human–machine collaboration [5], bridges a human user and robot [25]

Product life-cycle Product design, manufacturing and service Service stage: service, data analytics [38], Full product life-cycle management [37,63,65], Manufacturing
stage: fault prediction [3], predicting energy efficiency [37], predictive maintenance, feature extraction [30]
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Figure 16 shows contribution of ML-based DT in manufacturing PLM. ML-based DT
is marginally used in full product life-cycle management [37,63,65]. Conversely, in 92.68%
of cases, ML-based DT is used for the product manufacturing stage.

Figure 16. Contribution of ML-based DT in manufacturing product lifecycle management (PLM).

4.4. Fourth Research Question

The future work stated in the corpus can be categorised into three classes (Figure 17),
similar to research question 2:

• Data analytics.

– Predictive data analytics.
– Prescriptive data analytics.

• Model-based task.
• Data-based task.

Data analytics

Predictive data analytics

It is shown in Figure 14 that fault prediction received major research attention in the
periods 2018–2019 [66] and 2020–2022 [27]. In the period 2018–2019, accuracy improvement,
predictive maintenance, and encapsulation of dynamicity [3,66] are stated as the future
research directions (Figure 17). Following this research, path degradation prediction [40],
resource availability prediction [41], and machine availability prediction [24] were imple-
mented in the period 2020–2022 (Figure 14) In this period, resilience of manufacturing
systems, accuracy improvement [54], fault prediction [41], and detailed encapsulation of
dynamicity [67] were stated as the future research directions. By 2022, these directions will
be dominant in the manufacturing industry.

Prescriptive data analytics

In 2020–2022, high-level adaptive control, closed-loop control, and production process
optimisation [9,35,40–42] were stated as the future research directions (Figure 17). This wave
of optimisation and control will continue from 2022 onwards.
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Figure 17. Evolution of future work over time. A sanky diagram showing evolution of future work
over three periods of time.

Model-based task

In the period 2015–2017, design, manufacturing, and services [4] were stated as future
research directions, which were narrowed down to the service management [12] of manu-
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facturing systems. According to Figure 14, geometric, definition, and behaviour models
were implemented following this theme in the period 2018-2019. Additionally, model
improvement [43] and expert knowledge incorporation [64] were implemented, which are
not stated as future research alternatives.

In the period 2018–2019, validation [66] was emphasised as one of the future research
alternatives, which evolved to generalization [60], common benchmark and standard [40]
in the period 2020–2022. This research alternative was embraced by the scientific commu-
nity through case-study implementation, review work with generalized DT definitions,
contributing technology, etc. [16].

Another key future research direction is improved safety [29] from the period 2018-
2019, which was not embraced by the scientific community because there was no ML-based
DT relating to this topic in the period 2020–2022.

In 2022 and onwards, encapsulation of scalable systems [68], detailed DT models [24],
higher digital design level [21], explainability [35], cybersecurity [40], sustainability [16],
benchmarks, and standards [62] will be dominant.

Data-based task

In the period 2015–2017, the future research path was set to incorporate semantic
data models [38] and two-way connections [12] in DT. In the period 2018-2019, indus-
trial applications with the help of industrial data was emphasised as a future research
direction [34,66]. Marginal success has been achieved through the use of industrial case
studies. Additionally, big data analytics [67] and information weighting [40] appeared
as a dominant future research directions in the period 2020–2022. In 2022 and onwards,
the incorporation of time-series [65] and categorical data [36], encapsulation of works in
progress [68], data heterogeneity [43], real-time data [63], and data quality improvement
will be dominant in ML-based DT.

5. Discussion and Conclusions

In the proposed review study, 71 documents were included, ranging from 2015 to March
2022. The screening of 1050 publications from Web of Science, IEEE, Scopus, and ScienceDirect
resulted in 71 finally selected publications. The novelty of the proposed study lies in exhaustive
research on ML-based DT from bibliometric and evolutionary perspectives.

RQ1: This research question attempts to accumulate quantitative and qualitative
knowledge associated with ML-based DT. Based on the citation trend, it can be concluded
that there is a reciprocal increase in interest in ML-based DT. Most publications belong to the
subject category of computer science rather than manufacturing. Additionally, a marginal
number of authors continued their contribution to ML-based DT over time. Clustering the
author keywords resulted in four clusters: (a) computer-integrated manufacturing, (b) In-
dustry 4.0, (c) smart manufacturing, and (d) data models. The analysis of keywords showed
that the past trend was to create a common knowledge base of definition, characteristics,
and applications of DT. The current trend indicates application-oriented performance im-
provement instead of complete DT architecture improvement. However, it is necessary to
quantify the loss caused by considering only application-oriented improvement instead of
complete architecture improvement.

The total time span was divided into three periods, (a) Period 1 (2015–2017), (b) Pe-
riod 2 (2018–2019), and (c) Period 3 (2020–2022), in order to analyse the thematic evolution.
Analysing these three periods indicates that the themes ML, IoT, and deep learning are
emerging over the trajectory of time, while CPS and virtual reality are well developed
themes. The relevance of ML to DT has increased over time. Similarly, big data, data
models, and real-time systems have become more relevant to ML-based DT.

RQ2: The dominant ML algorithm in ML-based DT is the neural network. Neu-
ral networks have evolved over time using different activation functions, parameters, and
learning techniques. All these changes were introduced to address application-specific
requirements, such as increased performance, reduced data size, reduced uncertainty, and
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increased cognition. In the future, neural networks will evolve to incorporate explainability,
causality, expert knowledge, resilience, and so on.

ML is predominantly used for data analytics, such as fault prediction in DT. The matu-
rity of the other tasks was marginal. The data-oriented ML task received the lowest focus.
In the future, ML can contribute to the improvement of DT data quality through procedure
creation, issue monitoring, and requirement improvement. In the case of model-based tasks,
ML can be used for DT model problem exploration, creation of DT model architecture,
development of DT model test cases, and deployment of DT models in industrial scenarios.

In the future, ML can contribute to DT confidence via error-free simulation of the
physical system, DT fidelity by instant updates in the model, DT quality assurance by
advanced data analytics, and minimised DT carbon footprint via using a less resource-
hungry platform.

RQ3: DT’s eight dimensions from the CIRP encyclopaedia were considered to assess
the contribution of ML to DT dimensions. The CPS intelligence characteristics of the
DT were mainly enhanced by ML. Digital model richness, such as DT fidelity, can be
improved by ML through a lifelong-learning ML model. The update frequency of DT can
be real-time, daily, monthly, or yearly. However, the ML model can trigger this update
process in real-time. In the case of human interaction with DT, ML has potential in virtual
and augmented reality, or a hybrid of the two, bridging the gap between machines and
humans. The role of ML in developing DT shows that it plays a vital role in DT functionality.
This trend is expected to continue in the future. Conversely, ML-based DT participates in
the manufacturing stage of PLM in most cases. ML-based DT has the potential to identify
design schematics and concepts of new products, optimisation, consistency, and design
validation. In the service stage of the PLM, ML-based DT can manage real-time data, trigger
diagnostic procedures, perform data analytics for fault prognosis, and optimise features.

RQ4: Issues identified by the scientific community can be categorised into three classes:
data analytics, model-based tasks, and data-based tasks. A comparison of future work with
current work shows that the scientific community is focused on data analytics, while future
work emphasises model-based tasks such as validation and DT-driven PLM.

Data-driven future directions are also being emphasised by the scientific commu-
nity. DT-based ML has good potential for managing data heterogeneity, encapsulating
dynamic environments, and working in progress. This trend in industrial applications will
continue in the future. In addition, the success of deploying DT in real industrial cases
requires quantification.

DT is a replica of a physical system. Information about the physical system resides in
the DT, which requires extra safety from leakage. Therefore, the cybersecurity and security
of communication protocols must be the focus. Additionally, causality, explainability, and
semantic ontology will be future trends.

The main concluding points are listed below:

• Based on the bibliometric analysis, it can be concluded that there has been a recip-
rocal increase in interest in ML-based DT. However, the improvements introduced
in ML-based DT are focused primarily on the ML part rather than complete DT ar-
chitecture or manufacturing processes. A collaborative work between authors with
ML and manufacturing backgrounds can create a consolidated ML-based DT for use
in manufacturing.

• It can also be concluded that ML tasks are becoming more advanced over time in
ML-based DT. The sole application of ML in manufacturing is no longer considered
as a significant contribution to the state of the art. However, the advancement in ML
tasks needs quantification and comparison with other domains such as healthcare.

• Additionally, it can be concluded that ML acts as the main player in cyberphysical
system intelligence enhanced by ML-based DT. ML has potential in enhancing each
dimension of DT. In the future, industrial application and encapsulation of dynamic
processes will be focused on primarily.
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