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Featured Application: This method can be used to quickly predict the overall performance as
well as the meridional flow details of the centrifugal compressors. After being verified, it
can provide an efficient and robust analysis tool for the design system of different types of
centrifugal compressors.

Abstract: The meridional distribution of the flow parameters inside the centrifugal compressor is of
great importance to its overall performance, as well as its matching performance under a thermal
cycle. A time-marching throughflow method for the off-design performance analysis of the centrifugal
compressor is described. The method is based on the strictly conservative throughflow-governing
equations, and an improved method of boundary-condition enforcement is developed based on
Newton’s method to achieve a robust and fast throughflow simulation. An inviscid blade force
model was adopted to obtain the flow deflection inside the blade passage. Empirical loss models
were integrated into the throughflow model to simulate the viscous force effects in the real three-
dimensional flow. Two test cases are presented to validate the throughflow method by comparisons
with the experimental data or CFD results, including the NASA low-speed centrifugal compressor
(LSCC) and the Allison high-performance centrifugal compressor (HPCC). The simulation indicated
that the developed enforcement method for the inlet and outlet boundary conditions significantly
improves the computational robustness. For both the LSCC and HPCC cases, reasonable flow-
parameter distribution was obtained and accurate overall characteristics were also predicted under
the off-design conditions. The results indicated that the developed time-marching throughflow
method is effective and efficient for the performance analysis of centrifugal compressors.

Keywords: throughflow; time-marching; centrifugal compressor; boundary condition; off-design

1. Introduction

Turbomachinery design is among the most challenging tasks in modern industrial
design mainly due to the highly complex, non-linear physical environment in which the
turbomachines operate. This task demands that the most advanced methods and tools
are employed in order to gain the necessary understanding of flow phenomena and to
exploit the flow physics to achieve optimum turbomachine performance. To cope with this,
the hierarchical design system of turbomachinery has been developed consisting of the
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low-order models and high-fidelity models, such as the one-dimensional (1D) mean-line
method, the two-dimensional (2D) throughflow method, and the three-dimensional (3D)
method. Among them, the throughflow method has become the backbone of turboma-
chinery design. Benefitting from its good balance between computation efficiency and
accuracy, the throughflow method has been commonly adopted in the preliminary design
and optimization stage both for axial [1–6] and radial turbomachinery [7–10]. As has been
reported, up to 80% or more of the design parameters may be fixed during the throughflow
modeling phase [11]. Apparently, an improved throughflow method is still of great interest
to the industrial community.

Since the concept of the S2 stream surface was introduced by Wu in the 1950s [12],
several kinds of throughflow methods have been developed based on different mathematic
approaches. These approaches can be mainly categorized into three kinds: the stream
function method (SFM) first introduced by Marsh [13], the streamline curvilinear method
(SCM) introduced by Smith and Novak [14,15] and the time-marching-based method
pioneered by Spurr [16]. In the first two methods, usually called the classical throughflow
flow methods, the original set of governing equations are reduced to a single differential
equation: the stream function equation for the SFM and the radial equilibrium equation
for the SCM. Though they are different numerical approaches in principle, it has been
concluded by Davis that there is little to choose between them [17]. As the common
drawbacks, the simplifications make these approaches conceptually unable to predict
choking conditions or capture shock waves [18,19]. This causes striking difficulties in the
throughflow analysis of the turbomachinery, especially when the flow inside the blade
passage becomes transonic. Although several strategies were implemented [6,8,20] to
enhance their performances in transonic flow analysis, the classical throughflow approaches
are inherently weak in these situations.

To overcome the major drawbacks of the two classical throughflow approaches men-
tioned above, the time-marching throughflow method has been proposed, in which the
complete set of Euler/Navier–Stokes equations are discretized and solved by advancing in
pseudo time on the S2 surface. Benefitting from the progress in the theory of computational
fluid dynamics (CFD), the time-marching throughflow method can automatically predict
the choking conditions, and it has the shock-capturing feature. This method provides an
efficient and robust analysis tool for the subsonic, transonic, and supersonic flow and has
been becoming more and more popular in the modern turbomachinery design and analysis.

The first time-marching throughflow method based on the Euler equations was pre-
sented by Spurr [16]. Then, systematic works were carried out by Baralon [21–23] and
some key points were studied, including the modeling of inviscid blade force and blade
blockage, and the analysis of the properties of shock waves. Gu and Anderson [24,25]
have been dedicated to developing a time-marching throughflow analysis tool, which
incorporates the effects of viscous loss, flow deviation, air bleeding and injection, and
throat choking. Topp [26] attempted to construct a turbomachinery analysis and design
system (TADS) at Allison Engine Company by coupling the time-marching throughflow
and blade-to-blade models, which is similar to Spurr’s work. Further developments led to
the Navier–Stokes-based throughflow model and progress in modeling the effects of 3D
loss in Simon and Léonard’s work [27,28]. The potentials of the time-marching throughflow
method were also investigated in the design tasks of both the axial compressor and turbine
based on the solution of the inverse problem [29–31] and its coupling with advanced opti-
mization methods [32–34]. Detailed works about axial turbine simulation were performed
by Ricci et al. [35], aiming to incorporate the real gas capabilities and 3D flow features into
the time-marching throughflow models. Yang et al. [36] raised a novel inviscid blade force
model and proved its superiority in computing robustness compared to the widely used
ordinary-differential-equation-based one.

Although the aforementioned works have shown the considerable superiorities of the
time-marching throughflow method compared to the classical ones, its applications are still
limited within the scope of axial turbomachinery. To the author’s best knowledge, the time-
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marching throughflow analysis of the centrifugal compressor has not been implemented in
the open literature. This may be attributed to the very strong adverse pressure gradient and
complex viscous effects commonly existing inside the centrifugal compressor. The former
can result in a very low Mach number flow and even backflow, which significantly increases
the stiffness of the throughflow-governing equations; meanwhile, the latter negatively
affects the accuracy of the performance prediction for the centrifugal compressor.

In the present paper, a viscous time-marching throughflow method for the centrifu-
gal compressor simulation is presented. The method has the capability to predict both
the overall performance at off-design points and the corresponding meridional flow de-
tails. A normally averaged throughflow model, rather than the circumferentially averaged
one, was elaborately selected, preserving the rigorous conservation of flow parameters in
transonic flow analysis. To overcome the convergence problem occurring in the through-
flow simulation of the centrifugal compressors with a high pressure ratio, characteristic
boundary conditions (CBCs) based on Newton’s iteration method were developed and
can greatly improve the computation robustness. To simulate the viscous effects, complete
loss correlations deduced from the open literature were adopted, accounting for both the
internal losses and parasitic losses inside the centrifugal compressor. Owing to all the
efforts above, throughflow solutions of different kinds of centrifugal compressors can be
efficiently obtained using the time-marching method.

This paper is organized as follows. In Section 2, the time-marching throughflow flow
model of the centrifugal compressor is elucidated exhaustively in terms of the governing
equations, the inviscid blade force model, the viscous force model, and the empirical
models. Section 3 then presents the specific numerical method utilized in the solver,
especially introducing the developed non-reflective boundary condition (NRBC). The
developed throughflow solver is validated against experimental and numerical data in
Section 4, taking the well-known NASA low-speed centrifugal compressor (LSCC) and the
impeller of the high-performance centrifugal compressor (HPCC) as test cases. At last, all
the conclusions obtained in this paper are summarized in Section 5.

2. Throughflow Model
2.1. Governing Equations

Governing equations for the time-marching throughflow model can be derived from
the 3D viscous equations by taking a simple axisymmetric assumption or a circumferential
average. For body-fitted curvilinear coordinates (ξ, η, ζ) satisfying Equation (1),

ξϕ = ηϕ ≡ 0 (1)

their governing equations can be written as Equation (2), which represents the throughflow
model adopted in most studies, both for the non-bladed duct and the bladed region.

∂
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fv + fb + Qb (2)

However, this throughflow model may encounter the computing difficulty in the
transonic flow simulation when shock waves exist inside the blade passage, for which the
details have been presented in [37]. To overcome this problem, quasi-orthogonal body-fitted
coordinates satisfying Equation (3) {

ξ · ζ = 0
η · ζ = 0

(3)

were adopted in the present study for the bladed region. This resulted in the normally
averaged governing equations of throughflow in the blade passage, as in Equation (4),
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where ξz, ξr, ξϕ, ηz, ηr, ηϕ, ζz, ζr, ζϕ are the metrics including the blockage effects of blade
thickness. ξ

(
ξz, ξr, ξϕ/r

)
,η
(
ηz, ηr, ηϕ/r

)
, and ζ

(
ζz, ζr, ζϕ/r

)
correspond to vectors of three

orientations, respectively, and J is the metric Jacobian. The conservative variables U are
defined as

U = [ρ, ρu, ρv, ρw, e]T

and the flux vectors F, G and H are

F =
[
ρu, ρu2 + p, ρuv, ρuw, (e + p)u

]T

G =
[
ρv, ρuv, ρv2 + p, ρvw, (e + p)v

]T

H = [ρw, ρuw, ρvw, ρw + p, (e + p)w]T

where ρ is density, p is pressure, e is specific energy, and (u, v, w) are the components of
the relative velocity vector W. In the right-hand side (RHS) of Equation (4), the term Q
contains contributions from the cylindrical-coordinate form of the governing equations,
and Qb accounts for the variation of the area in the blade passage. Both terms are defined,
respectively, as

Q =
[
0, 0, p + ρ(w + ωr)2, ρv(w + 2ωr), ω2r2ρv

]T

Qb =

[
0,−p

∂

∂ζ

(
r
J

ζz

)
,−p

∂

∂ζ

(
r
J
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,−p

∂
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(
ζϕ

J

)
, 0
]T

The inviscid blade force term

fb =

[
0,− rζz

J

(
∂p
∂ζ

)
,− rζr

J

(
∂p
∂ζ

)
,−

ζϕ

J

(
∂p
∂ζ

)
, 0
]T

guarantees a tangential condition between the flow and the mean flow surface inside the
blade passage and vanishes in the non-bladed duct.

The viscous force term fv =
[
0, fvz, fvr, fvϕ, 0

]T is introduced to simulate viscous losses.
Both the inviscid blade force term fb and viscous force term fv need to be modeled to close
the system in Equation (4), as will be introduced in the following sections.

2.2. Inviscid Blade Force Model

To simulate the flow deflection effects made by a blade, many attempts have been
made, which are generally based on two kinds of ideas, i.e., the relaxed method and the
direct method. The former introduces a fictitious evolution equation for fb, then relaxes to
the steady state [21,26,38], while the latter usually directly expresses the circumferential
component of fb as the gradient of the circulation [29,34]. However, both of these kinds of
methods have their shortcomings. In terms of the relaxed methods, the relaxation factor
needs to be manually selected, of which an unsuitable value may significantly degrade
the convergence and accuracy of the throughflow calculation. As for the direct method,
projection of the circumferential component of the fb to the other two orientations may
cause severe computing instabilities in the case of a large blade angle. To ensure the stability
of throughflow simulations for the centrifugal compressor, an inviscid blade force model
developed by Yang et al. [36] was adopted. This model derives the modulus of the fb
directly from the discretized normal momentum on the mean flow surface, which has
proven to be of great benefit to the solver robustness and can be expressed as

fb = R · ζ/|ζ| (5)
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where R is the residual vector term in the RHS of the discretized momentum equations.
In the solving process, fb is calculated at each iteration in conjunction with a slip
condition constraint

W∗ = W− (W · ζ)ζ/|ζ|2 (6)

W∗ represents an updated relative velocity.

2.3. Viscous Force Model

In the present study, the viscous effects were introduced by reconstructing a distribu-
tion of the entropy field. In general, this was achieved by adopting a viscous force in the
opposite direction of the flow velocity

fv = − fv
W
|W| (7)

It is natural, then, to find a way to relate the modulus of the viscous force model fv
with the entropy distribution. This problem has been addressed by Bosman and Marsh [39],
in whose work a derivation of Crocco’s equation, incorporating the conservation of total
enthalpy under an absolute frame and rothalpy under a relative frame, gives the specific
expression as

fv = −ρTW·∇s

|W|2
W (8)

Notice that only the relative velocity was adopted here because it naturally degrades
into the absolute velocity in an absolute frame.

2.4. Empirical Models

To reconstruct a physically reasonable entropy field in the S2 stream surface for the
centrifugal compressor off-design performance analysis, the complete empirical correlations
available in the open literature were adapted to the present throughflow method. Viscous
effects from both the impeller and vaneless diffuser were considered. Moreover, the
slip models were employed in the present throughflow model to simulate the deviation
between the real flow angle and the blade angle. Referring to Oh’s work [40] and the
authors’ previous work [41], a list of the empirical models already implemented in the
present throughflow solver is given in Table 1. These selected empirical models were
validated in the aforementioned works and showed satisfying performance in terms of
compatibility and thus the accuracy of the analysis results.

Table 1. Empirical correlations list in centrifugal compressor simulation.

Categories of Models Correlations

Slip factor Qiu et al. [42]
Incidence loss Aungier [43]

Blade loading loss Coppage and Dallenbach [44]
Skin friction loss Jansen [45]

Clearance loss Jansen [45]
Mixing loss Johnston&Dean [46]

Disc friction loss Daily and Nece [47]
Recirculation loss Yang et al. [48], Oh et al. [40]

Vaneless diffuser loss Coppage and Dallenbach [44]

In general, most of these empirical correlations were established by correlating the
losses to the flow parameters at the blade leading and trailing edges. Therefore, special
treatment is required when they are applied to the throughflow simulation, which means
a redistribution of the evaluated losses along the spanwise and streamwise directions
is necessary.



Appl. Sci. 2022, 12, 6576 6 of 20

2.4.1. Spanwise Loss Distribution

In terms of the loss distribution in the throughflow simulation of the axial compressor,
some studies have been implemented, in which the results seem to be basically matched
with the 3D simulation or the real flows. However, the loss distribution in the through-
flow simulation of the centrifugal compressor has not been noticed enough in the open
literature. Additionally, difficulties are encountered in the application of the empirical
correlations along the spanwise direction, since almost all the empirical correlations for the
centrifugal compressors were originally established and verified in a 1D perspective, as
concluded by Oh et al. [40] and Zhang et al. [10]. To deal with this problem, the spanwise-
averaged/meanline parameters were employed to evaluate the “total” flow loss in the
present solver. This “total” loss was then distributed with a prescribed form along the
spanwise direction according to the specific type of loss. A uniform loss distribution along
the spanwise is advised by Casey [8], and was adopted in the distribution of incidence
loss, blade loading loss, skin friction loss, and mixing loss. Then, considering the source of
loss production, a simple locally linear distribution was chosen for the clearance loss, disc
friction loss, and recirculation loss. As for the vaneless diffuser loss, a parabolic distribution
was employed to approximate the viscous effects from real endwall effects. The conditions
prescribed for the linear and parabolic function are as follows:

For the linear distribution, once the distribution range is specified:

• The minimum value of the loss at one end is set as zero;
• The integral of the loss along the span is equal to the estimated “total” loss by a

1D approach.

For the parabolic distribution:

• The spanwise location of the minimum loss value needs to be manually inputted and
is usually chosen at mid-span;

• The ratio of the minimum loss value to the averaged one needs to be manually inputted.
It takes the value of zero for the vaneless diffuser loss distribution in this study;

• The integral of the loss along the span is equal to the estimated “total” loss by a
1D approach.

Both the linear and parabolic distribution forms along the span are depicted in Figure 1.
The values that have to be manually entered in these distributions, such as the spanwise
location and value of the minimum vaneless loss with a parabolic distribution, are specified
with the view that they can represent some basic features of the meridional field of a
compressor. In this way, the throughflow solver can be adopted as an independent analysis
tool in the preliminary design stage with moderate accuracy in terms of meridional flow
field prediction. The accuracy of these distributions can be further improved by the results
from the 3D viscous computations and experimental measurements.
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2.4.2. Streamwise Loss Distribution

In addition to the spanwise loss distributions, the loss distributions along the stream-
wise direction have to be prescribed. To simulate the entropy field as real as possible,
either a linear distribution or a cosinoidal distribution referring to Pacciani’s work [49],
which is simple but still realistic, can be selected for each kind of loss in the present
throughflow solver.

2.5. Blade Leading and Trailing Edge Treatment

As pointed out by many researchers [21,50], an inviscid blade force discontinuity
happens at the blade leading edge in the time-marching throughflow calculation if no
special treatment is implemented under an off-design performance analysis for the tur-
bomachinery. Accompanied by this discontinuity, unphysical entropy is produced and is
directly proportional to the mismatch degree between the real inflow angle and the inlet
metal angle. This kind of unphysical entropy can pollute the predicted flow fields and
make an accurate off-design performance analysis impossible. Meanwhile, the deviation
angle, which also originates from the mismatch between the real flow surface and the
blade camber surface, needs to be simulated at the trailing edge. Casey [8] proposed that
in the SCM calculation, the actual value of the swirl at the blade inlet and the deviation
angle at the outlet should be iteratively updated, which is essentially a flow-regularization
procedure. A similar but slightly different flow-regularization approach proposed by Yang
et. [36] was employed in the present time-marching throughflow solver. This approach
eliminates the inviscid blade force discontinuity at the blade leading edge by smoothing
the flow field. It also provides a realistic outflow angle by incorporating the well-accessed
deviation or slip factor models. When it was applied to the present throughflow model,
prescribed portions at both the leading and trailing edges of the blade camber surface
were locally modified to regularize the flow in that region. A cubic spline function was
adopted in the prescribed portions so as to ensure that the modified camber surface regions
remained C1 continuous.

3. Numerical Methods

The present throughflow code, S2CFD, was programmed with the Fortran 95 language
and supports multi-block computation by adopting a zonal method and thus relieving the
difficulty of the grid generation in simulations of complex configurations. In this code,
the governing equations of Equation (4) were solved by a numerical procedure based on
a Godunov-type finite volume method [51]. Solutions were obtained by marching at the
pseudo-time steps until the steady state was reached. Second-order accuracy was obtained
by using MUSCL reconstruction in conjunction with a limiter function. The governing
equations system can be advanced in pseudo-time either by using an explicit four-stage
Runge–Kutta scheme, or an implicit LU-SGS scheme. The local time-stepping method was
adopted both in the explicit and implicit schemes. Residual smoothing was applied to the
explicit scheme to speed up convergence to the steady state.

Improved Boundary Condition Enforcement

The numerical enforcement of the boundary condition plays an important role in
the CFD solver development and can significantly affect the computational efficiency and
robustness of the marching process in a steady simulation. A commonly used characteristic
boundary condition (CBC) for perfect gas involves the so-called “Riemann-invariant” at
the inlet and adopts linearized characteristic equations at the outlet, of which the details
and an example can be found in reference [52]. However, in practice, the writers found
that difficulties in convergence were encountered when the Riemann-invariant-based CBCs
were enforced in the time-marching throughflow simulation of the centrifugal compressor.
Especially for the high-pressure-ratio cases, the computation can blow up even near the
peak efficiency operating point. To ensure a stable computation, a method of imposing the
CBCs based on Newton’s iteration method was developed for the throughflow method with
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the help of the local one-dimensional inviscid (LODI) relations. The developed CBCs refer
to the methodology in [53], but were adapted for the throughflow equations. Usually, four
values need to be specified at the inlet boundary for the subsonic inflow in the throughflow
simulation, therefore a residual vector can be defined as

R =


R1
R2
R3
R4

 =


ht − ht0
s− s0

v− u tan σ
w− u tan α

 =


dh
ds

v− u tan σ
w− u tan α

 (9)

where ht0 and s0 are the specified total enthalpy and entropy, respectively, and ht and s are
the corresponding calculated values. σ and α denote the radial and tangential flow angle.
The residual vector R is dependent on the primitive variables at the boundary and should
vanish after the computational convergence. Using Newton’s method:

R +
∂R

∂Up
dUp = 0 ⇒ ∂R

∂Up
dUp = −R (10)

Up represents the primitive variable Up =
[
p u v w T

]T . According to the
characteristic theory, another characteristic variable propagating outside the inlet is added
here as:

dC5 = dun −
dp
ρc

= 0 (11)

where un is the local velocity normal to the inlet boundary. Equation (11) represents
a left-propagating acoustic wave. Combining Equations (9) and (11), a system can be
presented as:

Ain · dUp = bin (12)

with

Ain =


0 u v w cp

− Rg
p 0 0 0 cp

T
0 − tan σ 1 0 0
0 − tan α 0 1 0
1 −ρcnz −ρcnr −ρcnϕ 0

, bin =


−R1
−R2
−R3
−R4

0


The analytical solution of Equation (12) can be obtained as

dp =
ρdH − pds

R −
ρusun
cos δ + ρ

(
u2 + v2 + w2)

1 + us
c·cos δ

(13)

dρ =
ρ

γ

dp
p
− ρds

cp
(14)

dun =
dp
ρc

(15)

s
(

1
A , tan σ

A , tan α
A

)
denotes the unit vector of the prescribed flow direction at the inlet bound-

ary. Where A =
√

tan2 σ + tan2 α + 1, us = W · s, cos δ = n · s.
For the subsonic outlet boundary, one characteristic variable propagates into the com-

putational domain and the other four propagate outside. In the time-marching throughflow,
the static pressure is usually imposed at the outlet boundary, and thus can be chosen as the
inward propagating characteristic

R5 = p− pb (16)
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where pb denotes the specified backpressure. In terms of the outgoing characteristic
variables, four correlations, which represent entropy wave, right-propagating acoustic
wave and vorticity waves, respectively, are added and can be expressed as

dT − dp
ρcp

= 0 (17)

dun +
dp
ρc

= 0 (18)

dut1 = 0 (19)

dut2 = 0 (20)

where ut1 and ut2 denote the other two velocity components, which are orthogonal to
the normal velocity un. Similar to that at the inlet, a system can be obtained by combing
correlations (17)–(21)

Aout · dUp = bout (21)

Aout =


1 0 0 0 0

(γ− 1) 0 0 0 −γp
T

1 ρcnz ρcnr ρcnϕ 0
0 t1z t1r t1ϕ 0
0 t2z t2r t1ϕ 0

, bout =


−R5

0
0
0
0


It is not difficult to obtain the analytical solution for Equation (21) as

dp = −R5 (22)

dT =
dp
ρcp

(23)

dun = −dp
ρc

(24)

which is exactly the same as the subsonic outlet BC correlations shown in [52]. Therefore,
the CBCs based on Newton’s method developed in this study actually change the inlet
boundary treatment for the throughflow simulation. It calculates the variations of the flow
parameters at the inlet boundary, rather than directly calculating their absolute values as
conducted in the Riemann-invariant-based method, which is considered to be more robust.
Velocities both at the inlet and outlet boundaries can be computed as

du = dunnz, dv = dunnr, dw = dunnϕ (25)

By using Equations (13)–(15) and (22)–(25), the primitive variables at both the inlet
and outlet boundaries can be updated during the throughflow iterations. In the follow-
ing sections, a comparison will show the superiority of this kind of boundary-condition
enforcement compared to the Riemann-invariant-based method.

4. Validation and Applications

In this section, two test cases are presented to validate the robustness and accuracy
of the developed time-marching throughflow method in the prediction of the off-design
performances and the flow details. The two test cases include the low-speed centrifugal
compressor (LSCC) and the high-performance centrifugal compressor (HPCC).

4.1. Low-Speed Centrifugal Compressor (LSCC)

The LSCC is a low-speed centrifugal compressor with a semi-open and backswept
impeller that was designed by the NASA Lewis research center, and it has a design perfor-
mance of 30 kg/s in the mass flow rate and 1.166 in terms of the total pressure ratio. As a
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validation for the developed throughflow method, the numerical simulation of the LSCC
case is compared with the experimental data by Hathaway et al. [54]. The computations
were performed on a 365 × 40 grid, which is sufficient for the Euler-based time-marching
throughflow computation, as can be seen in the grid-independence validation shown in
Figure 2b. For clarity, a coarser grid is depicted in Figure 2a instead of the actual grid.
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With the grid, a design-point throughflow simulation costs less than 2 min on an
R5-5600H processor to achieve convergence. The convergence histories enforcing differ-
ent CBCs, i.e., the Riemann-invariant-based method and the developed CBCs based on
Newton’s method in this study, are compared in Figure 3. It can be observed that, ex-
cept for a slight saving of two iterations, the CBCs based on Newton’s method and the
Riemann-invariant obtained almost the same convergence curves. This indicates that there
exists little difference between these two kinds of CBCs when they are adopted into the
computation of the low-speed centrifugal compressor.
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The computed overall performances at the design mass flow rate are compared with
the experimental data in Table 2. The results are in good agreement, with an error of 1.8%
for the total pressure ratio and −0.3% for the isentropic efficiency. This shows the adequacy
of the present throughflow method of design-point simulation in predicting the overall
performance of the LSCC.
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Table 2. Computed and experimental LSCC performance on design point.

Computation Experiment Error (%)

Total pressure ratio 1.159 1.141 1.8
Isentropic efficiency 0.919 0.922 −0.3

A further investigation of the off-design performance of the LSCC was implemented.
It was reported by Oh et al. [40] that the recirculation flow model has a great influence
on the off-design predictions. Therefore, both the recirculation loss models developed by
Oh et al. [40] and Yang et al. [48] were validated in this case. Figure 4 shows the comparison
between different settings of the recirculation loss model in terms of both the total pressure
ratio and the isentropic efficiency. In Figure 4a, it seems that the recirculation loss has little
effect on the total pressure ratio. This is reasonable because as one kind of parasitic loss,
the recirculation loss only leads to a change in enthalpy and a corresponding change in
efficiency. It can also be seen that the discrepancy between the throughflow results and the
experimental data increased with the mass flow rate. Nonetheless, the maximum error was
less than 2.5% within all operating ranges. Unlike the total pressure ratio, the off-design
performance of the isentropic efficiency was greatly influenced by the recirculation loss
model setting, as shown in Figure 4b. When the mass flow rate was larger than the design
value, Yang’s recirculation model was in good agreement with the experiment, whereas
it seems that no significant loss was produced by Oh’s model and thus resulted in higher
isentropic efficiency. For the small mass flow rate, both Yang’s and Oh’s models showed
dramatically increased discrepancy compared to the experiment as the mass flow rate
decreased. Nevertheless, the trend of the rapid efficiency decrement was predicted by both
models. The comparison shown in Figure 4b indicates that a more accurate recirculation
flow loss model needs to be developed. Table 3 further reports the detailed contributions of
each loss to the total loss in the throughflow simulation at different operating conditions
when Yang’s recirculation model was adopted.
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Table 3. Contributions of different losses for the LSCC case.

Mass Flow
Rate (kg/s)

Incidence
Loss (%)

Blade
Loading
Loss (%)

Skin
Friction
Loss (%)

Clearance
Loss (%)

Mixing
Loss (%)

Disc
Friction
Loss (%)

Recirculation
Loss (%)

Vaneless
Diffuser
Loss (%)

22.0 7.965 12.389 13.843 2.212 6.005 3.603 49.621 4.362

30.0 3.209 19.652 33.422 5.080 26.738 6.417 0.000 5.481

40.0 0.765 7.957 27.085 3.060 34.124 3.366 21.653 1.989

The meridional flow field of the LSCC at its design mass flow rate is detailed in Figure 5.
As can be seen from Figure 5a, the relative Mach number inside the blade passage remained
lower than 0.3, except near the shroud at the impeller inlet, and achieved the lowest
value at the impeller exit. This kind of low-speed flow shows a slightly incompressible
characteristic. Figure 5b shows the static pressure distribution along the flow passage.
Though an overall diffusion process was achieved, the static pressure did not exhibit a
monotonous lift. Instead, the static pressure drop was observed at the vaneless diffuser
outlet. This was mainly due to the convergent passage area resulting from the dramatic
decrease in the diffuser width at the passage outlet, though the radius increased. Figure 5c
presents the total temperature rise due to the work done by the impeller on the airflow. It is
noticeable that a uniform distribution of the total temperature along the blade span was
observed at the impeller exit. The predicted entropy distribution is shown in Figure 5d.
It can be seen that along the streamwise direction, the entropy increased continuously.
Meanwhile, in the spanwise direction, the entropy was predicted to be of low value at
midspan and at a higher value near the endwall. Specifically, the entropy product at the
shroud was higher than that at the hub, which can be accounted for by the significant tip
leakage loss. Overall, the reasonable flow details presented in Figure 5 demonstrate the
adequacy of the developed throughflow method on the meridional flow simulation in the
low-speed centrifugal compressors.

The spanwise distribution of the flow parameters at the impeller outlet is always the
key point that the designers are concerned with. Therefore, a comparison of the spanwise
distribution of total temperature ratio at the design point between the throughflow results
and experimental data was implemented and is shown in Figure 6. It can be seen that,
except for the nearby shroud region, the calculated total temperature ratio was slightly
lower than the experiment below the 25% spanwise location. At the other positions, the
calculated results remained higher than the experimental values. This accounts for the
higher total pressure prediction at the design point discussed above, as the isentropic
efficiency was accurately predicted. Moreover, it can also be observed that the experimental
distribution of the total temperature ratio had a distinct change below 40% spanwise. As a
comparison, the throughflow result had a nearly flat distribution curve. This was mainly
due to a uniformly distributed slip factor along the whole blade span in the throughflow
simulation in this study. A more realistic distributing method of the slip factor suiting the
throughflow calculation is still expected.
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4.2. High-Performance Centrifugal Compressor (HPCC)

The HPCC is an Allison Engine Company design with a design mass flow rate of
4.39 kg/s, a design pressure ratio of 4, and a design revolution speed of 21,789 RPM.
This centrifugal compressor originates from a geometric scaling up to the DDA’s 404-III
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compressor, making use of the backward impeller and the truncated-impeller splitter.
Detailed experimental measurements on its flow field and off-design performances have
been determined by Skoch and Prahst et al. [55]. Compared with the LSCC case, the HPCC
case apparently has a much higher design aerodynamic loading and can operate at the
choke conditions if the boundary conditions are satisfied. This is feasible for the validation
of the choking-prediction capability for the developed throughflow model in the centrifugal
flow compressor simulation. Another challenge in the throughflow simulation of the HPCC
is how to simulate the effects of the splitter blades, which do not exist in the LSCC case. In a
throughflow model, the impeller blade is usually represented by its camber surface adding
the corresponding blockage distribution. In this study, within the meridional region of the
splitter, the new camber surface was generated by a weight average between the cambers
of the impeller and splitter. For simplicity, an arithmetic average was adopted in this case.
Meanwhile, the blockage factor corresponding to the thickness of the splitter was added
to the original blockage factor caused by the impeller. Additionally, the losses caused by
the splitter were considered by adopting the concept of “equivalent blade number”, i.e.,
the number of splitters was converted to the equivalent number of the impeller blades
according to their chord lengths. This equivalent number was then added to the impeller
blade number as the input of the empirical loss models. The generated mesh for the HPCC
case had 161 × 20 points and is presented with corresponding blockage distribution in
Figure 7.
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A typical computation for one operating condition can be converged within 1 min for
this case. Convergence histories of the throughflow simulation of the HPCC at a typical
operating point are shown in Figure 8 to present a comparative study of the different
methods of CBC enforcement. It can be observed that with the same initialization and
computational set, the developed CBCs based on Newton’s method achieved convergence
after approximately 3500 iterations, whereas the Riemann-invariant-based CBCs blew up
at the beginning of the computation after about 40 iterations. The reason why the Riemann–
invariant-based CBCs presented in [51] experience such difficulty in convergence is that this
CBC method explicitly utilizes the velocity of the internal domain. When the initial value
of the internal domain is not close to the real inlet boundary value, convergence difficulty
occurs. In contrast, the CBCs based on Newton’s method developed in this paper implicitly
utilize the velocity at the inlet boundary, which preserves the computational accuracy
at the inlet boundary. This result proves the superiority of the developed CBCs based
on Newton’s method in terms of computational robustness, at least for the throughflow
simulation of centrifugal compressors with a high pressure ratio.
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The predicted characteristics of the total pressure ratio and the isentropic efficiency
by the developed throughflow model were compared with the experimental data and
3D-CFD results at different speed lines as shown in Figure 9a,b, respectively. Although
overestimated at the design speed, the total pressure ratio characteristic computed by the
throughflow solver matched well with the experimental data and the 3D-CFD results in
the whole operating range. At the design mass flow rate, the throughflow results showed
relative errors of 8.3% and 4.9% compared to the experimental data and 3D-CFD results,
respectively. This should be attributed to the underestimated slip effects as the isentropic
efficiency predicted by the throughflow solver was in good agreement with the experiment
at the design mass flow rate. At the off-design speed, the throughflow results showed even
better accuracy compared with the experimental data and the 3D-CFD results. Regarding
the isentropic efficiency characteristic, the throughflow and 3D-CFD results showed good
agreement at all the different speed lines. At the design speed, both calculations matched
well with the experimental data, whereas they underestimated the efficiency at lower
speeds. It can also be seen from Figure 9 that the choke mass flow rate was accurately
predicted at the design speed by the throughflow solver with a value of 5.07 kg/s, which
was almost the same as the experimental data and 3D-CFD results. For the near-stall
conditions, it was observed that the throughflow calculation could not reach the stall
boundary shown in the experimental characteristics, especially for the 60%~80% speed.
This problem may have been caused by the setup of the loss correlations or the boundary
conditions and will be further studied in later work. Table 4 further reports the detailed
contributions of each loss to the total loss in the throughflow simulation of the HPCC at
different operating conditions.
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Table 4. Contributions of different losses for the HPCC case at 100% speed.

Mass Flow
Rate (kg/s)

Incidence
Loss (%)

Blade
Loading
Loss (%)

Skin
Friction
Loss (%)

Clearance
Loss (%)

Mixing
Loss (%)

Disc
Friction
Loss (%)

Recirculation
Loss (%)

Vaneless
Diffuser
Loss (%)

3.60 2.210 8.287 22.541 2.541 4.751 7.348 33.646 18.674

4.39 0.313 11.346 26.448 3.756 9.624 8.842 18.936 20.736

5.07 0.090 11.622 32.973 4.595 16.216 9.009 6.757 18.739

The meridional flow fields obtained by the throughflow and 3D-CFD simulations are
compared at the design mass flow rate in Figure 10 in terms of the relative Mach number. In
the comparison, the 3D solution was circumferentially averaged. It can obviously be seen
that both calculations predicted similar subsonic flow fields with a maximum relative Mach
number of about 0.8 at the leading edge of the blade tip. The blockage effects resulting from
the blade thickness of the splitter were successfully captured by the throughflow solver as it
was predicted by the 3D solution, which locally exhibited a positive gradient of the relative
Mach number at the leading edge of the splitter. In addition, the low Mach number region
at the impeller exit near the shroud was predicted by both different calculation methods
despite the slight discrepancy in its strength. This kind of low-energy flow means that the
blade leakage effects were successfully simulated by the present throughflow solver.
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5. Conclusions and Discussion

A time-marching throughflow method for the centrifugal compressor simulation
was presented. To improve the robustness of the throughflow calculation, a method of
enforcing the characteristic boundary conditions based on Newton’s iteration method was
developed and introduced. The flow deflection inside the impeller passage was achieved
by the well-validated inviscid blade force model. The viscous effects were simulated by
the classic viscous force model coupling with the complete empirical loss and slip model
for the centrifugal compressor. This throughflow solver was finally employed to analyze
the performance and flow fields of the LSCC and HPCC cases as validations. The results
were compared with the experimental data and 3D calculations. The main conclusions are
summarized below.

1. Compared to the classical Riemann-invariant-based method, the developed enforce-
ment method for the boundary conditions at the inlet and outlet of computation
models significantly improved the robustness of the time-marching throughflow sim-
ulation of centrifugal compressors. For the high-load test case, i.e., the HPCC case, the
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latter obtained converged throughflow results while the former encountered blowing
up during the computation.

2. Concerning the computational accuracy, the developed throughflow method accu-
rately predicted the overall performance of the centrifugal compressor at design
conditions, and also obtained correct off-design characteristics that were close to the
experimental or the 3D-CFD results. Reasonable results were also obtained with
respect to the spanwise distribution of the flow parameters and even the whole merid-
ional flow field. Particularly, the throughflow method precisely predicted the choke
mass flow rate automatically and precisely for the high-load centrifugal compressor.

3. The simulation of the LSCC and HPCC cases using the developed throughflow method
only cost less than two minutes, which is approximately two orders of magnitude
lower than the 3D-CFD method.

In conclusion, the throughflow method developed in this study provides an accurate
and efficient tool for the performance analysis of centrifugal compressors. Although some
kinds of empirical models, such as the recirculation and the slip models, are expected to be
further improved, the prediction results demonstrated that this throughflow method is of
great value to the preliminary design of centrifugal compressors.
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Nomenclature

Roman character
c Speed of sound
cp Specific heats at constant pressure
e Specific energy
f Magnitude of force
f Force vector
F,G,H Flux vectors
h Specific enthalpy
J Metric Jacobian
p Pressure
Q Source terms
r Radial coordinate
R Residual term
s Specific entropy
t Time
T Temperature
u, v, w Components of relative velocity
U Conservative variables
Up Primitive variables
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W Relative velocity vector
z Axial coordinate
Greek Character
α Tangential flow angle
γ Specific heat ratio
δ Angle between streamwise and normal direction
(ξ, η, ζ) Curvilinear coordinates
ρ Density
σ Radial flow angle
ϕ Circumferential coordinate
ω Angular velocity
Subscript
b Blade or backpressure
in Inlet
n Normal direction
out Outlet
p Primitive
s Streamwise direction
t Tangential direction
v Viscous
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