Combination of Scanning Strategies and Optimization Experiments for Laser Beam Powder Bed Fusion of Ti-6Al-4V Titanium Alloys
Abstract
:1. Introduction
2. Materials and Methods
2.1. L-PBF Forming Materials and Equipment
2.2. L-PBF Forming Parameters and Scanning Strategy Combination Design
3. Results and Discussion
3.1. Surface Topography
3.2. Surface Roughness
3.3. Surface Hardness
3.4. Mechanical Properties
3.5. Density
3.6. Microstructure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ivanova, T.; Mashlan, M.; Ingr, T.; Doláková, H.; Sarychev, D.; Sedláčková, A. Mössbauer Spectroscopy for Additive Manufacturing by Selective Laser Melting. Metals 2022, 12, 551. [Google Scholar] [CrossRef]
- Li, C.; Sun, J.; Feng, A.; Wang, H.; Zhang, X.; Zhang, C.; Zhao, F.; Cao, G.; Qu, S.; Chen, D. Active Slip Mode Analysis of an Additively Manufactured Ti-6Al-4V Alloy via In-Grain Misorientation Axis Distribution. Metals 2022, 12, 532. [Google Scholar] [CrossRef]
- Lovašiová, P.; Lovaši, T.; Kubásek, J.; Jablonská, E.; Msallamová, Š.; Michalcová, A.; Vojtěch, D.; Suchý, J.; Koutný, D.; Ghassan Hamed Alzubi, E. Biodegradable WE43 Magnesium Alloy Produced by Selective Laser Melting: Mechanical Properties, Corrosion Behavior, and In-Vitro Cytotoxicity. Metals 2022, 12, 469. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, H.; Huo, P.; Bai, P.; Du, W.; Li, X.; Li, J.; Zhang, W. Effect of Solution Temperature on the Microstructure and Properties of 17-4PH High-Strength Steel Samples Formed by Selective Laser Melting. Metals 2022, 12, 425. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, B.; Wen, Y.; Qu, X.H. Research progress on selective laser melting processing for nickel-based superalloy. Int. J. Adv. Manuf. Technol. 2022, 29, 369–388. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Y.Y.; Jin, Y.B.; Wang, Y.J.; Wang, C. Mechanical properties, corrosion resistance, and anti-adherence characterization of pure titanium fabricated by casting, milling, and selective laser melting. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022, 110, 1523–1534. [Google Scholar] [CrossRef]
- Guo, Y.T.; Xu, Z.Z.; Qi, W.; Zu, S.; Liu, M.Q.; Yu, Z.L.; Zhang, Z.H.; Ren, L.Q. Corrosion resistance and biocompatibility of graphene oxide coating on the surface of the additively manufactured NiTi alloy. Prog. Org. Coat. 2022, 164, 106722. [Google Scholar] [CrossRef]
- Lee, W.F.; Wang, J.C.; Hsu, C.Y.; Peng, P.W. Microstructure, mechanical properties, and retentive forces of cobalt-chromium removable partial denture frameworks fabricated by selective laser melting followed by heat treatment. J. Prosthet. Dent. 2022, 127, 115–121. [Google Scholar] [CrossRef]
- Zhai, W.; Zhou, W.; Zhu, Z.G.; Nai, S.M.L. Selective Laser Melting of 304L and 316L Stainless Steels: A Comparative Study of Microstructures and Mechanical Properties. Steel Res. Int. 2022, 2100664. [Google Scholar] [CrossRef]
- Vaverka, O.; Koutny, D.; Palousek, D. Topologically optimized axle carrier for Formula Student produced by selective laser melting. Rapid Prototyp. J. 2019, 25, 1545–1551. [Google Scholar] [CrossRef]
- Akbay, Ö.C.; Bahçe, E.; Uysal, A.; Gezer, I. Productıon and Cleaning of Lattice Structures Used in the Space and Aerospace Industry with Metal Additive Manufacturing Method. J. Mater. Eng. Perform. 2022, 136, 1–12. [Google Scholar] [CrossRef]
- Kurzynowski, T.; Pawlak, A.; Smolina, I. The potential of SLM technology for processing magnesium alloys in aerospace industry. Arch. Civ. Mech. Eng. 2020, 20, 23. [Google Scholar] [CrossRef] [Green Version]
- Peng, P.W.; Hsu, C.Y.; Huang, H.Y.; Chao, J.C.; Lee, W.F. Trueness of removable partial denture frameworks additively manufactured with selective laser melting. J. Prosthet. Dent. 2022, 127, 122–127. [Google Scholar] [CrossRef]
- Dobrzański, L.A.; Dobrzański, L.B.; Achtelik-Franczak, A.; Dobrzańska, J. Application Solid Laser-Sintered or Machined Ti6Al4V Alloy in Manufacturing of Dental Implants and Dental Prosthetic Restorations According to Dentistry 4.0 Concept. Processes 2020, 8, 664. [Google Scholar] [CrossRef]
- Mustafa, G.; Samed, E.; Mesut, B.; Alper, T.; Hakan, Y. The strain rate sensitive flow stresses and constitutive equations of a selective-laser-melt and an annealed-rolled 316L stainless steel: A comparative study. Mater. Sci. Eng. A 2022, 838, 142743. [Google Scholar]
- Naujokat, H.; Gökkaya, A.I.; Açil, Y.; Klaas, L.; Tim, K.; Sabine, F.; Jörg, W. In vivo biocompatibility evaluation of 3D-printed nickel–titanium fabricated by selective laser melting. J. Mater. Sci. Mater. Med. 2022, 33, 13. [Google Scholar] [CrossRef]
- Dylan, A.; Kyriakos, K.I.; Wallbrink, C.; Song, T. Cyclic plasticity and microstructure of as-built SLM Ti-6Al-4V: The effect of build orientation. Mater. Sci. Eng. A 2017, 701, 85–100. [Google Scholar]
- Zhang, J.Q.; Wang, M.J.; Liu, J.Y.; Niu, L.H.; Wang, J.H. Influence of scanning strategy on printing quality and properties of selective laser melted 18Ni300 maraging steel. J. Mater. Eng. 2020, 48, 105–113. [Google Scholar]
- Cao, X.; Carter, L.N.; Villapún, V.M.; Cantaboni, F.; De Sio, G.; Lowther, M.; Louth, S.E.T.; Grover, L.; Ginestra, P.; Cox, S.C. Optimisation of single contour strategy in selective laser melting of Ti-6Al-4V lattices. Rapid Prototyp. J. 2022, 28, 907–915. [Google Scholar] [CrossRef]
- Nespoli, A.; Bennato, N.; Villa, E.; Passaretti, F. Study of anisotropy through microscopy, internal friction and electrical resistivity measurements of Ti-6Al-4V samples fabricated by selective laser melting. Rapid Prototyp. J. 2022, 28, 1060–1075. [Google Scholar] [CrossRef]
- Khorasani, A.M.; Gibson, I.; Ghasemi, A.; Ghaderi, A. Modelling of laser powder bed fusion process and analysing the effective parameters on surface characteristics of Ti-6Al-4V. Int. J. Mech. Sci. 2020, 168, 105299. [Google Scholar] [CrossRef]
- Wang, P.; Chen, D.; Fan, J.; Sun, K.; Wu, S.; Li, J.; Sun, Y. Study on the influence of process parameters on high performance Ti-6Al-4V parts in laser powder bed fusion. Rapid Prototyp. J. 2022. [Google Scholar] [CrossRef]
- Yan, Z.Y.; Zhou, Q.J.; Hou, Y.F.; Yang, G.W.; Ma, C.Q.; Wang, F.D. Effect of Interlayer Residence Time on Microstructures and Mechanical Properties of Laser Melting Deposited TC11 Titanium Alloys. Chin. J. Lasers 2018, 45, 44–51. [Google Scholar]
- Cen, W.H.; Tang, H.L.; Zhang, J.Z.; Yuan, G.X.; Yan, H.H.; Long, Y. Scanning Strategy to Improve the Overlapping Quality of Partition in Selective Laser Melting. Chin. J. Lasers 2021, 48, 173–183. [Google Scholar]
- Zou, S.; Xiao, H.B.; Ye, F.P.; Li, Z.C.; Tang, W.Z.; Zhu, F.; Chen, C.T.; Zhu, C. Numerical analysis of the effect of the scan strategy on the residual stress in the multi-laser selective laser melting. Results Phys. 2020, 16, 103005. [Google Scholar] [CrossRef]
- Yu, W.H.; Sing, S.L.; Chua, C.K.; Tian, X.L. Influence of re-melting on surface roughness and porosity of AlSi10Mg parts fabricated by selective laser melting. J. Alloys Compd. 2019, 792, 574–581. [Google Scholar] [CrossRef]
- Li, X.F.; Yi, D.H.; Wu, X.Y.; Zhang, J.F.; Yang, X.H.; Zhao, Z.X.; Feng, Y.H.; Wang, J.H.; Bai, P.K.; Liu, B.; et al. Effect of construction angles on microstructure and mechanical properties of AlSi10Mg alloy fabricated by selective laser melting. J. Alloys Compd. 2021, 881, 160459. [Google Scholar] [CrossRef]
- Rashid, R.; Masood, S.; Ruan, D.; Palanisamy, S.; Brandt, M. Effect of scan strategy on density and metallurgical properties of 17-4PH parts printed by Selective Laser Melting (SLM). J. Mater. Process. Technol. 2017, 249, 502–511. [Google Scholar] [CrossRef]
- Rashid, R.; Masood, S.; Ruan, D.; Palanisamy, S.; Elambasseril, J.; Brandt, M. Effect of energy per layer on the anisotropy of selective laser melted AlSi12 aluminium alloy. Addit. Manuf. 2018, 22, 426–439. [Google Scholar] [CrossRef]
- Cottam, R.; Palanisamy, S.; Avdeev, M.; Jarvis, T.; Henry, C.; Cuiuri, D.; Balogh, L.; Abdul Rahman Rashid, R. Diffraction Line Profile Analysis of 3D Wedge Samples of Ti-6Al-4V Fabricated Using Four Different Additive Manufacturing Processes. Metals 2019, 9, 60. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.K.; Shahidsha, N.; Bahl, S.; Kedaria, D.; Singamneni, S.; Prasad, K.D.V.Y.; Suwas, S.; Chatterjee, K. Enhanced biomechanical performance of additively manufactured Ti-6Al-4V bone plates. J. Mech. Behav. Biomed. Mater. 2021, 119, 104552. [Google Scholar] [CrossRef]
- Shi, W.T.; Wang, P.; Liu, Y.D.; Hou, Y.J.; Han, G.L. Properties of 316 L formed by a 400 W power laser Selective Laser Melting with 250 μm layer thickness. Powder Technol. 2020, 360, 151–164. [Google Scholar] [CrossRef]
- Miao, X.; Liu, X.; Lu, P.; Han, J.; Duan, W.; Wu, M. Influence of Scanning Strategy on the Performances of GO-Reinforced Ti6Al4V Nanocomposites Manufactured by SLM. Metals 2020, 10, 1379. [Google Scholar] [CrossRef]
- Huang, W.; Chen, X.; Huang, X.; Wang, H.; Zhu, Y. Anisotropic Study of Ti6Al4V Alloy Formed by Selective Laser Melting. JOM 2021, 73, 3804–3811. [Google Scholar] [CrossRef]
- Wang, J.; Wu, W.J.; Jing, W.; Tan, X.; Bi, G.J.; Tor, S.B.; Leong, K.F.; Chua, C.K.; Liu, E. Improvement of densification and microstructure of ASTM A131 EH36 steel samples additively manufactured via selective laser melting with varying laser scanning speed and hatch spacing. Mater. Sci. Eng. A 2019, 746, 300–313. [Google Scholar] [CrossRef]
- Jamison, L.; Bartlett, L.X.D. An overview of residual stresses in metal powder bed fusion. Addit. Manuf. 2019, 27, 131–149. [Google Scholar]
- Zou, S.; Xiao, X.Y.; Li, Z.C.; Liu, M.; Zhu, C.; Zhu, Z.; Chen, C.T.; Zhu, F. Comprehensive investigation of residual stress in selective laser melting based on cohesive zone model. Mater. Today Commun. 2022, 31, 103283. [Google Scholar] [CrossRef]
- Ko, K.-H.; Kang, H.-G.; Huh, Y.-H.; Park, C.-J.; Cho, L.-R. Effects of heat treatment on the microstructure, residual stress, and mechanical properties of Co–Cr alloy fabricated by selective laser melting. J. Mech. Behav. Biomed. Mater. 2022, 126, 105051. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.Q.; Wan, D. Investigation into the shrinkage in Z-direction of components manufactured by selective laser melting (SLM). Int. J. Adv. Manuf. Technol. 2017, 90, 2913–2923. [Google Scholar] [CrossRef]
- Yan, T.-Q.; Chen, B.-Q.; Ji, X.; Guo, S.-Q. Influence of hot isostatic pressing on microstructure, properties and deformability of selective laser melting TC4 alloy. China Foundry 2021, 18, 389–396. [Google Scholar] [CrossRef]
- Sun, Q.-D.; Sun, J.; Guo, K.; Waqar, S.; Liu, J.-W.; Wang, L.-S. Influences of processing parameters and heat treatment on microstructure and mechanical behavior of Ti-6Al-4V fabricated using selective laser melting. Adv. Manuf. 2022, 73, 3804–3811. [Google Scholar] [CrossRef]
- Wang, Q.; Kong, J.; Liu, X.; Song, X.; Dong, K.; Yang, Y. Effect of Overlapping Remelting on Microstructures and Mechanical Properties of Selective Laser-Melted Ti-6Al-4V Alloy. Adv. Eng. Mater. 2022, 24, 2100876. [Google Scholar] [CrossRef]
- Wei, W.-H.; Shen, J. Effect of laser energy density on microstructures and mechanical properties of selective laser melted Ti-6Al-4V alloy. Int. J. Mater. Res. 2018, 109, 437–442. [Google Scholar] [CrossRef]
- Dzugan, J.; Seifi, M.; Prochazka, R.; Rund, M.; Podany, P.; Konopik, P.; Lewandowski, J. Effects of thickness and orientation on the small scale fracture behaviour of additively manufactured Ti-6Al-4V. Mater. Charact. 2018, 143, 94–109. [Google Scholar] [CrossRef]
- Thijs, L.; Verhaeghe, F.; Craeghs, T.; Van Humbeeck, J.; Kruth, J.P. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 2010, 58, 3303. [Google Scholar] [CrossRef]
Element | Ti | Al | V | Fe | C | N | H | O |
---|---|---|---|---|---|---|---|---|
Wt.% | Balance | 5.5~6.5 | 3.5~4.5 | 0.25 | 0.08 | 0.03 | 0.0125 | 0.13 |
Parameter | Value |
---|---|
Laser power (W) | 250 |
Exposure time (μs) | 100 |
Point distance (μm) | 50 |
Hatch space (mm) | 0.07 |
Scanning speed (mm/s) | 500 |
Layer thickness (μm) | 50 |
Number | The Combination Method of Different Scan Strategies | Number | The Combination Method of Different Scan Strategies |
---|---|---|---|
1 | CHESS&0° (C0) | 9 | STRIPE&45° (S45) |
2 | CHESS&90° (C90) | 10 | 0°&0° (0°) |
3 | CHESS&45° (C45) | 11 | 90°&90° (90°) |
4 | LINE&0° (L0) | 12 | 45°&45° (45°) |
5 | LINE&90° (L90) | 13 | LINE (L) |
6 | LINE&45° (L45) | 14 | CHESS (C) |
7 | STRIPE&0° (S0) | 15 | STRIPE (S) |
8 | STRIPE&90° (S90) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, W.; Li, J.; Jing, Y.; Liu, Y.; Lin, Y.; Han, Y. Combination of Scanning Strategies and Optimization Experiments for Laser Beam Powder Bed Fusion of Ti-6Al-4V Titanium Alloys. Appl. Sci. 2022, 12, 6653. https://doi.org/10.3390/app12136653
Shi W, Li J, Jing Y, Liu Y, Lin Y, Han Y. Combination of Scanning Strategies and Optimization Experiments for Laser Beam Powder Bed Fusion of Ti-6Al-4V Titanium Alloys. Applied Sciences. 2022; 12(13):6653. https://doi.org/10.3390/app12136653
Chicago/Turabian StyleShi, Wentian, Jihang Li, Yanlong Jing, Yude Liu, Yuxiang Lin, and Yufan Han. 2022. "Combination of Scanning Strategies and Optimization Experiments for Laser Beam Powder Bed Fusion of Ti-6Al-4V Titanium Alloys" Applied Sciences 12, no. 13: 6653. https://doi.org/10.3390/app12136653
APA StyleShi, W., Li, J., Jing, Y., Liu, Y., Lin, Y., & Han, Y. (2022). Combination of Scanning Strategies and Optimization Experiments for Laser Beam Powder Bed Fusion of Ti-6Al-4V Titanium Alloys. Applied Sciences, 12(13), 6653. https://doi.org/10.3390/app12136653