Rationalizing Structural Hierarchy in the Design of Fuel Cell Electrode and Electrolyte Materials Derived from Metal-Organic Frameworks
Abstract
:1. Introduction
2. MOFs for Fuel-Cell Applications
2.1. MOFs as Electrode Application
2.1.1. H2/O2 Fuel Cells
2.1.2. Organic Fuel Cells
2.2. MOFs as Electrolyte Application
3. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Meloni, E.; Iervolino, G.; Ruocco, C.; Renda, S.; Festa, G.; Martino, M.; Palma, V. Electrified Hydrogen Production from Methane for PEM Fuel Cells Feeding: A Review. Energies 2022, 15, 3588. [Google Scholar] [CrossRef]
- Rossetti, I. Modelling of Fuel Cells and Related Energy Conversion Systems. ChemEngineering 2022, 6, 32. [Google Scholar] [CrossRef]
- Alashkar, A.; Al-Othman, A.; Tawalbeh, M.; Qasim, M. A Critical Review on the Use of Ionic Liquids in Proton Exchange Membrane Fuel Cells. Membranes 2022, 12, 178. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Hong, J.; Yun, Y.; Bhardwaj, A.; Song, S.-J. The Role of Surface Lattice Defects of CeO 2-δ Nanoparticles as a Scavenging Redox Catalyst in Polymer Electrolyte Membrane Fuel Cells. J. Mater. Chem. A 2020, 8, 26023–26034. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Z.; Wang, D.; Li, Z.; Peng, X.; Liu, C.; Zheng, P. Metal Organic Frameworks Modified Proton Exchange Membranes for Fuel Cells. Front. Chem. 2020, 8, 694. [Google Scholar] [CrossRef]
- Anwar, R.; Iqbal, N.; Hanif, S.; Noor, T.; Shi, X.; Zaman, N.; Haider, D.; Rizvi, S.A.M.; Kannan, A.M. MOF-Derived CuPt/NC Electrocatalyst for Oxygen Reduction Reaction. Catalysts 2020, 10, 799. [Google Scholar] [CrossRef]
- Delaporte, N.; Rivard, E.; Natarajan, S.K.; Benard, P.; Trudeau, M.L.; Zaghib, K. Synthesis and Performance of MOF-Based Non-Noble Metal Catalysts for the Oxygen Reduction Reaction in Proton-Exchange Membrane Fuel Cells: A Review. Nanomaterials 2020, 10, 1947. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, J.; Li, Z.; Wu, B.; Lou, J.; Zeng, L.; Zhao, T. Ir-Pt/C Composite with High Metal Loading as a High-Performance Anti-Reversal Anode Catalyst for Proton Exchange Membrane Fuel Cells. Int. J. Hydrogen Energy 2022, 47, 13101–13111. [Google Scholar] [CrossRef]
- Tellez-Cruz, M.M.; Escorihuela, J.; Solorza-Feria, O.; Compañ, V. Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges. Polymers 2021, 13, 3064. [Google Scholar] [CrossRef]
- Yun, Y.; Kumar, A.; Hong, J.; Song, S.-J. Impact of CeO2 Nanoparticle Morphology: Radical Scavenging within the Polymer Electrolyte Membrane Fuel Cell. J. Electrochem. Soc. 2021, 168, 114521. [Google Scholar] [CrossRef]
- Feng, L.; Wang, K.-Y.; Lv, X.-L.; Yan, T.-H.; Zhou, H.-C. Hierarchically Porous Metal-organic frameworks: Synthetic Strategies and Applications. Natl. Sci. Rev. 2019, 7, 1743–1758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, L.; Yuan, S.; Zhang, L.-L.; Tan, K.; Li, J.-L.; Kirchon, A.; Liu, L.-M.; Zhang, P.; Han, Y.; Chabal, Y.J.; et al. Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal-organic frameworks. J. Am. Chem. Soc. 2018, 140, 2363–2372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, K.; Zhang, L.; Chen, X.; Liu, L.; Zhang, D.; Han, Y.; Chen, J.; Long, J.; Luque, R.; Li, Y.; et al. Ordered Macro-Microporous Metal-Organic Framework Single Crystals. Science 2018, 359, 206–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, L.; Day, G.S.; Wang, K.-Y.; Yuan, S.; Zhou, H.-C. Strategies for Pore Engineering in Zirconium Metal-Organic Frameworks. Chem 2020, 6, 2902–2923. [Google Scholar] [CrossRef]
- Lohse, M.S.; Bein, T. Covalent Organic Frameworks: Structures, Synthesis, and Applications. Adv. Funct. Mater. 2018, 28, 1705553. [Google Scholar] [CrossRef] [Green Version]
- Baumann, A.E.; Burns, D.A.; Liu, B.; Thoi, V.S. Metal-Organic Framework Functionalization and Design Strategies for Advanced Electrochemical Energy Storage Devices. Commun. Chem. 2019, 2, 86. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.; Xia, W.; Lin, C.; Sun, J.; Mahmood, A.; Wang, Q.; Qiu, B.; Tabassum, H.; Zou, R. A Pore-Expansion Strategy to Synthesize Hierarchically Porous Carbon Derived from Metal-Organic Framework for Enhanced Oxygen Reduction. Carbon 2017, 114, 284–290. [Google Scholar] [CrossRef]
- Doan, H.V.; Amer Hamzah, H.; Karikkethu Prabhakaran, P.; Petrillo, C.; Ting, V.P. Hierarchical Metal-organic frameworks with Macroporosity: Synthesis, Achievements, and Challenges. Nano-Micro Lett. 2019, 11, 54. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Wang, K.-Y.; Willman, J.; Zhou, H.-C. Hierarchy in Metal-organic frameworks. ACS Cent. Sci. 2020, 6, 359–367. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, Z.; Li, X.; Sun, Q.; Cheng, N.; Lawes, S.; Sun, X. Metal Organic Frameworks for Energy Storage and Conversion. Energy Storage Mater. 2016, 2, 35–62. [Google Scholar] [CrossRef]
- Furukawa, H.; Yaghi, O.M. Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications. J. Am. Chem. Soc. 2009, 131, 8875–8883. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Grunder, S.; Cordova, K.E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A.C.; Liu, Z.; Asahina, S.; et al. Large-Pore Apertures in a Series of Metal-Organic Frameworks. Science 2012, 336, 1018–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Yun, Y.; Hong, J.; Kim, I.-H.; Bhardwaj, A.; Song, S.-J. Influence of Different Parameters on Total Fluoride Concentration Evaluation in Ex-Situ Chemical Degradation of Nafion Based Membrane. Korean J. Chem. Eng. 2021, 38, 2057–2063. [Google Scholar] [CrossRef]
- Park, I.Y.; Hong, B.K.; Ko, J.J.; Kumar, A.; Song, S.J.; Hong, J. Antioxidant For Fuel Cells and Membrane-Electrode Assembly Including The Same. U.S. Patent 11,024,865, 1 June 2021. [Google Scholar]
- Park, I.Y.; Oh, J.K.; Hong, B.K.; Kumar, A.; Song, S.J.; Hong, J.W. Membrane-Electrode Assembly for Fuel Cells with Improved Mechanical Strength and Proton Conductivity and Method of Manufacturing the Same. U.S. Patent 11,196,070, 7 December 2021. [Google Scholar]
- Wang, H.; Yan, J.; Song, W.; Jiang, C.; Wang, Y.; Xu, T. Ion Exchange Membrane Related Processes towards Carbon Capture, Utilization and Storage: Current Trends and Perspectives. Sep. Purif. Technol. 2022, 296, 121390. [Google Scholar] [CrossRef]
- Gagliardi, G.G.; Ibrahim, A.; Borello, D.; El-Kharouf, A. Composite Polymers Development and Application for Polymer Electrolyte Membrane Technologies—A Review. Molecules 2020, 25, 1712. [Google Scholar] [CrossRef] [Green Version]
- Sulaiman, R.R.R.; Walvekar, R.; Wong, W.Y.; Khalid, M.; Pang, M.M. Proton Conductivity Enhancement at High Temperature on Polybenzimidazole Membrane Electrolyte with Acid-Functionalized Graphene Oxide Fillers. Membranes 2022, 12, 344. [Google Scholar] [CrossRef]
- Ohkoshi, S.; Nakagawa, K.; Tomono, K.; Imoto, K.; Tsunobuchi, Y.; Tokoro, H. High Proton Conductivity in Prussian Blue Analogues and the Interference Effect by Magnetic Ordering. J. Am. Chem. Soc. 2010, 132, 6620–6621. [Google Scholar] [CrossRef]
- Bureekaew, S.; Horike, S.; Higuchi, M.; Mizuno, M.; Kawamura, T.; Tanaka, D.; Yanai, N.; Kitagawa, S. One-Dimensional Imidazole Aggregate in Aluminium Porous Coordination Polymers with High Proton Conductivity. In Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group; World Scientific: Singapore, 2011; pp. 232–237. [Google Scholar]
- Moi, R.; Ghorai, A.; Banerjee, S.; Biradha, K. Amino- and Sulfonate-Functionalized Metal–Organic Framework for Fabrication of Proton Exchange Membranes with Improved Proton Conductivity. Cryst. Growth Des. 2020, 20, 5557–5563. [Google Scholar] [CrossRef]
- Pal, S.C.; Das, M.C. Superprotonic Conductivity of MOFs and Other Crystalline Platforms Beyond 10-1 S Cm-1. Adv. Funct. Mater. 2021, 31, 2101584. [Google Scholar] [CrossRef]
- Wang, F.-D.; Wang, B.-C.; Hao, B.-B.; Zhang, C.-X.; Wang, Q.-L. Designable Guest-Molecule Encapsulation in Metal-organic frameworks for Proton Conductivity. Chem. A Eur. J. 2022, 28, e202103732. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, B.; Hu, Y.; Liu, W.; Zhao, Y.; Yang, R.; Li, Z.; Luo, J.; Chi, B.; Jiang, Z.; et al. An Isolated Zinc–Cobalt Atomic Pair for Highly Active and Durable Oxygen Reduction. Angew. Chem. Int. Ed. 2019, 58, 2622–2626. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yin, F.-X.; Liu, N.; Kou, R.-H.; He, X.-B.; Sun, C.-J.; Chen, B.-H.; Liu, D.-J.; Yin, H.-Q. Engineering Fe–Fe3C@Fe–N–C Active Sites and Hybrid Structures from Dual Metal-organic frameworks for Oxygen Reduction Reaction in H2–O2 Fuel Cell and Li–O2 Battery. Adv. Funct. Mater. 2019, 29, 1901531. [Google Scholar] [CrossRef]
- Zhang, S.L.; Guan, B.Y.; Lou, X.W. Co–Fe Alloy/N-Doped Carbon Hollow Spheres Derived from Dual Metal-organic frameworks for Enhanced Electrocatalytic Oxygen Reduction. Small 2019, 15, 1805324. [Google Scholar] [CrossRef]
- Guan, B.Y.; Lu, Y.; Wang, Y.; Wu, M.; Lou, X.W. Porous Iron–Cobalt Alloy/Nitrogen-Doped Carbon Cages Synthesized via Pyrolysis of Complex Metal–Organic Framework Hybrids for Oxygen Reduction. Adv. Funct. Mater. 2018, 28, 1706738. [Google Scholar] [CrossRef]
- Yang, C.; Ma, X.; Zhou, J.; Zhao, Y.; Xiang, X.; Shang, H.; Zhang, B. Recent Advances in Metal-Organic Frameworks-Derived Carbon-Based Electrocatalysts for the Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2022, 47, 21634–21661. [Google Scholar] [CrossRef]
- Shahbazi Farahani, F.; Rahmanifar, M.S.; Noori, A.; El-Kady, M.F.; Hassani, N.; Neek-Amal, M.; Kaner, R.B.; Mousavi, M.F. Trilayer Metal-organic frameworks as Multifunctional Electrocatalysts for Energy Conversion and Storage Applications. J. Am. Chem. Soc. 2022, 144, 3411–3428. [Google Scholar] [CrossRef] [PubMed]
- Cepitis, R.; Kongi, N.; Grozovski, V.; Ivaništšev, V.; Lust, E. Multifunctional Electrocatalysis on Single-Site Metal Catalysts: A Computational Perspective. Catalysts 2021, 11, 1165. [Google Scholar] [CrossRef]
- Behera, P.; Subudhi, S.; Tripathy, S.P.; Parida, K. MOF Derived Nano-Materials: A Recent Progress in Strategic Fabrication, Characterization and Mechanistic Insight towards Divergent Photocatalytic Applications. Coord. Chem. Rev. 2022, 456, 214392. [Google Scholar] [CrossRef]
- Song, Z.; Cheng, N.; Lushington, A.; Sun, X. Recent Progress on MOF-Derived Nanomaterials as Advanced Electrocatalysts in Fuel Cells. Catalysts 2016, 6, 116. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Polani, S.; Luo, F.; Ott, S.; Strasser, P.; Dionigi, F. Advancements in Cathode Catalyst and Cathode Layer Design for Proton Exchange Membrane Fuel Cells. Nat. Commun. 2021, 12, 5984. [Google Scholar] [CrossRef]
- Mølmen, L.; Eiler, K.; Fast, L.; Leisner, P.; Pellicer, E. Recent Advances in Catalyst Materials for Proton Exchange Membrane Fuel Cells. APL Mater. 2021, 9, 40702. [Google Scholar] [CrossRef]
- Zhang, Q.; Guan, J. Applications of Atomically Dispersed Oxygen Reduction Catalysts in Fuel Cells and Zinc–Air Batteries. Energy Environ. Mater. 2021, 4, 307–335. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Cao, Z.; Yin, Z.; Ma, T.; Chen, S. Current Progress of Metal Sulfides Derived from Metal-organic frameworks for Advanced Electrocatalysis: Potential Electrocatalysts with Diverse Applications. J. Mater. Chem. A 2022, 10, 1617–1641. [Google Scholar] [CrossRef]
- Liu, H.; Yu, F.; Wu, K.; Xu, G.; Wu, C.; Liu, H.-K.; Dou, S.-X. Recent Progress on Fe-Based Single/Dual-Atom Catalysts for Zn–Air Batteries. Small 2022, 2106635. [Google Scholar] [CrossRef]
- Speck, F.D.; Kim, J.H.; Bae, G.; Joo, S.H.; Mayrhofer, K.J.J.; Choi, C.H.; Cherevko, S. Single-atom Catalysts: A Perspective toward Application in Electrochemical Energy Conversion. JACS Au 2021, 1, 1086–1100. [Google Scholar] [CrossRef]
- Wang, Y.; Chu, F.; Zeng, J.; Wang, Q.; Naren, T.; Li, Y.; Cheng, Y.; Lei, Y.; Wu, F. Single Atom Catalysts for Fuel Cells and Rechargeable Batteries: Principles, Advances, and Opportunities. ACS Nano 2021, 15, 210–239. [Google Scholar] [CrossRef]
- Zhang, Q.; Guan, J. Single-atom Catalysts for Electrocatalytic Applications. Adv. Funct. Mater. 2020, 30, 2000768. [Google Scholar] [CrossRef]
- Song, Y.; Xie, W.; Shao, M.; Duan, X. Integrated Electrocatalysts Derived from Metal Organic Frameworks for Gas-Involved Reactions. Nano Mater. Sci. 2022; in press. [Google Scholar] [CrossRef]
- Zhou, J.; Zeng, C.; Ou, H.; Yang, Q.; Xie, Q.; Zeb, A.; Lin, X.; Ali, Z.; Hu, L.; Zhou, J.; et al. Metal–Organic Framework-Based Materials for Full Cell Systems: A Review. J. Mater. Chem. C 2021, 9, 11030–11058. [Google Scholar] [CrossRef]
- Yang, Y.; Fu, J.; Zhang, Y.; Ensafi, A.A.; Hu, J.-S. Molecular Engineering for Bottom-Up Construction of High-Performance Non-Precious-Metal Electrocatalysts with Well-Defined Active Sites. J. Phys. Chem. C 2021, 125, 22397–22420. [Google Scholar] [CrossRef]
- Huang, H.; Shen, K.; Chen, F.; Li, Y. Metal-organic frameworks as a Good Platform for the Fabrication of Single-atom Catalysts. ACS Catal. 2020, 10, 6579–6586. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, X.; Zheng, L.; Shui, J. The Solid-Phase Synthesis of an Fe-N-C Electrocatalyst for High-Power Proton-Exchange Membrane Fuel Cells. Angew. Chem. Int. Ed. Engl. 2018, 57, 1204–1208. [Google Scholar] [CrossRef]
- Chen, Y.; Ji, S.; Zhao, S.; Chen, W.; Dong, J.; Cheong, W.-C.; Shen, R.; Wen, X.; Zheng, L.; Rykov, A.I.; et al. Enhanced Oxygen Reduction with Single-atomic-Site Iron Catalysts for a Zinc-Air Battery and Hydrogen-Air Fuel Cell. Nat. Commun. 2018, 9, 5422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Chi, B.; Li, J.; Wang, G.; Zheng, L.; Shi, X.; Cui, Z.; Du, L.; Liao, S.; Zang, K.; et al. Atomic Fe-Doped MOF-Derived Carbon Polyhedrons with High Active-Center Density and Ultra-High Performance toward PEM Fuel Cells. Adv. Energy Mater. 2019, 9, 1802856. [Google Scholar] [CrossRef]
- Deng, Y.; Chi, B.; Tian, X.; Cui, Z.; Liu, E.; Jia, Q.; Fan, W.; Wang, G.; Dang, D.; Li, M.; et al. G-C3N4 Promoted MOF Derived Hollow Carbon Nanopolyhedra Doped with High Density/Fraction of Single Fe Atoms as an Ultra-High Performance Non-Precious Catalyst towards Acidic ORR and PEM Fuel Cells. J. Mater. Chem. A 2019, 7, 5020–5030. [Google Scholar] [CrossRef]
- Liu, S.; Meyer, Q.; Li, Y.; Zhao, T.; Su, Z.; Ching, K.; Zhao, C. Fe–N–C/Fe Nanoparticle Composite Catalysts for the Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. Chem. Commun. 2022, 58, 2323–2326. [Google Scholar] [CrossRef]
- Qiao, M.; Wang, Y.; Wang, Q.; Hu, G.; Mamat, X.; Zhang, S.; Wang, S. Hierarchically Ordered Porous Carbon with Atomically Dispersed FeN4 for Ultraefficient Oxygen Reduction Reaction in Proton-Exchange Membrane Fuel Cells. Angew. Chem. Int. Ed. 2020, 59, 2688–2694. [Google Scholar] [CrossRef]
- Li, J.; Chen, M.; Cullen, D.A.; Hwang, S.; Wang, M.; Li, B.; Liu, K.; Karakalos, S.; Lucero, M.; Zhang, H.; et al. Atomically Dispersed Manganese Catalysts for Oxygen Reduction in Proton-Exchange Membrane Fuel Cells. Nat. Catal. 2018, 1, 935–945. [Google Scholar] [CrossRef]
- Wang, X.X.; Cullen, D.A.; Pan, Y.-T.; Hwang, S.; Wang, M.; Feng, Z.; Wang, J.; Engelhard, M.H.; Zhang, H.; He, Y.; et al. Nitrogen-Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells. Adv. Mater. 2018, 30, 1706758. [Google Scholar] [CrossRef]
- Deng, Y.; Tian, X.; Chi, B.; Wang, Q.; Ni, W.; Gao, Y.; Liu, Z.; Luo, J.; Lin, C.; Ling, L.; et al. Hierarchically Open-Porous Carbon Networks Enriched with Exclusive Fe–Nx Active Sites as Efficient Oxygen Reduction Catalysts towards Acidic H2–O2 PEM Fuel Cell and Alkaline Zn–Air Battery. Chem. Eng. J. 2020, 390, 124479. [Google Scholar] [CrossRef]
- He, Y.; Hwang, S.; Cullen, D.A.; Uddin, M.A.; Langhorst, L.; Li, B.; Karakalos, S.; Kropf, A.J.; Wegener, E.C.; Sokolowski, J.; et al. Highly Active Atomically Dispersed CoN4 Fuel Cell Cathode Catalysts Derived from Surfactant-Assisted MOFs: Carbon-Shell Confinement Strategy. Energy Environ. Sci. 2019, 12, 250–260. [Google Scholar] [CrossRef]
- Zhang, L.; Li, L.; Gao, Z.; Guo, L.; Li, M.; Su, J. Porous Hierarchical Iron/Nitrogen Co-Doped Carbon Etched by g-C3N4 Pyrolysis as Efficient Non-Noble Metal Catalysts for PEM Fuel Cells. ChemElectroChem 2022, 9, e202101681. [Google Scholar] [CrossRef]
- Yang, H.; Chen, X.; Chen, W.-T.; Wang, Q.; Cuello, N.C.; Nafady, A.; Al-Enizi, A.M.; Waterhouse, G.I.N.; Goenaga, G.A.; Zawodzinski, T.A.; et al. Tunable Synthesis of Hollow Metal-Nitrogen-Carbon Capsules for Efficient Oxygen Reduction Catalysis in Proton Exchange Membrane Fuel Cells. ACS Nano 2019, 13, 8087–8098. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, W.; Utetiwabo, W.; Lian, Y.; Yin, X.; Zhou, L.; Yu, P.; Chen, R.; Sun, S. Revealing of Active Sites and Catalytic Mechanism in N-Coordinated Fe, Ni Dual-Doped Carbon with Superior Acidic Oxygen Reduction than Single-atom Catalyst. J. Phys. Chem. Lett. 2020, 11, 1404–1410. [Google Scholar] [CrossRef]
- Zhong, H.; Wang, J.; Zhang, Y.; Xu, W.; Xing, W.; Xu, D.; Zhang, Y.; Zhang, X. ZIF-8 Derived Graphene-Based Nitrogen-Doped Porous Carbon Sheets as Highly Efficient and Durable Oxygen Reduction Electrocatalysts. Angew. Chem. Int. Ed. Engl. 2014, 53, 14235–14239. [Google Scholar] [CrossRef] [PubMed]
- Jahan, M.; Liu, Z.; Loh, K.P. A Graphene Oxide and Copper-Centered Metal Organic Framework Composite as a Tri-Functional Catalyst for HER, OER, and ORR. Adv. Funct. Mater. 2013, 23, 5363–5372. [Google Scholar] [CrossRef]
- Zhan, Y.; Xie, F.; Zhang, H.; Jin, Y.; Meng, H.; Chen, J.; Sun, X. Highly Dispersed Nonprecious Metal Catalyst for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. ACS Appl. Mater. Interfaces 2020, 12, 17481–17491. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Chen, H.; Zhao, Y.; Ni, W.; Liu, M.; Xue, Y.; Huo, S.; Wu, L.; Yang, Z.; Yan, Y.-M. Ultrathin-Carbon-Layer-Protected PtCu Nanoparticles Encapsulated in Carbon Capsules: A Structure Engineering of the Anode Electrocatalyst for Direct Formic Acid Fuel Cells. Part. Part. Syst. Charact. 2019, 36, 1900100. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Y.; Chen, J.; Huang, W.; Cheng, J.; Chen, Y. A Novel Metal Organic Framework-Derived Carbon-Based Catalyst for Oxygen Reduction Reaction in a Microbial Fuel Cell. J. Power Sources 2018, 384, 98–106. [Google Scholar] [CrossRef]
- Macchi, S.; Denmark, I.; Le, T.; Forson, M.; Bashiru, M.; Jalihal, A.; Siraj, N. Recent Advancements in the Synthesis and Application of Carbon-Based Catalysts in the ORR. Electrochem 2021, 3, 1–27. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Qu, Y.; Yuan, T.; Wang, W.; Wu, Y.; Li, Y. Review of Metal Catalysts for Oxygen Reduction Reaction: From Nanoscale Engineering to Atomic Design. Chem 2019, 5, 1486–1511. [Google Scholar] [CrossRef]
- Kuzmin, A.V.; Shainyan, B.A. Theoretical Density Functional Theory Study of Electrocatalytic Activity of MN4-Doped (M = Cu, Ag, and Zn) Single-Walled Carbon Nanotubes in Oxygen Reduction Reactions. ACS Omega 2021, 6, 374–387. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ma, J.; Zhang, Z.; Qin, Y.; Wang, Y.-J.; Wang, Y.; Tan, R.; Duan, X.; Tian, T.Z.; Zhang, C.H.; et al. 2021 Roadmap: Electrocatalysts for Green Catalytic Processes. J. Phys. Mater. 2021, 4, 22004. [Google Scholar] [CrossRef]
- Zhang, H.; Ding, S.; Hwang, S.; Zhao, X.; Su, D.; Xu, H.; Yang, H.; Wu, G. Atomically Dispersed Iron Cathode Catalysts Derived from Binary Ligand-Based Zeolitic Imidazolate Frameworks with Enhanced Stability for PEM Fuel Cells. J. Electrochem. Soc. 2019, 166, F3116–F3122. [Google Scholar] [CrossRef]
- Tang, C.; Chen, L.; Li, H.; Li, L.; Jiao, Y.; Zheng, Y.; Xu, H.; Davey, K.; Qiao, S.-Z. Tailoring Acidic Oxygen Reduction Selectivity on Single-atom Catalysts via Modification of First and Second Coordination Spheres. J. Am. Chem. Soc. 2021, 143, 7819–7827. [Google Scholar] [CrossRef]
- Shen, S.; Sun, Y.; Sun, H.; Pang, Y.; Xia, S.; Chen, T.; Zheng, S.; Yuan, T. Research Progress in ZIF-8 Derived Single Atomic Catalysts for Oxygen Reduction Reaction. Catalysts 2022, 12, 525. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Z.; Liu, W.; Chang, C.; Tang, H.; Li, Z.; Chen, W.; Jia, C.; Yao, T.; Wei, S.; et al. Design of N-Coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.; Wang, X.; Tsai, M.-C.; Jin, Q.; Liang, J.; Ma, F.; Wang, T.; Zheng, S.; Hwang, B.-J.; Huang, Y.; et al. Atomically Dispersed Fe-Nx/C Electrocatalyst Boosts Oxygen Catalysis via a New Metal-Organic Polymer Supramolecule Strategy. Adv. Energy Mater. 2018, 8, 1801226. [Google Scholar] [CrossRef]
- He, Y.; Wu, G. PGM-Free Oxygen-Reduction Catalyst Development for Proton-Exchange Membrane Fuel Cells: Challenges, Solutions, and Promises. Accounts Mater. Res. 2022, 3, 224–236. [Google Scholar] [CrossRef]
- Wei, Y.-S.; Zou, L.; Wang, H.-F.; Wang, Y.; Xu, Q. Micro/Nano-Scaled Metal-Organic Frameworks and Their Derivatives for Energy Applications. Adv. Energy Mater. 2022, 12, 2003970. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Tang, Y.; Huang, X.; Pang, H. Recent Advances and Challenges of Metal–Organic Framework/Graphene-Based Composites. Compos. Part B Eng. 2022, 230, 109532. [Google Scholar] [CrossRef]
- Nik Zaiman, N.F.H.; Shaari, N.; Harun, N.A.M. Developing Metal-Organic Framework-Based Composite for Innovative Fuel Cell Application: An Overview. Int. J. Energy Res. 2022, 46, 471–504. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, N.; Lei, L.; Yu, C.; Ding, J.; Li, P.; Chen, J.; Li, M.; Ling, S.; Zhuang, X.; et al. Supramolecular Proton Conductors Self-assembled by Organic Cages. JACS Au 2022, 2, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, H.F.; Li, C.; Xu, Q. Bimetallic Metal-Organic Frameworks and Their Derivatives. Chem. Sci. 2020, 11, 5369–5403. [Google Scholar] [CrossRef]
- Sajid, A.; Pervaiz, E.; Ali, H.; Noor, T.; Baig, M.M. A Perspective on Development of Fuel Cell Materials: Electrodes and Electrolyte. Int. J. Energy Res. 2022, 46, 6953–6988. [Google Scholar] [CrossRef]
- Paul, S.; Choi, S.-J.; Kim, H.J. Enhanced Proton Conductivity of a Zn(II)-Based MOF/Aquivion Composite Membrane for PEMFC Applications. Energy Fuels 2020, 34, 10067–10077. [Google Scholar] [CrossRef]
- Harun, N.A.M.; Shaari, N.; Nik Zaiman, N.F.H. A Review of Alternative Polymer Electrolyte Membrane for Fuel Cell Application Based on Sulfonated Poly(Ether Ether Ketone). Int. J. Energy Res. 2021, 45, 19671–19708. [Google Scholar] [CrossRef]
- Ye, Y.; Gong, L.; Xiang, S.; Zhang, Z.; Chen, B. Metal-organic frameworks as a Versatile Platform for Proton Conductors. Adv. Mater. 2020, 32, 1907090. [Google Scholar] [CrossRef]
- Yang, L.; Tang, B.; Wu, P. Metal–Organic Framework–Graphene Oxide Composites: A Facile Method to Highly Improve the Proton Conductivity of PEMs Operated under Low Humidity. J. Mater. Chem. A 2015, 3, 15838–15842. [Google Scholar] [CrossRef]
- Nguyen, M.V.; Lo, T.H.N.; Luu, L.C.; Nguyen, H.T.T.; Tu, T.N. Enhancing Proton Conductivity in a Metal–Organic Framework at T > 80 °C by an Anchoring Strategy. J. Mater. Chem. A 2018, 6, 1816–1821. [Google Scholar] [CrossRef]
- Rao, Z.; Feng, K.; Tang, B.; Wu, P. Construction of Well Interconnected Metal-Organic Framework Structure for Effectively Promoting Proton Conductivity of Proton Exchange Membrane. J. Memb. Sci. 2017, 533, 160–170. [Google Scholar] [CrossRef]
- Han, R.; Wu, P. Composite Proton-Exchange Membrane with Highly Improved Proton Conductivity Prepared by in Situ Crystallization of Porous Organic Cage. ACS Appl. Mater. Interfaces 2018, 10, 18351–18358. [Google Scholar] [CrossRef] [PubMed]
- Li, R.-Y.; Liu, H.-T.; Chu, Z.-T.; Zhou, C.-C.; Lu, J.; Wang, S.-N. Two Nonporous MOFs with Uncoordinated Carboxylate Groups: Fillers for Enhancing the Proton Conductivities of Nafion Membrane. J. Solid State Chem. 2020, 281, 121020. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Shao, Z.; Xu, W.; Wu, Q.; Ding, X.; Hou, H. Proton Conduction of Nafion Hybrid Membranes Promoted by NH3-Modified Zn-MOF with Host–Guest Collaborative Hydrogen Bonds for H2/O2 Fuel Cell Applications. ACS Appl. Mater. Interfaces 2021, 13, 7485–7497. [Google Scholar] [CrossRef] [PubMed]
- Anahidzade, N.; Abdolmaleki, A.; Dinari, M.; Firouz Tadavani, K.; Zhiani, M. Metal-Organic Framework Anchored Sulfonated Poly(Ether Sulfone) as a High Temperature Proton Exchange Membrane for Fuel Cells. J. Memb. Sci. 2018, 565, 281–292. [Google Scholar] [CrossRef]
- Donnadio, A.; Narducci, R.; Casciola, M.; Marmottini, F.; D’Amato, R.; Jazestani, M.; Chiniforoshan, H.; Costantino, F. Mixed Membrane Matrices Based on Nafion/UiO-66/SO3H-UiO-66 Nano-MOFs: Revealing the Effect of Crystal Size, Sulfonation, and Filler Loading on the Mechanical and Conductivity Properties. ACS Appl. Mater. Interfaces 2017, 9, 42239–42246. [Google Scholar] [CrossRef]
- Rao, Z.; Tang, B.; Wu, P. Proton Conductivity of Proton Exchange Membrane Synergistically Promoted by Different Functionalized Metal-organic frameworks. ACS Appl. Mater. Interfaces 2017, 9, 22597–22603. [Google Scholar] [CrossRef]
- Dong, X.-Y.; Wang, J.-H.; Liu, S.-S.; Han, Z.; Tang, Q.-J.; Li, F.-F.; Zang, S.-Q. Synergy between Isomorphous Acid and Basic Metal-organic frameworks for Anhydrous Proton Conduction of Low-Cost Hybrid Membranes at High Temperatures. ACS Appl. Mater. Interfaces 2018, 10, 38209–38216. [Google Scholar] [CrossRef]
- Sun, H.; Tang, B.; Wu, P. Rational Design of S-UiO-66@GO Hybrid Nanosheets for Proton Exchange Membranes with Significantly Enhanced Transport Performance. ACS Appl. Mater. Interfaces 2017, 9, 26077–26087. [Google Scholar] [CrossRef]
- Yang, X.-B.; Zhao, L.; Goh, K.; Sui, X.; Meng, L.-H.; Wang, Z.-B. Ultra-High Ion Selectivity of a Modified Nafion Composite Membrane for Vanadium Redox Flow Battery by Incorporation of Phosphotungstic Acid Coupled UiO-66-NH2. ChemistrySelect 2019, 4, 4633–4641. [Google Scholar] [CrossRef]
- Dong, X.-Y.; Li, J.-J.; Han, Z.; Duan, P.-G.; Li, L.-K.; Zang, S.-Q. Tuning the Functional Substituent Group and Guest of Metal-organic frameworks in Hybrid Membranes for Improved Interface Compatibility and Proton Conduction. J. Mater. Chem. A 2017, 5, 3464–3474. [Google Scholar] [CrossRef]
- Escorihuela, J.; Sahuquillo, Ó.; García-Bernabé, A.; Giménez, E.; Compañ, V. Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions. Nanomaterials 2018, 8, 775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barjola, A.; Escorihuela, J.; Andrio, A.; Giménez, E.; Compañ, V. Enhanced Conductivity of Composite Membranes Based on Sulfonated Poly(Ether Ether Ketone) (SPEEK) with Zeolitic Imidazolate Frameworks (ZIFs). Nanomaterials 2018, 8, 1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roshanravan, B.; Younesi, H.; Abdollahi, M.; Rahimnejad, M.; Pyo, S.-H. Incorporating Sulfonated MIL-100(Fe) in Sulfonated Polysulfone for Enhancing Microbial Fuel Cell Performance. Fuel 2022, 312, 122962. [Google Scholar] [CrossRef]
- Rao, Z.; Lan, M.; Wang, Z.; Wan, H.; Li, G.; Zhu, J.; Tang, B.; Liu, H. Effectively Facilitating the Proton Conduction of Proton Exchange Membrane by Polydopamine Modified Hollow Metal-organic Framework. J. Memb. Sci. 2022, 644, 120098. [Google Scholar] [CrossRef]
- Zhu, L.; Li, Y.; Zhao, J.; Liu, J.; Wang, L.; Lei, J.; Xue, R. Enhanced Proton Conductivity of Nafion Membrane Induced by Incorporation of MOF-Anchored 3D Microspheres: A Superior and Promising Membrane for Fuel Cell Applications. Chem. Commun. 2022, 58, 2906–2909. [Google Scholar] [CrossRef]
- Ru, C.; Li, Z.; Zhao, C.; Duan, Y.; Zhuang, Z.; Bu, F.; Na, H. Enhanced Proton Conductivity of Sulfonated Hybrid Poly(Arylene Ether Ketone) Membranes by Incorporating an Amino–Sulfo Bifunctionalized Metal–Organic Framework for Direct Methanol Fuel Cells. ACS Appl. Mater. Interfaces 2018, 10, 7963–7973. [Google Scholar] [CrossRef]
- Paul, S.; Choi, S.-J.; Kim, H.J. Co-Tri MOF-Impregnated Aquivion® Composites as Proton Exchange Membranes for Fuel Cell Applications. Ionics 2021, 27, 1653–1666. [Google Scholar] [CrossRef]
- Li, Z.; He, G.; Zhao, Y.; Cao, Y.; Wu, H.; Li, Y.; Jiang, Z. Enhanced Proton Conductivity of Proton Exchange Membranes by Incorporating Sulfonated Metal-Organic Frameworks. J. Power Sources 2014, 262, 372–379. [Google Scholar] [CrossRef]
- Zhang, B.; Cao, Y.; Li, Z.; Wu, H.; Yin, Y.; Cao, L.; He, X.; Jiang, Z. Proton Exchange Nanohybrid Membranes with High Phosphotungstic Acid Loading within Metal-Organic Frameworks for PEMFC Applications. Electrochim. Acta 2017, 240, 186–194. [Google Scholar] [CrossRef]
- Niluroutu, N.; Pichaimuthu, K.; Sarmah, S.; Dhanasekaran, P.; Shukla, A.; Unni, S.M.; Bhat, S.D. A Copper–Trimesic Acid Metal–Organic Framework Incorporated Sulfonated Poly(Ether Ether Ketone) Based Polymer Electrolyte Membrane for Direct Methanol Fuel Cells. New J. Chem. 2018, 42, 16758–16765. [Google Scholar] [CrossRef]
- Ren, J.; Xu, J.; Ju, M.; Chen, X.; Zhao, P.; Meng, L.; Lei, J.; Wang, Z. Long-Term Durable Anion Exchange Membranes Based on Imidazole-Functionalized Poly(Ether Ether Ketone) Incorporating Cationic Metal-organic Framework. Adv. Powder Mater. 2022, 1, 100017. [Google Scholar] [CrossRef]
- Zhang, Z.; Ren, J.; Xu, J.; Meng, L.; Zhao, P.; Wang, H.; Wang, Z. Enhanced Proton Conductivity of Sulfonated Poly(Arylene Ether Ketone Sulfone) Polymers by Incorporating Phosphotungstic Acid-Ionic-Liquid-Functionalized Metal-Organic Framework. J. Memb. Sci. 2021, 630, 119304. [Google Scholar] [CrossRef]
- Zhang, Z.; Ren, J.; Xu, J.; Wang, Z.; He, W.; Wang, S.; Yang, X.; Du, X.; Meng, L.; Zhao, P. Adjust the Arrangement of Imidazole on the Metal-Organic Framework to Obtain Hybrid Proton Exchange Membrane with Long-Term Stable High Proton Conductivity. J. Memb. Sci. 2020, 607, 118194. [Google Scholar] [CrossRef]
- Bisht, S.; Balaguru, S.; Ramachandran, S.K.; Gangasalam, A.; Kweon, J. Proton Exchange Composite Membranes Comprising SiO2, Sulfonated SiO2, and Metal-organic frameworks Loaded in SPEEK Polymer for Fuel Cell Applications. J. Appl. Polym. Sci. 2021, 138, 50530. [Google Scholar] [CrossRef]
- Liu, X.-T.; Wang, B.-C.; Hao, B.-B.; Zhang, C.-X.; Wang, Q.-L. Dual-Functional Coordination Polymers with High Proton Conduction Behaviour and Good Luminescence Properties. Dalt. Trans. 2021, 50, 8718–8726. [Google Scholar] [CrossRef]
- Cai, Y.Y.; Zhang, Q.G.; Zhu, A.M.; Liu, Q.L. Two-Dimensional Metal-Organic Framework-Graphene Oxide Hybrid Nanocomposite Proton Exchange Membranes with Enhanced Proton Conduction. J. Colloid Interface Sci. 2021, 594, 593–603. [Google Scholar] [CrossRef]
- Cai, Y.Y.; Wang, J.J.; Cai, Z.H.; Zhang, Q.G.; Zhu, A.M.; Liu, Q.L. Enhanced Performance of Sulfonated Poly(Ether Ether Ketone) Hybrid Membranes by Introducing Sulfated MOF-808/Graphene Oxide Composites. ACS Appl. Energy Mater. 2021, 4, 9664–9672. [Google Scholar] [CrossRef]
- Wu, B.; Lin, X.; Ge, L.; Wu, L.; Xu, T. A Novel Route for Preparing Highly Proton Conductive Membrane Materials with Metal-Organic Frameworks. Chem. Commun. 2013, 49, 143–145. [Google Scholar] [CrossRef]
- Wu, B.; Liang, G.; Lin, X.; Wu, L.; Luo, J.; Xu, T. Immobilization of N-(3-Aminopropyl)-Imidazole through MOFs in Proton Conductive Membrane for Elevated Temperature Anhydrous Applications. J. Memb. Sci. 2014, 458, 86–95. [Google Scholar] [CrossRef]
- Wang, F.-D.; Su, W.-H.; Zhang, C.-X.; Wang, Q.-L. High Proton Conductivity of a Cadmium Metal-Organic Framework Constructed from Pyrazolecarboxylate and Its Hybrid Membrane. Inorg. Chem. 2021, 60, 16337–16345. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wen, T.; Shao, Z.; Zhao, Y.; Cui, Y.; Gao, K.; Xu, W.; Hou, H. High Proton Conductivity in Nafion/Ni-MOF Composite Membranes Promoted by Ligand Exchange under Ambient Conditions. Inorg. Chem. 2021, 60, 10492–10501. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Shi, L.; Zhang, M.; Cheng, B.; Yang, G.; Zhuang, X. Self-Assembly of Metal-Organic Framework onto Nanofibrous Mats to Enhance Proton Conductivity for Proton Exchange Membrane. Int. J. Hydrogen Energy 2021, 46, 36415–36423. [Google Scholar] [CrossRef]
- Ju, J.; Shi, J.; Wang, M.; Wang, L.; Cheng, B.; Yu, X.; Cai, Y.; Wang, S.; Fang, L.; Kang, W. Constructing Interconnected Nanofibers@ZIF-67 Superstructure in Nafion Membranes for Accelerating Proton Transport and Confining Methanol Permeation. Int. J. Hydrogen Energy 2021, 46, 38782–38794. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, P.; Mei, J.; Xie, J.; Guan, J.; Zhang, K.-L. Proton Conduction and Luminescent Sensing Property of Two Newly Constructed Positional Isomer-Dependent Redox-Active Mn(II)-Organic Frameworks. Polyhedron 2021, 200, 115139. [Google Scholar] [CrossRef]
- Bai, Z.; Liu, S.; Cheng, G.; Wu, G.; Liu, Y. High Proton Conductivity of MOFs-Polymer Composite Membranes by Phosphoric Acid Impregnation. Microporous Mesoporous Mater. 2020, 292, 109763. [Google Scholar] [CrossRef]
- Chen, P.; Liu, S.; Bai, Z.; Liu, Y. Enhanced Ionic Conductivity of Ionic Liquid Confined in UiO-67 Membrane at Low Humidity. Microporous Mesoporous Mater. 2020, 305, 110369. [Google Scholar] [CrossRef]
- Bai, Z.; Liu, S.; Chen, P.; Cheng, G.; Wu, G.; Liu, Y. Enhanced Proton Conduction of Imidazole Localized in One-Dimensional Ni-Metal-Organic Framework Nanofibers. Nanotechnology 2020, 31, 125702. [Google Scholar] [CrossRef]
- Neelakandan, S.; Ramachandran, R.; Fang, M.; Wang, L. Improving the Performance of Sulfonated Polymer Membrane by Using Sulfonic Acid Functionalized Hetero-Metallic Metal-Organic Framework for DMFC Applications. Int. J. Energy Res. 2020, 44, 1673–1684. [Google Scholar] [CrossRef]
- Yang, S.-L.; Sun, P.-P.; Yuan, Y.-Y.; Zhang, C.-X.; Wang, Q.-L. High Proton Conduction Behavior in 12-Connected 3D Porous Lanthanide–Organic Frameworks and Their Polymer Composites. CrystEngComm 2018, 20, 3066–3073. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Das, A.; Jana, T.; Das, S.K. Fabricating a MOF Material with Polybenzimidazole into an Efficient Proton Exchange Membrane. ACS Appl. Energy Mater. 2020, 3, 7964–7977. [Google Scholar] [CrossRef]
- Roshanravan, B.; Younesi, H.; Abdollahi, M.; Rahimnejad, M.; Pyo, S.-H. Application of Proton-Conducting Sulfonated Polysulfone Incorporated MIL-100(Fe) Composite Materials for Polymer-Electrolyte Membrane Microbial Fuel Cells. J. Clean. Prod. 2021, 300, 126963. [Google Scholar] [CrossRef]
- Wang, S.; Luo, H.; Li, X.; Shi, L.; Cheng, B.; Zhuang, X.; Li, Z. Amino Acid-Functionalized Metal Organic Framework with Excellent Proton Conductivity for Proton Exchange Membranes. Int. J. Hydrogen Energy 2021, 46, 1163–1173. [Google Scholar] [CrossRef]
- Li, D.; Li, S.; Zhang, S.; Sun, J.; Wang, L.; Wang, K. Aging State Prediction for Supercapacitors Based on Heuristic Kalman Filter Optimization Extreme Learning Machine. Energy 2022, 250, 123773. [Google Scholar] [CrossRef]
- Ma, T.; Xu, J.; Li, R.; Yao, N.; Yang, Y. Online Short-Term Remaining Useful Life Prediction of Fuel Cell Vehicles Based on Cloud System. Energies 2021, 14, 2806. [Google Scholar] [CrossRef]
- Sun, H.; Sun, J.; Zhao, K.; Wang, L.; Wang, K. Data-Driven ICA-Bi-LSTM-Combined Lithium Battery SOH Estimation. Math. Probl. Eng. 2022, 2022, 9645892. [Google Scholar] [CrossRef]
- Hua, Y.; Wang, N.; Zhao, K. Simultaneous Unknown Input and State Estimation for the Linear System with a Rank-Deficient Distribution Matrix. Math. Probl. Eng. 2021, 2021, 6693690. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Hu, Y.; Wang, B.; Sun, S.; Yang, X.; He, H. Predicting Metal-Organic Frameworks as Catalysts to Fix Carbon Dioxide to Cyclic Carbonate by Machine Learning. J. Mater. 2021, 7, 1029–1038. [Google Scholar] [CrossRef]
- Zhou, T.; Song, Z.; Sundmacher, K. Big Data Creates New Opportunities for Materials Research: A Review on Methods and Applications of Machine Learning for Materials Design. Engineering 2019, 5, 1017–1026. [Google Scholar] [CrossRef]
Catalyst | MOF | Devices | Voltage (V) | Current Density (mAcm−2) | Power Density (mWcm−2) | Cycling Life |
---|---|---|---|---|---|---|
Fe-N-C [55] | Fe-ZIF-8 | PEMFC | 0.6 V | 1650 | 1141 | - |
Fe-SAs/NPS-HC [56] | ZIF-8/Fe@PZS | H2/O2 fuel cell | 0.8 V | 50 | 333 | - |
Ferrocene [57] | ZIF-8 | PEMFC | 0.7 V | 1100 | 775 | 32.2% (10 h) |
C-FeHZ8@g-C3N4-950 [58] | Fe-ZIF-8@g-C3N4 | PEMFC | 0.8 V | 133 | 628 | 48.7% (8 h) |
Fe-N-C [59] | ZIF-8 | PEMFC | 0.7 | 1050 | 690 | 42% (50 h) |
FeN4/HOPC-c-1000 [60] | Fe-ZIF-8 | PEMFC | 0.6 V | 690 | 420 | 53% (100 h) |
Fe-Fe3C [35] | ZIF-8 | H2-O2 Fuel Cell | 0.8 V | 100 | 760 | - |
20 Mn-NC [61] | Mn-ZIF-8 | PEMFC | 0.6 V | 350 | 460 | >1000 h |
20-Co-NC-1100 [62] | Co-ZIF-8 | H2/O2 fuel cell | 0.7 V | - | 560 | - |
C-FeZIF-8@g-C3N4 [63] | Fe-ZIF-8 | PEMFC | 0.8 V | 1000 | 481 | 82% (667 h) |
Co-N-C@F127 [64] | Co-ZIF-8 | H2/O2 fuel cell | >0.7 V | 30 | 870 | 100 h |
Fe-ZIF/CN-UC [65] | Fe-ZIF-8 | H2/O2 fuel cell | 0.2 V | 2000 | 484 | - |
H-Fe-Nx-C [66] | ZIF-8@Fe-TA | PEMFC | 0.43 V | 1550 | 655 | 30 h |
H-Co-Nx-C [66] | ZIF-8@Co-TA | PEMFC | 0.43 V | 103 | 457 | 30 h |
H-FeCo-Nx-C [66] | ZIF-8@FeCo-TA | PEMFC | 0.43 V | 104 | 459 | 30 h |
FeNi-N6 [67] | ZIF-8 | PEMFC | 0.8 V | - | 216 | >5000 cycles |
Fe-Fe3C@Fe-N-C [35] | MIL-100/ZIF-8 | PEMFC | 0.8 V | 100 | 760 | - |
GNPCSs-800 [68] | ZIF-8/GO | DMFC | 0.71 V | - | 33.8 | 94% (~8 h) |
GO-MOF [69] | Cu-MOF | PEMFC | 0.6 V | - | 110.5 | - |
Fe-N-C-10/1-950 [70] | NH2-MIL-88B/ZIF-8 | PEMFC | 0.6 V | 1240 | 770 | - |
PtCu@NCC [71] | ZIF-8 | DFAFC | 0.8 V | 400 | 121 | 71% (40 h) |
MOF-800 [72] | Cu-bipy-BTC | MFC | 0.588 V | - | 326 | >30 days |
Filler | Polymer Backbone | Proton Conductivity (S cm−1) | Conditions |
---|---|---|---|
Cr-MIL-101-NH2 [98] | SPES | 4.1 × 10−2 | 160 °C |
UiO-66 [99] | Nafion | 1.65 × 10−1 | 80 °C, 95% RH |
UiO-66-SO3H [99] | Nafion | 1.71 × 10−1 | 80 °C, 95% RH |
UiO-66-NH2 [100] | Nafion | 1.84 × 10−1 | 80 °C, 95% RH |
UiO-66-NH2 + UiO-66-SO3H [100] | Nafion | 2.56 × 10−1 | 90 °C, 95% RH |
UiO-66-NH2 + UiO-66-SO3H [101] | Chitosan | 5.2 × 10−2 | 100 °C, 95% RH |
GO@UiO-66-SO3H [102] | SPEEK | 2.68 × 10−1 | 70 °C, 95% RH |
GO@UiO-66-NH2 [94] | Nafion | 3.03 × 10−1 | 90 °C, 95% RH |
PWA@UiO-66-NH2 [103] | Nafion | 9.2 × 10−2 | Ambient condition |
MIL-101 [104] | Chitosan | 3.4 × 10−2 | 100 °C, 100% RH |
S-MIL-101 [104] | Chitosan | 6.4 × 10−2 | 100 °C, 100% RH |
H2SO4@MIL-101 [104] | Chitosan | 9.5 × 10−2 | 100 °C, 100% RH |
H3PO4@MIL-101 [104] | Chitosan | 8.3 × 10−2 | 100 °C, 100% RH |
CF3SO3H@MIL-101 [104] | Chitosan | 9.4 × 10−2 | 100 °C, 100% RH |
H3P04/ZIF-8 [105] | PBI | 3.1 × 10−3 | 180 °C, anhydrous |
H3P04/ZIF-67 [105] | PBI | 4.2 × 10−2 | 180 °C, anhydrous |
H3P04/ZIF-mix [105] | PBI | 9.2 × 10−2 | 180 °C, anhydrous |
ZIF-8 [106] | SPEEK | 1.6 × 10−2 | 100 °C |
ZIF-67 [106] | SPEEK | 1.5 × 10−2 | 100 °C |
ZIF-mix [106] | SPEEK | 2.9 × 10−2 | 100 °C |
SO3H-MIL-100(Fe) [107] | SPS | 3.82 × 10−3 | 25 °C, 100% RH |
Polydopamine-ZIF-8 [108] | Nafion | 2.5 × 10−1 | 80 °C, 95% RH |
polyacrylate carboxyl-ZIF-8 [109] | Nafion | 2.4 × 10−1 | 25 °C, 100% RH |
Phytic@MIL101 [110] | Sulfonated poly (arylene ether ketone) | 0.192 | 80 °C, 100% RH |
MOF-1 [89] | Aquivion | 3.49 × 10−2 | 25 °C, 100% RH |
Co-tri MOF [111] | Aquivion | 5.06 × 10−2 | 25 °C, 100% RH |
SO3H-MIL101 [112] | SPEEK | 3.406 × 10−1 | 75 °C, 100% RH |
HPW-MIL-101(Cr) [113] | SPEEK | 2.72 × 10−1 | 65 °C, 100% RH |
Cu–TMA [114] | SPEEK | 4.5 × 10−2 | 70 °C, 98% RH |
MOF-801 [115] | C-SPAEKS | 1.0 × 10−1 | 90 °C, 100% RH |
MIL-100(Fe) [116] | C-SPAEKS | 1.38 × 10−1 | 100 °C, 98% RH |
Im@MOF-801 [117] | C-SPAEKS | 1.28 × 10−1 | 90 °C, 100% RH |
MOF-5(SiO2) [118] | SPEEK | 3.69 × 10−3 | 20 °C |
MOF-Z1 [119] | SPEEK | 3.95 × 10−3 | 80 °C, 98% RH |
MOF-Z2 [119] | SPEEK | 3.17 × 10−3 | 80 °C, 98% RH |
ZIF-L [120] | SPEEK | 1.83 × 10−1 | 70 °C, 90% RH |
SO4-MOF-808 [121] | SPEEK | 1.96 × 10−1 | 70 °C, 90% RH |
Fe-MIL-101-NH2 [122] | SPPO | 2.5 × 10−2 | 90 °C, 98% RH |
NAPI-Fe-MIL-101-NH2 [123] | SPPO | 4 × 10−2 | 160 °C, 15% RH |
Cd-MOF [124] | SPPO | 2.64 × 10−2 | 70 °C, 98% RH |
MOF-azo [125] | Nafion | 1.12 × 10−2 | Ambient conditions |
MOF-bpy [125] | Nafion | 2.6 × 10−2 | Ambient conditions |
MOF-bpe [125] | Nafion | 2.95 × 10−1 | Ambient conditions |
ZIF-67 NFMs [126] | Nafion | 2.88 × 10−1 | 80 °C, 100% RH |
ZHNFs [127] | Nafion | 2.77 × 10−1 | 80 °C, 100% RH |
MOF-Mn1 [128] | Nafion | 3.35 × 10−4 | 70 °C, 30% RH |
MOF-Mn2 [128] | Nafion | 3.67 × 10−4 | 70 °C, 30% RH |
H3PO4/Ni-BDC [129] | PAN | 1.05 × 10−2 | 80 °C, 90% RH |
Ni-BDC [129] | PAN | 1.67 × 10−4 | 80 °C, 90% RH |
[BMIM]BF4@UiO-67) [130] | PAN | 2.53 × 10−4 | 90 °C, 35% RH |
Ni-BDC [131] | PAN | 6.04 × 10−5 | 90 °C, 90% RH |
Zr-Cr-SO3H [132] | BSP | 1.54 × 10−1 | 80 °C, 100% RH |
MOF-Z4 [133] | PVA | 2.1 × 10−4 | 65 °C, 98% RH |
MOF-Z5 [133] | PVA | 2.9 × 10−4 | 65 °C, 98% RH |
ZIF-8 [134] | PBI | 3.1 × 10−3 | 200 °C, anhydrous |
ZIF-67 [134] | PBI | 4.1 × 10−2 | 200 °C, anhydrous |
ZIF-8 + ZIF-67 [134] | PBI | 9.1 × 10−2 | 200 °C, anhydrous |
MIL-100(Fe) [135] | sPSU | 2.55 × 10−3 | 25 °C, 100% RH |
UiO-66-NH2-Glu [136] | sPSU | 2.1 × 10−1 | 80 °C, 100% RH |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, A.; Purwar, P.; Sonkaria, S.; Khare, V. Rationalizing Structural Hierarchy in the Design of Fuel Cell Electrode and Electrolyte Materials Derived from Metal-Organic Frameworks. Appl. Sci. 2022, 12, 6659. https://doi.org/10.3390/app12136659
Kumar A, Purwar P, Sonkaria S, Khare V. Rationalizing Structural Hierarchy in the Design of Fuel Cell Electrode and Electrolyte Materials Derived from Metal-Organic Frameworks. Applied Sciences. 2022; 12(13):6659. https://doi.org/10.3390/app12136659
Chicago/Turabian StyleKumar, Aniket, Prashant Purwar, Sanjiv Sonkaria, and Varsha Khare. 2022. "Rationalizing Structural Hierarchy in the Design of Fuel Cell Electrode and Electrolyte Materials Derived from Metal-Organic Frameworks" Applied Sciences 12, no. 13: 6659. https://doi.org/10.3390/app12136659
APA StyleKumar, A., Purwar, P., Sonkaria, S., & Khare, V. (2022). Rationalizing Structural Hierarchy in the Design of Fuel Cell Electrode and Electrolyte Materials Derived from Metal-Organic Frameworks. Applied Sciences, 12(13), 6659. https://doi.org/10.3390/app12136659