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Abstract: Pine wilt disease (PWD), caused by the pine wood nematode (Bursaphelenchus xylophilus),
is a global destructive threat to forests and has led to serious economic losses all over the world.
Therefore, it is necessary to establish a feasible and effective method to accurately monitor and
estimate PWD infection. In this study, we used hyperspectral imagery (HI) collected by an unmanned
airship with a hyperspectral imaging spectrometer to detect PWD in healthy, early, middle and serious
infection stages. To avoid massive calculations on the full spectral dimensions of the HI, 16 spectral
features were extracted from the HI, and a genetic algorithm (GA) was implemented to identify the
optimal ones with the least fitness. Simultaneously, a support vector machine (SVM) classifier was
established to predict the PWD infection stage for an individual pine tree. The following results
were obtained: (1) the spectral characteristics for pine trees in different PWD infection stages were
distinctive in the green region (510–580 nm), red edge (680–760 nm) and near-infrared (780–1000 nm)
spectra; (2) the six optimal spectral features (Dgreen, SDgreen, Dred, DRE, DNIR, SDNIR) selected with
the GA effectively distinguished the PWD infection stages of pine trees with a lower calculation cost;
(3) compared with the traditional classifiers, such as k-nearest neighbor (KNN), random forest (RF)
and single SVM, the proposed GA and SVM classifier achieved the highest overall accuracy (95.24%)
and Kappa coefficient (0.9234). The approach could also be employed for monitoring and detecting
other forest pests.

Keywords: pine wilt disease; hyperspectral imagery; GA; SVM; classification

1. Introduction

Pine trees are important sources of forest products and play other important roles
in environmental protection such as preventing wind and sand breaks and landslides,
especially in East Asian countries [1]. Parts of the trees are regularly being used as dietary
supplements because of their several health and medicinal benefits [2,3]. However, pine
trees are facing a serious and destructive disease, pine wilt disease (PWD), which is caused
by the pine wood nematode (PWN, Bursaphelenchus xylophilus) and is spread through the
insect vector pine sawyer beetle (Monochamus spp.) [4]. PWD first appeared in North
America but is now widely found around the world [5–7]. As most pine trees infected by
PWD die within three months, PWD has caused significant economic losses and adverse
environmental impacts in China since its first appearance in 1982 in Nanjing [8].

To effectively refrain PWD spread, current control methods usually identify the PWD-
infected pine trees through field survey and use fumigation, burning and tree-felling
operations when the onset outbreak occurs [9,10]. However, pine trees usually grow
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in large mountain areas and communities, which make standard ground identification
and sampling methods time- and labor-consuming and sometimes even impractical. To
overcome those difficulties, hyperspectral remote sensing (HRS) technology, which can
obtain continuous spectral information of objects, has been explored to examine the impact
of PWD on the physiological and biochemical changes after infection [11]. According to
the data acquisition scale, research on the remote sensing monitoring of PWD is mainly
divided into three classes, including ground remote sensing, high-altitude remote sensing
and low-altitude remote sensing [12].

Ground remote sensing reveals that the presence of PWD significantly correlates with
hyperspectral features. Zhang et al. [13] showed that the spectral reflectance of Pinus
Massoniana in different stages of PWD appeared to be greatly different. Kim et al. [14]
constructed a green-red spectral area index (GRSAI) and found that it detected PWD
infection faster than other indices. However, those studies used a field portable spec-
trometer to collect spectral data and neglected spatial information and therefore could not
be applied in a large-scale area [15]. High-altitude remote sensing usually uses satellite
imagery from Landsat, Spot, WorldView and BJ-2 to detect PWD [16]. Zhang et al. [17]
proposed a spatiotemporal change detection method to reduce false detections in tree-scale
PWD monitoring in a complex landscape. Li et al. [18] retrieved PWD-infected areas from
medium-resolution satellite images based on the simulations of an extended stochastic ra-
diative transfer model. However, due to the limitations of low spatial–temporal resolutions
and weather complications, high-altitude remote sensing methods usually achieve low
PWD detection accuracy [19].

Compared with ground remote sensing and high-altitude remote sensing, low-altitude
remote sensing with unmanned aerial vehicles (UAVs) is flexible and efficient and has
the advantage of yielding low-cost, high-spatial-resolution, and high PWD detection ac-
curacy [20,21]. The HI generated by a UAV hyperspectral imaging spectrometer has great
potential in detecting PWD with its abundant spatial and spectral information [22–24].
Huang et al. [25] used a fixed-wing UAV equipped with a multispectral digital camera
to collect the normalized differential vegetation index (NDVI) of pine trees and recog-
nized the dead pine trees caused by PWD with 80% accuracy. Li et al. [26] successfully
recognized PWD-infected pine trees with 90.4% accuracy using the color characteristics of
UAV remote-sensing images. Abdel-Rahman et al. [27] explored SVM and RF classifiers
to distinguish pine trees in healthy, Sirex noctilio grey-attacked and lightning-damaged
stages with airborne hyperspectral data. However, the above works have not explored the
advantages of hyperspectral data in identifying PWD infection stages.

Although many machine learning algorithms have been explored to detect PWD in
its early stages with UAV remote sensing, they usually focus on the RGB image or a few
spectral bands from a multispectral image [9,12] and fail to simultaneously extract and
fully utilize the spatial and spectral information in HI. Meanwhile, there are a few studies
that provide good spectral features to identify pine trees in the healthy, early, middle and
serious PWD infection stages. Iordache et al. [28] found that random forest with airborne
hyperspectral data performed well in identifying the infected, suspicious and healthy trees.
Therefore, this study intends to explore the GA and SVM machine learning algorithms
with UAV hyperspectral imagery to predict the PWD infection stages for pine trees with
high accuracy.

The remainder of this paper is organized as follows. Section 2 briefly describes the
materials’ preparation. The details of the GA and SVM classification model are introduced
in Section 3. Section 4 presents the experiment results, which demonstrate the effectiveness
of the proposed method. Finally, Sections 5 and 6 are the discussion and conclusion parts.

2. Materials
2.1. Study Area

The study site is located in the north of Fuling district, Chongqing City of southwest
China (106◦56′–107◦43′ E, 29◦21′–30◦01′ N; Figure 1), which has a mid-subtropical humid



Appl. Sci. 2022, 12, 6676 3 of 12

monsoon climate. The altitude and the mean annual air temperature of the study site are
300–1977 m and 16–22 ◦C, respectively, which is suitable for pine tree growth. In our study,
the tree farm is mainly composed of Pinus massoniana trees.
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Figure 1. The study site location. (a) The map of China with Chongqing City in white color; (b) The
map of Chongqing city with Fuling district in red color; (c) The UAV image of the study area. The
purple rectangle in (b) and red rectangle in (c) represent the field plot’s location and the hyperspectral
flight area, respectively.

2.2. UAV-Based HI

At present, the HI is usually acquired by a low-altitude remote-sensing platform UAV,
such as an unmanned fixed-wing aircraft, unmanned helicopter or unmanned airship
equipped with a hyperspectral imaging spectrometer. Compared with the unmanned fixed-
wing aircraft and the unmanned helicopter, the unmanned airship has the outstanding
advantages of a long continuous flight time and high suspension and load abilities [21]. In
our study, the HI (Figure 2) was collected by the UAV hyperspectral remote sensing system
consisting of an unmanned airship, an automatic rudder system, a task device and a ground
control system. The automatic rudder system consisted of a global positioning system
(GPS), a computer and a gyroscope, while the task device consisted of a triaxial platform
and a near-infrared hyperspectral imaging spectrometer, HyperspecTM VNIR (Headwall,
MA, USA) with a 400–1000 spectral range, 325 bands and the EMCCD detector generating
a 1004 × 1002 spatial image with 8 µm pixel size. The hyperspectral remote-sensing system
communicated with the ground control system wirelessly.



Appl. Sci. 2022, 12, 6676 4 of 12Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 12 
 

 

Figure 2. The HI acquisition: (a) UAV hyperspectral remote sensing system; (b) The HI acquired 

with UAV hyperspectral remote sensing system and preprocessing. 

The survey shows that PWD usually spreads fast during May to December, and the 

physiological characteristics of infected pine trees change obviously [29]. Therefore, the 

HI data were collected for 30 min (4:30–5:00 PM) on 14 September 2020. The flight altitude 

was 112 km, and the ground resolution was 0.1 m. A total of 325 spectral channels from 

visible to near-infrared regions (400–100 nm) were included in the HI. In the prepro-

cessing, radiometric correction was conducted using a diffuse reflection board and a Com-

pact Hyperspectral Data Processing Unit (CHDPU) of HyperspecTM VNIR (Headwall, Bol-

ton, MA, USA). Orthophotos, atmospheric and reflectance correction were also performed 

in the CHDPU. 

2.3. Tree Crown Segmentation from HI 

We segmented the pine tree crowns from the HI with a watershed algorithm [30] 

covering the following steps. Firstly, an NDVI index calculation and morphological filter-

ing were operated on the original UAV-based HI, and a significant regional image of the 

canopy was obtained. Secondly, a vertex and its range of the canopy were extracted from 

the salient regional images as markers, and the tags were added to the gradient image; 

then, a watershed algorithm based on marker control was used to divide the canopy. 

Thirdly, the shadow components and overlapping crowns were abandoned. Based on the 

watershed algorithm, the pine trees that were missed and delineated incorrectly were de-

lineated manually. Finally, the hyperspectral data of an individual pine tree was calcu-

lated by averaging the reflectance of each tree crown. 

2.4. Infection Stage Categorization of Pine Tree 

As described in previous studies, the physiological characteristics of pine trees 

change gradually with PWD infection aggravation [31,32]. According to the needle color 

and the resin secretion of pine trees, we characterized PWD infection into four stages with 

samples collected from field surveys by four experts in PWD research: (1) a healthy stage 

with green needles and normal resin secretion; (2) an early stage with needles beginning 

to turn yellow and resin secretion decreasing; (3) a middle stage with needles turning yel-

low and resin secretion obviously decreasing; and (4) a serious stage with reddish brown 

needles and no resin secretion. The needle samples, collected from pine trees in the study 

area in different PWD infection stages, are shown in Figure 3. 

Figure 2. The HI acquisition: (a) UAV hyperspectral remote sensing system; (b) The HI acquired with
UAV hyperspectral remote sensing system and preprocessing.

The survey shows that PWD usually spreads fast during May to December, and the
physiological characteristics of infected pine trees change obviously [29]. Therefore, the HI
data were collected for 30 min (4:30–5:00 PM) on 14 September 2020. The flight altitude
was 112 km, and the ground resolution was 0.1 m. A total of 325 spectral channels from
visible to near-infrared regions (400–100 nm) were included in the HI. In the preprocessing,
radiometric correction was conducted using a diffuse reflection board and a Compact
Hyperspectral Data Processing Unit (CHDPU) of HyperspecTM VNIR (Headwall, Bolton,
MA, USA). Orthophotos, atmospheric and reflectance correction were also performed in
the CHDPU.

2.3. Tree Crown Segmentation from HI

We segmented the pine tree crowns from the HI with a watershed algorithm [30]
covering the following steps. Firstly, an NDVI index calculation and morphological filtering
were operated on the original UAV-based HI, and a significant regional image of the canopy
was obtained. Secondly, a vertex and its range of the canopy were extracted from the
salient regional images as markers, and the tags were added to the gradient image; then, a
watershed algorithm based on marker control was used to divide the canopy. Thirdly, the
shadow components and overlapping crowns were abandoned. Based on the watershed
algorithm, the pine trees that were missed and delineated incorrectly were delineated
manually. Finally, the hyperspectral data of an individual pine tree was calculated by
averaging the reflectance of each tree crown.

2.4. Infection Stage Categorization of Pine Tree

As described in previous studies, the physiological characteristics of pine trees change
gradually with PWD infection aggravation [31,32]. According to the needle color and the
resin secretion of pine trees, we characterized PWD infection into four stages with samples
collected from field surveys by four experts in PWD research: (1) a healthy stage with green
needles and normal resin secretion; (2) an early stage with needles beginning to turn yellow
and resin secretion decreasing; (3) a middle stage with needles turning yellow and resin
secretion obviously decreasing; and (4) a serious stage with reddish brown needles and no
resin secretion. The needle samples, collected from pine trees in the study area in different
PWD infection stages, are shown in Figure 3.
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Figure 3. Pine tree needles in different infection stages collected from field survey and labeled by
experts: (a) healthy stage; (b) early stage; (c) middle stage; (d) serious stage.

3. Method
3.1. Spectral Feature Extraction

After the pine tree crowns segmentation of the HI from the research area, the spectral
reflection for each pine tree was calculated with the average of the crown hyperspectral
data. Then, a Savitzky–Golay filter with points ranging from 3 to 15 was chosen in order to
smooth the pine tree’s spectral reflection [33]. When the pine tree suffers from PWD, its
chlorophyll, water content and the cell structure in the needles change dramatically, leading
to changes in the spectral reflectance. In general, the spectral reflection curves for pine trees
in different PWD infection stages (Figure 4) reach their local peaks in the green region (GR,
510–580 nm), red edge (RE, 680–760 nm) and the near-infrared (NIR, 780–1000 nm) and
reach their local valleys in the red region (RR, 620–680 nm). Based on those PWD-sensitive
regions, we extracted 16 spectral features shown in Table 1 from the pine tree spectral
reflection data, where ρ and ρ’ are the spectral reflectance and its first-order derivative.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 12 
 

(a) (b) (c) (d)
 

Figure 3. Pine tree needles in different infection stages collected from field survey and labeled by 

experts: (a) healthy stage; (b) early stage; (c) middle stage; (d) serious stage. 

3. Method 

3.1. Spectral Feature Extraction 

After the pine tree crowns segmentation of the HI from the research area, the spectral 

reflection for each pine tree was calculated with the average of the crown hyperspectral 

data. Then, a Savitzky–Golay filter with points ranging from 3 to 15 was chosen in order 

to smooth the pine tree’s spectral reflection [33]. When the pine tree suffers from PWD, its 

chlorophyll, water content and the cell structure in the needles change dramatically, lead-

ing to changes in the spectral reflectance. In general, the spectral reflection curves for pine 

trees in different PWD infection stages (Figure 4) reach their local peaks in the green re-

gion (GR, 510–580 nm), red edge (RE, 680–760 nm) and the near-infrared (NIR, 780–1000 

nm) and reach their local valleys in the red region (RR, 620–680 nm). Based on those PWD-

sensitive regions, we extracted 16 spectral features shown in Table 1 from the pine tree 

spectral reflection data, where ρ and ρ’ are the spectral reflectance and its first-order de-

rivative. 

 

Figure 4. The spectral reflection curves of pine trees in different PWD infection stages, which were 

collected from HI with UAV hyperspectral remote-sensing system. 

Table 1. 16 Spectral features defined on the spectral reflection data. 

Variables Description Formula 

Rgreen Reflectance at green peak [34] MAX ρ(510:580) 

SRgreen Total reflectance in GR [35] SUM ρ(510:580) 

Rred Reflectance at red valley [34] MIN ρ(620:680) 

Figure 4. The spectral reflection curves of pine trees in different PWD infection stages, which were
collected from HI with UAV hyperspectral remote-sensing system.

Table 1. 16 Spectral features defined on the spectral reflection data.

Variables Description Formula

Rgreen Reflectance at green peak [34] MAX ρ(510:580)
SRgreen Total reflectance in GR [35] SUM ρ(510:580)
Rred Reflectance at red valley [34] MIN ρ(620:680)
SRred Total reflectance in RR [35] SUM ρ(620:680)
RRE Reflectance at RR peak [35] MAX ρ(680:760)
SRRE Total reflectance in RR [35] SUM ρ(680:760)
RNIR Reflectance at NIR peak [35] MAX ρ(780:1000)
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Table 1. Cont.

Variables Description Formula

SRNIR Total reflectance in NIR [35] SUM ρ(780:1000)
Dgreen Max first-order derivative of the reflectance in GR [36] MAX ρ’ (510:580)
SDgreen Total first-order derivative of the reflectance in GR [36] SUM ρ’ (510:580)
Dred Max first-order derivative of the reflectance in RR [36] MAX ρ’ (620:680)
SDred Total first-order derivative of the reflectance in RR [36] SUM ρ’ (620:680)
DRE Max first-order derivative of the reflectance in RE [37] MAX ρ’ (680:760)
SDRE Total first-order derivative of the reflectance in RE [37] SUM ρ’ (680:760)
DNIR Max first-order derivative of the reflectance in NIR [37] MAX ρ’ (780:1000)
SDNIR Total first-order derivative of the reflectance in NIR [37] SUM ρ’ (780:1000)

3.2. Coding Spectral Features in GA

According to the analysis in the above subsection, it is known that the PWD infection
stages of the pine trees are related to the spectral features, but the 16 spectral features
extracted do not always work well together in the detection of PWD infection in pine trees.
Some spectral features may correlate with each other, leading to lower PWD infection
detection accuracy and higher complexity. Therefore, GA, a general adaptive optimization
methodology [38], is imported to adaptively search for the optimal spectral features for the
PWD infection detection step. In GA, each spectral feature defined in Table 1 is coded as a
type of gene in the chromosome shown in Equation (1):

Ch = [Rgreen, SRgreen, . . . , DNIR, SDNIR] (1)

All 16 extracted spectral features are coded using a binary system. When a spectral
feature is selected by the chromosome, its gene value in the chromosome is set to 1 and 0
otherwise. At the beginning, chromosome Ch is randomly initialized to generate a set of
candidate solutions for the population of the GA. Then, in each evolution step, successive
populations are generated with the crossover operations under the fittest survival. Finally,
the optimal spectral features are those which are set as 1 in the chromosome of the GA
evolution results.

3.3. GA-SVM Classification Model

For the PWD infection stage detection of pine trees, we introduce SVM, originally pro-
posed by Cortes and Vapnik [39], to build a classification model. SVM is a non-parametric
machine learning method based on statistical learning theory and structural risk mini-
mization. To adaptively obtain the optimal spectral features, we define a fitness function
(Equation (2)) to assess the importance of a spectral feature in the GA evaluation step.
Crossover and mutation functions are the main operations that randomly impact the fit-
ness from step to step. The chromosome with the highest fitness will be selected into the
recombination pool using the roulette wheel or the tournament selection methods:

Fitness(Ch) =
Cov(y(Ch), ŷ)√

Var(y(Ch))
√

Var(ŷ)
(2)

where y(Ch) is the predicted PWD infection stage from the SVM classification model
for chromosome Ch in the GA, and ŷ is the measured PWD infection stage in the data
acquisition. Cov(y(Ch), ŷ) is the covariance between y(Ch) and ŷ, while Var(y(Ch)) and
Var(ŷ) are variances for y(Ch) and ŷ, respectively. Usually, the higher the fitness value,
the better the spectral feature selection in the chromosome. With the fitness function, the
optimal spectral features are determined and then used to train the SVM classification
model for predicting the PWD infection stages of pine trees extracted from the HI.
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3.4. Evaluation for the Classification Model

To inspect the accuracy of the classification model, we used a confusion matrix to
calculate the accuracy metrics. A confusion matrix, also known as a contingency table
or error matrix, is used to present the visualization effect of the classification algorithms’
performance. Each column represents the predicted value, and each row presents the actual
category. It consists of true positives (TP), true negatives (FN), false positives (FP) and
false negatives (TN), which are defined in Table 2. Furthermore, the user accuracy (UA),
producer accuracy (PA), overall accuracy (OA) and Kappa coefficient are all defined by the
confusion matrix and specified in Table 2.

Table 2. Accuracy metrics for the classification model.

Name Formula Description

TP True positive
True value is positive, and the
number that the model considers
is positive.

FN False negative
True value is positive, and the
number that the model considers
is negative.

FP False positive
True value is negative, and the
number the model considers
is positive.

TN False negative
True value is negative, and the
number that the model considers
is negative.

User accuracy (UA) TP/(TP + FP)
The proportion of the correctly
predicted number to the total
number of a class.

Producer accuracy (PA) TP/(TP + FN)
The proportion of the correctly
predicted number to the positive
number of a class.

Overall accuracy (OA) (TP + TN)/(TP + TN + FP + FN)
The proportion of total correctly
predicted number to the total
observed number.

Kappa coefficient (KAPPA)

(Po − Pe)/(1 − Pe), where Po = OA,
Pe = ((TN + FN) × (TN + FP) + (FP +
TP) × (FN + TP))/(TN + TP + FN +
FP)ˆ2

The kappa coefficient is used for
consistency testing, and the
calculation of the kappa
coefficient is based on the
confusion matrix.

4. Results
4.1. Experiment Environment and Dataset

The pine tree crown segmentation algorithm, the GA algorithm and the SVM classifica-
tion model training and testing were conducted with the Matlab toolbox based on the SVM
framework, libsvm. The experimental operation platform incorporated an Intel(R) Core i7
series CPU, RAM 16.0 GB. In the tree crown segmentation, we used a watershed algorithm
to recognize the pine tree crowns from the HI and found that the segmentation accuracy
was more than 80% compared with manual visual interpretation using ArcGIS software.
Then, we manually delineated the trees that were missed or delineated incorrectly and
calculated the spectrum of an individual pine tree by averaging the reflectance of each tree
crown. Finally, 56 pine tree samples were extracted and labeled as healthy, early, middle
or serious PWD infection stages with the aid of experts. The segmentation and labeling
results are shown in Figure 5. In the classification process, the dataset was randomly split
into two parts, 35 samples for model training and 21 samples for model testing.
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Figure 5. The pine tree crown segmentation and labelling results: (a) pseudo color image of HI;
(b) part segmentation result of HI shown in (a). The green, light yellow, yellow and brown circles
represent the pine tree crowns in healthy, early, middle and serious PWD infection stages, respectively.
The red circles represent the final segmentation of the pine trees.

4.2. Optimal Spectral Feature Selection

For selecting optimal spectral features, the parameters in the GA algorithm including
the initial population size, the chromosome pairs’ crossover probability, the mutation
probability and the evolution times were initialized as 100, 0.6, 0.01 and 100, respectively,
according to the empirical values from [38]. In the evolution, the chromosomes in the
population did not change after 80 iterations, at which point the GA and SVM algorithm
stopped, and the optimal spectral features were determined with Ch = [0000000011101011]
and highest fitness. Then, six spectral features, including Dgreen, SDgreen, Dred, DRE, DNIR
and SDNIR, were used for training the SVM classification model to predict the PWD infection
stages of pine trees extracted from the HI.

The change trends of the six selected spectral features with the PWD infection stages
for the dataset are illustrated in Figure 6. The Dgreen and DRE decrease with the PWD
infection stages, indicating that the reflectance of the pine trees in the healthy stage changes
the most while the reflectance of the pine trees in the serious stage changes the least, which
is consistent with the change trends of the spectral curves in Figure 4. The SDgreen, Dred,
DNIR and SDNIR for pine trees in the early PWD infection stages are higher and decrease
with the PWD infection stages for other pine trees. These change trends indicate that the six
optimal spectral features could extract the reflectance changes for the pine trees in different
PWD infection stages well.
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4.3. Classification Model Performance

To measure the proposed classification model performance, we introduced other
machine learning algorithms, including KNN, RF and single SVM, which are frequently
used for classification [4,9,40]. Then, we used the classification matrices including the PA,
UA, OA and KAPPA coefficient defined in Table 2 to evaluate the performance. Usually,
the higher the values of PA, UA, OA and KAPPA, the more precise the classification model
is. The PWD infection stage detection results with hyperspectral data from KNN, RF, SVM
and the proposed GA and SVM classification models are listed in Tables 3 and 4.

Table 3. The producer’s accuracy (PA) and user’s accuracy (UA) in different PWD infection stages
using KNN, RF, SVM and GA and SVM model.

Model
Healthy Stage Early Stage Middle Stage Serious Stage

PA(%) UA(%) PA(%) UA(%) PA(%) UA(%) PA(%) UA(%)

KNN 0 NAN 100 62.5 91.67 84.62 0 NAN
RF 0 0 80 50 83.33 100 100 100

SVM 100 100 100 71.43 83.33 90.91 50 100
GA and SVM 100 100 100 100 91.67 100 100 66.67

Table 4. The overall accuracy (OA) and the Kappa coefficient for different classification models.

Model OA(%) KAPPA

KNN 76.19 0.5714
RF 76.19 0.6182

SVM 85.71 0.7649
GA and SVM 95.24 0.9234

Compared with the KNN, RF and SVM methods, the proposed GA and SVM classifica-
tion model showed the highest PA values (100%) on the testing dataset in different infection
stages and the highest UA values (100%) on the testing dataset in the healthy, early and
middle stages. Moreover, the proposed GA and SVM classification model provided the best
accuracy (OA%: 95.24%, KAPPA: 0.9234). The results demonstrated that the collinearity
existing between the spectral features usually deteriorated the performance of PWD infec-
tion stage identification, and the GA algorithm could select the optimal spectral features to
present the dataset characteristics instead of using all 16 extracted spectral features. With
the optimal spectral features (Dgreen, SDgreen, Dred, DRE, DNIR, SDNIR), the SVM parameters
were also optimized and achieved better performance in the PWD infection stage detection
than the KNN, RF and SVM classification models with 16 spectral features.

5. Discussion

Early detection is a topical issue in PWD control, and many studies focus on remote
sensing. Ground remote-sensing methods collect data consisting of samples from the
entire tree and provide more accurate data for individual pine trees. However, PWD
usually affects trees in large areas, making ground-acquired data not feasible. Moreover,
satellite remote sensing could collect large-scale data, but the low spatial resolution makes
the individual tree discrimination impossible. Therefore, UAV remote sensing is a more
promising and practical candidate for future large-scale forest management. For UAV
remote sensing, data acquisition is easily affected by shadows, overlaps and weather
conditions, which may induce measurement noise. In the future, more UAV data acquisition
methods such as multispectral and LiDAR equipment will be combined to generate better
PWD detection results.

The study results suggest that the accuracy of the GA and SVM classification model is
higher than that of KNN, FR and SVM, which could extract spatial features from UAV HI.
However, it failed to make full use of the spatial features of the HIs. On the other hand,
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some studies employed 2D-CNNs, such as Faster R-CNN and YOLOv3, to extract spatial
features such as color distribution and texture [12]; however, it failed to employ the spectral
information. In recent years, the 3D-CNN has been extensively applied in HI classification
in the forestry field [41]. It combines 1D spectral information and 2D spatial information,
which could extract spectral and spatial features simultaneously, thus exhibiting great
potential in monitoring PWD infections. Therefore, a 3D-CNN model on the HI will be
examined in our future study to improve the accuracy of PWD detection.

6. Conclusions

It is known that the spectral characteristics of the pine trees change dramatically
when the PWD infection of pine trees deteriorates. We extracted the pine tree crowns
from the UVA-based HI and divided the PWD infection into four stages, namely, healthy,
early, middle and serious stages, according to their physiological characteristics. A total
of 16 spectral features were defined in the green region (510–580 nm), red edge (RE,
680–760 nm) and the near-infrared (NIR, 780–1000 nm) region, which were sensitive to the
PWD infection. Then, we proposed a GA and SVM classification model for estimating the
PWD infection stage of a pine tree with HI at tree level. In the evolution step of GA, the
optimal spectral features were selected for training the SVM classification model with the
highest fitness. We found that the proposed method increased the accuracy to 95.24% and
the Kappa coefficient to 0.9234 compared with the KNN, RF and SVM classification models.
We expect that the accuracy established here can be further improved by using a 3D-CNN
model for estimating the PWD infection stage with both spectral and spatial information of
the HI in the future.
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