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Abstract: Object detection plays an important role in safety monitoring, quality control, and produc-
tivity management at construction sites. Currently, the dominant method for detection is deep neural
networks (DNNs), and the state-of-the-art object detectors rely on a bounding box regression (BBR)
module to localize objects. However, the detection results suffer from a bounding box redundancy
problem, which is caused by inaccurate BBR. In this paper, we propose an improvement of the object
detection regression module for the bounding box redundancy problem. The inaccuracy of BBR in the
detection results is caused by the imbalance between the hard and easy samples in the BBR process,
i.e., the number of easy samples with small regression errors is much smaller than the hard samples.
Therefore, the strategy of balancing hard and easy samples is introduced into the EIOU (Efficient
Intersection over Union) loss and FocalL1 regression loss function, respectively, and the two are
combined as the new regression loss function, namely EFocalL1-SEIOU (Efficient FocalL1-Segmented
Efficient Intersection over Union) loss. Finally, the proposed EFocalL1-SEIOU loss is evaluated on
four different DNN-based detectors based on the MOCS (Moving Objects in Construction Sites)
dataset in construction sites. The experimental results show that the EFocalL1-SEIOU loss improves
the detection ability of objects on different detectors at construction sites.

Keywords: object detection; loss function; construction sites

1. Introduction

In construction projects, inefficiencies are often caused by the occurrence of unknown
accidents [1]. To improve productivity, the construction industry has continuously strength-
ened safety management and engineering supervision to reduce casualties and improve
construction efficiency during construction. Taking China as an example, there were
34,600 accidents in 2021, of which 26,300 died. Construction industry casualties are consis-
tently high across all industries, and more than half of them should have been preventable.
The traditional methods of monitoring construction operations are through job sampling,
personnel testing, etc. However, these methods require many human, material and financial
resources [2]. Therefore, the application of modern information and communication tech-
nology is of great significance in preventing safety accidents and improving the efficiency
of construction operations.

Computer vision techniques have aroused wide interest in academia and industry,
such as smart glasses systems [3], automatic fire detection and notification [4], and con-
struction worker safety inspection [5]. Many applications have been developed, such as
collision risk prevention [6], ground engineering equipment activity analysis [7], safety
helmet wearing detection [8], noncertified work detection [9], and construction activities
identification [10]. For these applications, it is a basic requirement to accurately detect
and correctly identify workers and equipment through digital images in construction
sites [5–10]. However, the detectors used in previous studies [5] are mainly based on the
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form of hand-crafted features and sliding windows traversing the whole image; also, the
algorithm runs slowly, with insufficient accuracy and without generalization.

In recent years, DNNs have shown superior performance in object detection. Com-
pared with the previously artificially designed detectors, the detector based on DNNs
realizes feature extraction by adaptive convolution, which improves the accuracy and
speed of the algorithm and is more robust in object detection. The deep learning object
detection method consists of three parts. First, the backbone [11–15] part of the network is
responsible for extracting the necessary feature information from the input data. The qual-
ity of feature information extraction is crucial for subsequent object detection. The second
part is the neck [16–20], which is followed by the backbone to better fuse and extract feature
maps. The last part is the detection head, which is responsible for obtaining the object
category and position from the extracted features. Deep neural network methods based
on deep learning can be roughly divided into two categories. One is the regression-based
one-stage method [21,22]. The other is a two-stage method [23].

Despite these different detection frameworks, BBR is a critical step in predicting
rectangular boxes for localizing target objects. In terms of metrics to measure the localization
of object detection, there are various loss functions for object detection, such as focal
loss [24], class-balanced loss [25], balanced loss for classification and BBR [26], and gradient
flow balancing loss [27]. Nevertheless, rectangular BBR loss is still the most popular loss
function approach.

The loss functions are evolving through continuous innovation. Initially, L1 loss was
used, but it is difficult to converge when the error is small in the later stages of training.
The derivative of L2 loss used in R-CNN (regional convolutional neural network) [28] and
SPP-Net (spatial pyramid pooling network) [29] is x, but it is unstable against outliers.
SmoothL1 loss [30] combines L1 loss and L2 loss to perfectly avoid their drawbacks and
is applied in Fast R-CNN [30] and Faster R-CNN [23] but does not have scale invariance.
YOLOv1 (You Only Look Once) [31] proposed that the square root of the difference of
a bounding box can alleviate the scale sensitivity of the loss function. The 2− wh loss
used in YOLOv3 [22] also reduces the effect of scale on regression accuracy. The Dynamic
SmoothL1 loss in Dynamic R-CNN [32] dynamically controls the shape of the loss function,
thus gradually focusing on high-quality anchor boxes. BalancedL1 loss in Libra R-CNN [26]
similarly focuses on increasing the weight of the easy sample gradient but does not control
the gradient of outliers. FocalL1 [33] increases the gradient for high-quality samples and
decreases the gradient for low-quality samples. However, any example of better regression
will directly improve the quality of the final predicted boxes and should not overly suppress
the contribution of low-quality samples. However, the ln-norm losses do not pay attention
to the intrinsic connection in the four variables (x, y, w, h), and for this problem, IOU
(Intersection over Union) [34] loss was proposed and achieved excellent results. Since
then, GIOU (Generalized IOU) [35], DIOU (Distance IOU) [36], CIOU (Complete IOU) [36],
and EIOU (Efficient IOU) [33] have been proposed to address the weaknesses of the IOU
loss function for specific problems, resulting in faster convergence and better performance.
PIOU (Pixels-IOU) [37] added angles to assist the IOU loss function. Alpha-IOU [38] is
an existing uniform idempotent based on the IOU loss. The above research proves the
importance of the loss function in the regression process of object detection. However, the
current research on the loss function still has some shortcomings, and the detector based
on anchors generally has a problem of imbalance between hard and easy samples.

Currently, object detection algorithms ensure that moving objects on construction sites
can be detected by detectors. However, the bounding box redundancy problem in object
detection is shown in Figure 1, especially for objects with large stretches. The reason for
the redundant bounding box problem is the imbalance in the number of hard and easy
samples in the regression process. Therefore, the hard-to-regress samples in the existing
regression modules provide a larger contribution, resulting in bounding box redundancy.
The hard-versus-easy sample balance strategy can improve the easy sample regression
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contribution and reduce the hard sample regression contribution. To this end, we address
this problem by incorporating a hard–easy sample balancing strategy into the BBR module.
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In this paper, we propose a loss function for the object detection BBR module, which
adopts a hard-versus-easy sample regression strategy. The design is based on the bounding
box redundancy problem, and the regression module is studied to improve the accuracy
of object detection. The proposed loss functions include three types: (1) A Segmented
Efficient IOU (SEIOU) loss function is proposed, which uses a piecewise function to perform
piecewise regression on the penalty term of the loss function. (2) A regression loss function
focusing on the balance of hard and easy samples is designed to change the contribution of
hard and easy samples in the model optimization process to improve the model accuracy.
(3) Finally, the two methods are combined into a new BBR loss function EfocalL1-SEIOU
loss to achieve more accurate object detection. The evaluation on several advanced object
detection models, including Faster R-CNN [23], Mask R-CNN [39], Cascade R-CNN [40],
and YOLOF [41], uses the construction site dataset MOCS (Moving Objects in Construction
Sites) [42]. The results show that an improvement in the accuracy of significance is achieved,
which illustrates the generalizability of this proposed loss function.

The contributions of this paper can be summarized as follows:

1. Considering the redundancy problem of bounding boxes in the construction site, it is
caused by the imbalance of hard and easy samples in the BBR process. The strategy of
balancing hard and easy samples is introduced into the IOU-based loss to help the
BBR as much as possible by segmenting the hard and easy samples.

2. The strategy of balancing hard and easy samples is also introduced into the ln-norm
loss by controlling the regression gradient to obtain better regression results.

3. Compared with the previous object detection loss function, this loss function intro-
duces the hard-versus-easy sample balancing strategy and combines the IOU-based
loss and the ln-norm loss as a new loss function to obtain better performance.

The remainder of the paper is organized as follows. Section 2 introduces the recent
literature on the hard-versus-easy sample balance problem and object detection in construc-
tion sites. In Section 3, we describe the limitations of IOU-based losses and the generation
and analysis of SEIOU, EfocalL1 loss, and EfocalL1-SEIOU. In Section 4, we evaluate the
performance of EfocalL1-SEIOU loss on four different advanced object detectors and per-
form some ablation experiments. In Section 5, we describe the limitations and discussion.
In Section 6, we draw some conclusions.



Appl. Sci. 2022, 12, 6752 4 of 15

2. Related Work

In this section, we briefly survey the related work of the problem of the imbalance of
hard and easy samples and object detection in construction sites.

2.1. Imbalance of Hard and Easy Sample

There are two common problems with anchor-based detectors: positive and negative
sample imbalance and hard and easy sample imbalance. Easy samples are samples with
small loss. Hard samples are samples with large loss. For classification problems, the two
above are included. For the regression problem, only the hard and easy sample imbalance
problems are included.

For the classification problem, OHEM (Online Hard Example Mining) [43] considers
that there are many simple negative samples; thus, the hard negative samples should be
mined. However, OHEM is sensitive to noise. In Focal loss [24], the contribution of positive
samples is increased, and the contribution of negative samples is decreased. Since GHM
(Gradient Harmonizing Mechanism) [27] considers hard samples to be outliers, it reduces
the weight of hard samples. For regression problems, GHM decreases the hard sample
weight because it considers hard samples as outliers. However, it does not reduce the easy
sample weight, because any example of better regression will directly improve the quality
of the final predicted boxes. Both BalancedL1 loss [26] and FocalL1 loss [33] emphasize
improving the gradient of the easy sample gradient, while the latter also reduces the hard
sample gradient. However, compared to the SmoothL1 loss [30], the easy sample gradient
does not increase significantly, while the hard sample gradient decreases significantly.

2.2. Object Detection in Construction Sites

Compared to general object detection, few research has been made on object detection
in construction sites. Roberts et al. performed object detection for cranes to monitor crane-
related safety hazards [44]. Kim et al. used YOLOv3 to detect workers and heavy machinery
to prevent being attacked by hazards [6]. Roberts et al. trained a DNN-based detector
on an advanced infrastructure management dataset [45] containing heavy machinery for
five different types of construction work to analyze the productivity of excavators and
trucks [7]. As the collected datasets tend to be small in size, the generalization performance
of the algorithms is reduced. With the generation of large-scale datasets, a simple approach
is to directly apply mainstream object detection algorithms to datasets under construction
sites to improve detection accuracy and thus carry out various applications.

3. Materials and Methods
3.1. Experiments Details
3.1.1. Dataset and Evaluation Metric

The current dataset suitable for DNNs is MOCS [42], which contains 174 construction
sites covering various projects. The dataset of moving objects in construction sites contains
41,668 images in 13 categories. A benchmark containing different DNN-based detectors
was made using the MOCS dataset. The results show that all the trained detectors can
detect the objects on the construction site.

Construction site images have more semantic information and complex texture infor-
mation; thus, we conducted simulated experiments with the MOCS dataset to investigate
the advantages of SEIOU and EfocalL1 loss and the importance of the balance between
hard and easy samples, respectively. We present the experimental results of object detection
with the dataset MOCS in construction sites. We use the MOCS training set for training
and show the ablation studies of the MOCS validation set. COCO-style Average Precision
(AP) is chosen as the evaluation index.

3.1.2. Implementation Details

For fair comparisons, all experiments are implemented with PyTorch [46]. The back-
bones used in the experiments are publicly available. For all experiments on the MOCS
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dataset, we use ResNet-50 backbone and run 12 epochs. We train detectors with a GPU (2
images per GPU), adopting the stochastic gradient descent (SGD) optimizer. The default
weight of BBR is set to 1 based on ln-norm losses and 10 for IOU-based losses.

3.1.3. Network Architecture

There are roughly two types of deep learning object detection network architectures.
One is a two-stage method based on region proposal, which performs two classifications
and regressions, as shown in Figure 2. First, the candidate regions are generated and
screened, the features of the region of interest (ROI) in the image are obtained, and then,
the neural network is trained for classification. Another class of regression-based one-stage
methods regresses the target in a single convolutional neural network, as shown in Figure 3.
Despite the different detection frameworks, BBR is a critical step in locating target objects.
As shown in the figure, the red dotted box in the two architecture diagrams is the placement
of our proposed regression loss function.
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3.2. Limitations of IOU-Based Losses

In this subsection, we analyze the flaws of four IOU-based loss functions, i.e., the
IOU [34], GIOU [35], CIOU [36], and EIOU [33] loss.

3.2.1. Limitations of IOU Loss

The IOU loss [34] for measuring similarity between two bounding boxes B, Bgt is
attained by:

LIOU = 1−
∣∣B ∩ Bgt

∣∣
|B ∪ Bgt|

, (1)

which has some good properties, such as symmetry and scale insensitivity. However, it
cannot reflect the closeness of B and Bgt. Therefore, the direction of gradient descent cannot
be provided for optimization. Second, the IOU loss does not reflect how the two boxes
intersect, i.e., how good the overlap is.
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3.2.2. Limitations of Generalized IOU Loss

To solve the drawback of IOU loss when the boxes overlap, GIOU [35] is proposed
as follows.

LGIOU = 1−
∣∣B ∩ Bgt

∣∣
|B ∪ Bgt|

+

∣∣C− (B ∪ Bgt)∣∣
|C| , (2)

C is the closure of B and Bgt. GIOU mitigates the problem of gradient disappearance
in the non-overlapping case by penalizing the term and reflects the goodness of the overlap
of the two boxes. However, in order to reduce the loss function, the regression process will
first choose the optimized penalty term to reduce the closure and then choose the optimized
IOU term. There is a problem that the area of the prediction frame is mistakenly increased.

3.2.3. Limitations of Complete IOU Loss

To solve the problem of incorrectly increasing the area of the predicted box, CIOU [36]
is proposed as in Equation (3).

LCIOU = 1−
∣∣B ∩ Bgt

∣∣
|B ∪ Bgt|

+
ρ2(B, Bgt)

C2 + αv, (3)

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

, (4)

α =
v

(1− IOU) + v
, (5)

where ρ2 is the Euclidean distance between the centroids of the two boxes, and C is the
diagonal of the closure of B and Bgt. v is used to measure the width-to-height ratio, and α is
the equilibrium factor. w and h are the width and height of the two boxes. CIOU loss adds
a scaling coefficient penalty term to solve the problem of incorrectly increasing the area
of the prediction box. However, there are still problems with the scale factor introduced
by the CIOU loss. Width and height cannot be increased and decreased at the same time
during the optimization process.

3.2.4. Limitations of Efficient IOU Loss

To solve the problem of optimizing the penalty term in aspect ratio, EIOU [33] is
proposed for any two bounding boxes B and Bgt, as in Equation (6).

LEIOU = 1−
∣∣B ∩ Bgt

∣∣
|B ∪ Bgt|

+
ρ2(B, Bgt)

C2 +
ρ2(w, wgt)

Cw2 +
ρ2(h, hgt)

Ch
2 , (6)

C is the diagonal of the closure of B and Bgt, Cw and Ch are the width and height of the
closure. EIOU proposes to optimize the width and height of the box, respectively. When
the two bounding boxes keep approaching, the parallel set will keep decreasing. To make
the loss decrease, the closure should keep increasing, which is contradictory.

3.3. EfocalL1-SEIOU Loss for BBR

As mentioned in FocalL1 loss [33], the problem of hard and easy sample imbalance
also exists in the BBR problem. That is, the number of high-quality and easily regressive
bounding boxes with small regression loss is far less than that of low-quality and hard-
to-regress bounding boxes with large regression loss. In this subsection, we first propose
SEIOU, and then, we propose EfocaL1 loss based on FocalL1 loss. In addition, we combine
EfocalL1 loss with SEIOU to improve the performance of the BBR loss function.
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3.3.1. Segmented Efficient Intersection over Union Loss

In this method, the hard–easy sample balance strategy is introduced into the EIOU by
segmenting the loss function. As shown in Figure 4, green is the EIOU method, and both
red and green are our method. For any two bounding boxes B and Bgt defined as follows:

LSEIOU =


1− |B∩Bgt|
|B∪Bgt| +

ρ2(B,Bgt)
C2

1
+

ρ2(w,wgt)
Cw1

2 +
ρ2(h,hgt)

Ch1
2 , IOU ≤ 0.5

1− |B∩Bgt|
|B∪Bgt| +

ρ2(B,Bgt)
C2

2
+

ρ2(w,wgt)
Cw2

2 +
ρ2(h,hgt)

Ch2
2 , IOU > 0.5

(7)
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C1 is the diagonal of the closure of B and Bgt, Cw1 and Ch1 are the width and height of
the closure. C2 is the diagonal of the intersection, Cw2 and Ch2 are the width and height of
the intersection. Similar to the definition of IOU-based losses, iou = 0.5 is used as the cut-off
point to divide the samples with regression loss greater than 0.5 as easy samples, and those
with regression loss less than 0.5 as hard samples. Among them, the intersection is used as
the denominator of penalty terms for easy regression samples. As the predicted box keeps
getting closer to the target box, the intersection keeps increasing, and the loss function
keeps decreasing, which is the direction we expect. For the hard regression samples, we still
use the closure as the denominator of the penalty term. When the two boxes keep getting
closer, the closure is decreasing and the loss function is changing erratically. Therefore, the
loss function regression is focused on the easy regression samples. This ensures the speed
and accuracy of EIOU loss convergence while focusing more on the regression effect of
high-quality bounding boxes, which makes the regression better.

3.3.2. Efficient FocalL1 Loss

The FocalL1 loss [33] emphasizes increasing the gradient of the easy sample regression
and decreasing the gradient of the hard sample at the same time. However, compared with
BalancedL1 loss [26], the effect of increasing the easy sample gradient is slightly less, but
the hard sample gradient is reduced substantially. The outliers are harmful to the training,
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but the hard samples in the initial training are not necessarily outliers. It is mentioned in
GHM [27] that better prediction of any example in the regression problem will directly
improve the quality of the final bounding box. Therefore, it is crucial to increase the easy
sample gradient and decrease the hard sample gradient appropriately. In this method, by
increasing the gradient of easy samples and reducing the gradient of hard samples, the
balance strategy of hard and easy samples is introduced into the loss FocalL1 loss.

Similar to the definition of ln-norm losses, x = 1 is used as the dividing point, the
samples with regression loss less than 1 are divided into easy samples, and the samples
with regression loss greater than 1 are divided into hard samples. According to the idea that
the gradient value increases relatively in the area with small error and decreases relatively
in the area with large error, we design a function curve of the BBR gradient magnitude.
As β increases, the gradient of hard samples will be further suppressed, and the gradient
of the easy samples will be further suppressed, as shown in Figure 5a, which is not what
we expect. Therefore, the change in the gradient of the easy sample is controlled by the
parameter α. As α increases, the gradient of easy samples will further increase, as shown in
Figure 5b. The final gradient loss function is written in the following form.

f (x)

{
−αxln

(
βx2), x < 1

−αxln(β), otherwise
, (8)

where x is the difference between the predicted box and the target box.
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By integrating the gradient formulation above, we can obtain the EfocalL1 loss for BBR,

F(x) =

{
− α

2 x2 ln
(

βx2)+ α
2 x2, x < 1

C, otherwise
, (9)

where C is a constant value. To ensure that F(x) in Equation (9) is continuous at x = 1,
we have C = −α ln(β)x − α ln(β) + α

2 [ln(β)− 1]. As shown in Figure 6, the easy sam-
ple contribution can be increased substantially while the hard sample contribution can
be decreased.
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3.3.3. EfocalL1-SEIOU Loss

In this method, to combine the advantages of the two types of loss functions, the two
types of loss functions are nested. To enable the SEIOU loss regression process to increase
the easy sample regression gradient and relatively decrease the hard sample regression
gradient, one can naturally consider replacing x in Equation (9) with the SEIOU loss. How-
ever, we observe that the above combination does not work well. As LSEIOU approaches

zero,
∂LE f ocal−seiou

∂SEIOU approaches zero, and therefore, the global gradient also approaches zero,
i.e., the weight influence of samples with a small loss of LSEIOU is weakened. To tackle this
problem, we use the value of IOU to reweight the SEIOU loss and obtain high regression
accuracy by paying more attention to the high IOU target. We obtain EfocalL1-SEIOU loss
as follows.

LE f ocal−seiou = IOUγF(SEIOU), (10)

γ is a parameter to control the degree of inhibition of outliers.

4. Results
4.1. Ablation Studies on SEIOU Loss

We first conducted experiments with the IOU, GIOU, CIOU, EIOU, and SEIOU losses
in Table 1. Bounding box loss weights control the balance between classification loss
and regression loss in object detection, and we set the weight for BBR to 10.0 for fair
comparisons. In addition, we chose iou = 0.5 as the segmentation because it is mentioned
in the review [47] that iou < 0.5 as the false positives. We also verified the segmentation
point, as shown in Figure 7a; the performance of IOU at [0.3, 0.5] is maintained at 0.479.
When the segmentation points are taken less at than 0.3 or more than 0.5, the performance
decreases; thus, the segmentation point is set to iou = 0.5. The experimental results show
that for other IOU-based losses, the method has better performance.
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Table 1. Overall ablation studies on MOCS.

Method AP AP50 AP75 APS APM APL

Baseline 0.458 0.730 0.501 0.171 0.364 0.564
IOU 0.476 0.728 0.520 0.179 0.373 0.590

GIOU 0.476 0.729 0.521 0.174 0.376 0.589
CIOU 0.476 0.731 0.519 0.178 0.376 0.589
EIOU 0.472 0.723 0.514 0.167 0.374 0.585

EfocalL1 0.478 0.724 0.522 0.174 0.372 0.597
SEIOU 0.479 0.736 0.522 0.174 0.376 0.594

EfocalL1-SEIOU 0.482 0.728 0.524 0.189 0.374 0.594
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4.2. Ablation Studies on EfocalL1 Loss

As shown in Figure 7b,c, we test the EfocalL1 loss for different α and β. Setting a
smaller α further increases the gradient of the easy samples, and setting a larger β further
suppresses the gradient of the hard samples. Finally, we find that the optimal equilibrium
AP value is 0.478 when α = −2.75 and β = 0.4, which is 0.9 higher than the FocalL1 loss [33].
We also compare the previous work BalancedL1 loss [26], which improved the AP by 0.5.
These experimental results show that the EfocalL1 loss makes the model perform better.
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4.3. Ablation Studies on EfocalL1-SEIOU Loss

To illustrate the improvements brought by the different parameters for reweighting
the SEIOU loss, we compare the results of the different adjustments here. We first find that
replacing x in Equation (9) with SEIOU leads to a reduction in the gradient of the easy
samples and therefore does not improve the performance of this loss function. Then, we
weight the EfocalL1 loss by IOU to obtain the EfocalL1-SEIOU loss. As shown in Figure 7d,
we can obtain an improvement in performance. As γ increases, the performance of the
loss function first increases and then decreases. We cannot suppress the gradient of hard
samples extremely because the validity of hard samples still exists in the BBR process. We
find that the best results are achieved when setting γ = 0.78 and using it as the default
value for subsequent experiments.

4.4. Overall Ablation Studies

To demonstrate the effectiveness of each method, we performed overall ablation
studies, as shown in Table 2. The SEIOU loss improved AP from 0.472 to 0.479 compared
to the EIOU loss, and the EfocalL1 loss compared to the FocalL1 loss improved the AP by
0.9. Applying the SEIOU loss as x directly to Equation (9) is not satisfactory. The EfocalL1-
SEIOU loss of Equation (10) is reasonable, improving the AP of baseline by 2.4. The visual
effect is shown in Figure 8, where the first column is the original image, the second column
is the result of Faster R-CNN using baseline, and the third column is the effect of Faster
R-CNN using EfocalL1-SEIOU loss. From the comparison, our method can reduce the
redundancy of bounding box in construction sites, which verifies the effectiveness of the
EfocalL1-SEIOU loss function.

Table 2. Ablation studies of the EfocalL1 loss on MOCS.

Setting AP AP50 AP75 APS APM APL

Baseline 0.458 0.730 0.501 0.171 0.364 0.564
BalancedL1 0.473 0.723 0.520 0.171 0.368 0.587

FocalL1 0.469 0.729 0.515 0.179 0.371 0.580
EfocalL1 0.478 0.724 0.522 0.174 0.372 0.597
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4.5. Incorporations with State-of-the-Arts

In this subsection, we evaluate the EfocalL1-SEIOU loss by incorporating it into popu-
lar object detectors, including Mask R-CNN [39], Cascade R-CNN [40], and YOLOF [41].
Figure 9 shows the AP trends of the baselines of the corresponding detectors compared
to our method during training. Our method significantly outperforms the corresponding
baseline when the network finally converges stably. The results in Table 3 show that train-
ing these models by the EfocalL1-SEIOU loss can consistently improve their performance
compared to their own regression losses. Compared to other models, the improvements
of Mask R-CNN and Cascade R-CNN are relatively small. There are two reasons for this.
First, Mask R-CNN and Cascade R-CNN are both based on ln-norm loss with carefully
adjusted parameters. These parameters may not apply to the proposed EfocalL1-SEIOU
loss. Second, both Mask R-CNN and Cascade R-CNN have the process of adjusting the
weighting for the respective losses. Mask loss is added in Mask R-CNN correspondingly,
and iterative BBR is used in Cascade R-CNN. Although these adjustment weighting meth-
ods limit the effect brought by EfocalL1-SEIOU loss, they confirm the necessity of hard and
easy sample balancing. In addition, the improved effect in YOLOF illustrates that there is
also more room for improvement in the one-stage network for the hard and easy sample
imbalance problem.
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Table 3. The performance when incorporating the EfocalL1-SEIOU loss with different SOTA models.

Method Backbone AP AP50 AP75 APS APM APL

Faster R-CNN ResNet-50-FPN 0.458 0.730 0.501 0.171 0.364 0.564
Faster R-CNN * ResNet-50-FPN 0.482 0.728 0.524 0.189 0.374 0.594
Mask R-CNN ResNet-50-FPN 0.477 0.727 0.527 0.176 0.374 0.593

Mask R-CNN * ResNet-50-FPN 0.486 0.727 0.526 0.172 0.385 0.602
Cascade R-CNN ResNet-50-FPN 0.514 0.736 0.561 0.176 0.396 0.632

Cascade R-CNN * ResNet-50-FPN 0.520 0.733 0.566 0.184 0.400 0.636
YOLOF ResNet-50 0.376 0.620 0.397 0.073 0.232 0.524

YOLOF * ResNet-50 0.389 0.622 0.409 0.061 0.254 0.541

* indicates using the EfocalL1-SEIOU loss instead of their original losses.

5. Limitation and Discussion

Despite the above achievements, the proposed loss function still suffers from certain
shortcomings. Regarding the detection of workers, since there is often large equipment on
construction sites, the pixel value of workers with large equipment accounts for a smaller
proportion; thus, it is often missed, as shown in Figure 8. These limitations mainly focus on
images obtained from surveillance perspectives at the height of the building. In addition,
when there is a high degree of overlap between workers or machines on a construction site,
there is still a problem of bounding box redundancy. Therefore, there is still some room
for improvement in the detection effect. To this end, for the problem of unbalanced hard
and easy samples, we hope to explore bounding box evaluation metrics that apply the hard
and easy sample balance strategy to apply to the classification loss function, positive and
negative sample allocation, and non-maximum suppression modules.

6. Conclusions

In this paper, we analyzed the bounding box redundancy problem of object detection
in construction sites and found that there is still some room for improvement in the loss
function of the regression module by introducing a balanced strategy of hard and easy
samples. First, the existing loss functions all have certain defects that hinder the direction
of the BBR. Second, the existing studies ignore the importance of hard and easy sample
balance. As a result, the gradient of hard sample regression is too large, which limits the
performance of BBR. Based on the above two problems, we propose the EfocalL1-SEIOU
loss to address the shortcomings of the existing loss function and balance the gradient of the
hard and easy sample regression. Extensive experiments on the MOCS dataset show that
EfocalL1-SEIOU loss brings some improvements on many advanced object detectors, solves
practical problems, and can be applied to various applications. In the future, we hope to
design a low-light enhancement module and its loss function to perform low-light target
detection tasks for building operation behaviors in scenes such as nighttime and tunnels.

Author Contributions: Conceptualization, X.W. and H.W.; methodology, X.W. and C.Z.; software,
H.W.; validation, X.W., H.W. and C.Z.; investigation, X.W.; resources, Q.H.; data curation, Q.H.
and L.H.; writing—original draft preparation, X.W.; writing—review and editing, X.W. and H.W.;
visualization, X.W., C.Z. and L.H.; supervision, C.Z. and Q.H.; project administration, X.W. and H.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (no. 62072024
and 41971396), the Projects of Beijing Advanced Innovation Center for Future Urban Design
(no. UDC2019033324 and UDC2017033322), R&D Program of Beijing Municipal Education Commis-
sion (KM202210016002), and the Fundamental Research Funds for Municipal Universities of Beijing
University of Civil Engineering and Architecture (no. X20084 and ZF17061).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Appl. Sci. 2022, 12, 6752 14 of 15

Data Availability Statement: The dataset generated and analyzed during the current study can be
obtained at http://www.anlab340.com/Archives/IndexArctype/index/t_id/17.html (accessed on
30 November 2020).

Acknowledgments: The authors are thankful to all the personnel who either provided technical
support or helped with data collection. We also acknowledge all the reviewers for their useful
comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sacks, R.; Radosavljevic, M.; Barak, R. Requirements for building information modeling based lean production management

systems for construction. Autom. Constr. 2010, 19, 641–655. [CrossRef]
2. Su, Y.Y.; Liu, L.Y. Real-time tracking and analysis of construction operations. In Proceedings of the 2007 ASCE/CIB Construction

Research Congress, Grand Bahama Island, Bahamas, 6–8 May 2007.
3. Mukhiddinov, M.; Cho, J. Smart Glass System Using Deep Learning for the Blind and Visually Impaired. Electronics 2021, 10, 2756.

[CrossRef]
4. Mukhiddinov, M.; Abdusalomov, A.B.; Cho, J. Automatic Fire Detection and Notification System Based on Improved YOLOv4 for

the Blind and Visually Impaired. Sensors 2022, 22, 3307. [CrossRef] [PubMed]
5. Park, M.W.; Elsafty, N.; Zhu, Z.H. Hardhat-wearing detection for enhancing on-site safety of construction workers. J. Constr. Eng.

Manag. 2015, 141, 04015024. [CrossRef]
6. Kim, D.; Liu, M.Y.; Lee, S.H.; Kamat, V.R. Remote proximity monitoring between mobile construction resources using camera-

mounted UAVs. Autom. Constr. 2019, 99, 168–182. [CrossRef]
7. Roberts, D.; Golparvar-Fard, M. End-to-end vision-based detection, tracking and activity analysis of earthmoving equipment

filmed at ground level. Autom. Constr. 2019, 105, 102811. [CrossRef]
8. Fang, Q.; Li, H.; Luo, X.C.; Ding, L.Y.; Luo, H.B.; Rose, T.M.; An, W.P. Detecting non-hardhat-use by a deep learning method from

far-field surveillance videos. Autom. Constr. 2018, 85, 1–9. [CrossRef]
9. Fang, Q.; Li, H.; Luo, X.C.; Ding, L.Y.; Rose, T.M.; An, W.P.; Yu, Y.T. A deep learning-based method for detecting non-certified

work on construction sites. Adv. Eng. Inform. 2018, 35, 56–68. [CrossRef]
10. Luo, X.C.; Li, H.; Cao, D.P.; Dai, F.; Seo, J.; Lee, S.H. Recognizing diverse construction activities in site images via relevance

networks of construction-related objects detected by convolutional neural networks. J. Comput. Civ. Eng. 2018, 32, 04018012.
[CrossRef]

11. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. NeurIPS 2012, 25,
1106–1114. [CrossRef]

12. Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. Overfeat: Integrated recognition, localization and detection
using convolutional networks. arXiv 2013, arXiv:1312.6229.

13. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7 June 2015;
pp. 1–9.

14. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
15. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26–30 June 2016; pp. 770–778.
16. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings

of the IEEE Conference on Computer vision and Pattern Recognition, Honolulu, HI, USA, 16–21 July 2017; pp. 2117–2125.
17. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768.
18. Guo, C.; Fan, B.; Zhang, Q.; Xiang, S.; Pan, C. Augfpn: Improving multi-scale feature learning for object detection. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 12595–12604.
19. Ghiasi, G.; Lin, T.Y.; Le, Q.V. Nas-fpn: Learning scalable feature pyramid architecture for object detection. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–21 June 2019; pp. 7036–7045.
20. Xu, H.; Yao, L.; Zhang, W.; Liang, X.; Li, Z. Auto-fpn: Automatic network architecture adaptation for object detection beyond

classification. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–3
November 2019; pp. 6649–6658.

21. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the European Conference on Computervision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37.

22. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
23. Ren, S.Q.; He, K.M.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In

Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 91–99.
24. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.M.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International

Conference on Computer Vision, Shenzhen, China, 22–29 October 2017; pp. 2999–3007.

http://www.anlab340.com/Archives/IndexArctype/index/t_id/17.html
http://doi.org/10.1016/j.autcon.2010.02.010
http://doi.org/10.3390/electronics10222756
http://doi.org/10.3390/s22093307
http://www.ncbi.nlm.nih.gov/pubmed/35590996
http://doi.org/10.1061/(ASCE)CO.1943-7862.0000974
http://doi.org/10.1016/j.autcon.2018.12.014
http://doi.org/10.1016/j.autcon.2019.04.006
http://doi.org/10.1016/j.autcon.2017.09.018
http://doi.org/10.1016/j.aei.2018.01.001
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000756
http://doi.org/10.1145/3065386


Appl. Sci. 2022, 12, 6752 15 of 15

25. Cui, Y.; Jia, M.; Lin, T.Y.; Song, Y.; Belongie, S. Class balanced loss based on effective number of samples. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–21 June 2019; pp. 9260–9269.

26. Pang, J.M.; Chen, K.; Shi, J.P.; Feng, H.J.; Ouyang, W.L.; Lin, D.H. Libra R-CNN: Towards balanced learning for object detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–21 June 2019;
pp. 821–830.

27. Li, B.; Liu, Y.; Wang, X. Gradient harmonized single-stage detector. In Proceedings of the AAAI Conference on Artificial
Intelligence, Honolulu, HI, USA, 24 January–1 February 2019; Volume 33, pp. 8577–8584.

28. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

29. He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE
Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef] [PubMed]

30. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 13–16
December 2015; pp. 1440–1448.

31. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26–30 June 2016; pp. 779–788.

32. Zhang, H.K.; Chang, H.; Ma, B.P.; Wang, N.Y.; Chen, X.L. Dynamic R-CNN: Towards high quality object detection via dy-namic
training. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2020; pp. 260–275.

33. Zhang, Y.F.; Ren, W.Q.; Zhang, Z.; Jia, Z.; Wang, L.; Tan, T.N. Focal and efficient IOU loss for accurate bounding box regression.
arXiv 2021, arXiv:2101.08158.

34. Yu, J.H.; Jiang, Y.N.; Wang, Z.Y.; Cao, Z.M.; Huang, T. Unitbox: An advanced object detection network. In Proceedings of the 24th
ACM International Conference on Multimedia, New York, NY, USA, 15–19 October 2016; pp. 516–520.

35. Rezatofighi, H.; Tsoi, N.; Gwak, J.Y.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized intersection over union: A metric and a loss
for bounding box regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long
Beach, CA, USA, 15–20 June 2019; pp. 658–666.

36. Zheng, Z.H.; Wang, P.; Liu, W.; Li, J.Z.; Ye, R.G.; Ren, D.W. Distance-iou loss: Faster and better learning for bounding
box regression. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–16 February 2020;
pp. 12993–13000.

37. Chen, Z.M.; Chen, K.A.; Lin, W.Y.; See, J.; Yu, H.; Ke, Y.; Yang, C. Piou loss: Towards accurate oriented object detection in complex
environments. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2020; pp. 195–211.

38. He, J.B.; Erfani, S.; Ma, X.J.; Bailey, J.; Chi, Y.; Hua, X.S. Alpha-IoU: A Family of Power Intersection over Union Losses for
Bounding Box Regression. Proc. Adv. Neural Inf. Process. Syst. 2021, 34, 20230–20242.

39. He, K.M.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer
Vision, Shenzhen, China, 22–29 October 2017; pp. 2980–2988.

40. Cai, Z.W.; Vasconcelos, N. Cascade R-CNN: Delving into high quality object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162.

41. Chen, Q.; Wang, Y.M.; Yang, T.; Zhang, X.Y.; Cheng, J.; Sun, J. You only look one-level feature. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 13 November 2021; pp. 13034–13043.

42. An, X.H.; Zhou, L.; Liu, Z.G.; Wang, C.Z.; Li, P.F.; Li, Z.W. Dataset and benchmark for detecting moving objects in construction
sites. Autom. Constr. 2021, 122, 103482.

43. Shrivastava, A.; Gupta, A.; Girshick, R. Training region-based object detectors with online hard example mining. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26–30 June 2016; pp. 761–769.

44. Roberts, D.; Bretl, T.; Golparvar-Fard, M. Detecting and classifying cranes using camera-equipped UAVs for monitoring crane-
related safety hazards. J. Comput. Civ. Eng. 2017, 2017, 442–449.

45. Kim, H.; Kim, H.; Hong, Y.W.; Byun, H. Detecting construction equipment using a region-based fully convolutional network and
transfer learning. J. Comput. Civ. Eng. 2018, 32, 04017082. [CrossRef]

46. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.M.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic
differentiation in pytorch. In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA,
USA, 3–9 December 2017.

47. Oksuz, K.; Cam, B.C.; Kalkan, S.; Akbas, E. Imbalance problems in object detection: A Review. IEEE Trans. Pattern Anal. Mach.
Intell. 2020, 43, 3388–3415. [CrossRef] [PubMed]

http://doi.org/10.1109/TPAMI.2015.2389824
http://www.ncbi.nlm.nih.gov/pubmed/26353135
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000731
http://doi.org/10.1109/TPAMI.2020.2981890
http://www.ncbi.nlm.nih.gov/pubmed/32191882

	Introduction 
	Related Work 
	Imbalance of Hard and Easy Sample 
	Object Detection in Construction Sites 

	Materials and Methods 
	Experiments Details 
	Dataset and Evaluation Metric 
	Implementation Details 
	Network Architecture 

	Limitations of IOU-Based Losses 
	Limitations of IOU Loss 
	Limitations of Generalized IOU Loss 
	Limitations of Complete IOU Loss 
	Limitations of Efficient IOU Loss 

	EfocalL1-SEIOU Loss for BBR 
	Segmented Efficient Intersection over Union Loss 
	Efficient FocalL1 Loss 
	EfocalL1-SEIOU Loss 


	Results 
	Ablation Studies on SEIOU Loss 
	Ablation Studies on EfocalL1 Loss 
	Ablation Studies on EfocalL1-SEIOU Loss 
	Overall Ablation Studies 
	Incorporations with State-of-the-Arts 

	Limitation and Discussion 
	Conclusions 
	References

