A Nonlinear Energy Sink Design to Attenuate the Torsional Oscillations of Lightly Loaded Gear Pairs
Abstract
:1. Introduction
2. Materials and Methods
- The beam is straight (i.e., it has no curvature);
- The beam material elasticity is the same in both tension and compression;
- The stress in the beam is below the elastic limit;
- The deflections are small;
- The beam undergoes pure bending;
- The friction between the rocker and shim is small (the NES damping will be identified experimentally in a later section);
- It is assumed that the rocker touches the shim at a single point of contact.
3. Results
3.1. Experimental Setup
3.2. Static Identification
3.3. Gear Pair Dynamic Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Turner, J.; Popplewell, A.; Patel, R.; Johnson, T. Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing. SAE Int. J. Eng. 2014, 7, 387–417. [Google Scholar] [CrossRef]
- De la Cruz, M.; Theodossiades, S.; Rahnejat, H. An Investigation of Manual Transmission Drive Rattle. Proc. Inst. Mech. Eng. Part K J. Multi Body Dyn. 2009, 224, 167–181. [Google Scholar] [CrossRef] [Green Version]
- Theodossiades, S.; Tangasawi, O.; Rahnejat, H. Gear Teeth Impacts in Hydrodynamic Conjunctions Promoting Idle Gear Rattle. J. Sound Vib. 2009, 303, 632–658. [Google Scholar] [CrossRef] [Green Version]
- Theodossiades, S.; Gnanakumar, M.; Rahnejat, H.; Kelly, P. Effect of a Dual–Mass Flywheel on the impact–induced noise in vehicular powertrain systems. Proc. Inst. Mech. Eng. Part D J. Automobile Eng. 2006, 220, 747–761. [Google Scholar] [CrossRef] [Green Version]
- Alsuwaiyan, A.S.; Shaw, S.W. Performance and Dynamic Stability of General-Path Centrifugal Pendulum Vibration Absorbers. J. Sound Vib. 2002, 252, 791–815. [Google Scholar] [CrossRef]
- Haris, A.; Motato, E.; Theodossiades, S.; Rahnejat, H.; Kelly, P.; Vakakis, A.; Bergman, L.; McFarland, D. A study on torsional vibration attenuation in automotive drivetrains using absorbers with smooth and non-smooth nonlinearities. Appl. Math. Model. 2017, 46, 674–690. [Google Scholar] [CrossRef] [Green Version]
- Haris, A.; Motato, E.; Mohammadpour, M.; Theodossiades, S.; Rahnejat, H.; O’ Mahony, M.; Vakakis, A.; Bergman, L.; McFarland, D. On the effect of multiple parallel nonlinear absorbers in palliation of torsional response of automotive drivetrain. Int. Int. J. Non-Linear Mech. 2017, 96, 22–35. [Google Scholar] [CrossRef] [Green Version]
- Motato, E.; Haris, A.; Mohammadpour, M.; Theodossiades, S.; Rahnejat, H.; Kelly, P.; Vakakis, A.; Bergman, L.; McFarland, D.M. Targeted Energy Transfer and Modal Energy Redistribution in Automotive Drivetrains. Nonl. Dyn. 2017, 87, 169–190. [Google Scholar] [CrossRef] [Green Version]
- Haris, A.; Alevras, P.; Mohammadpour, M.; Theodossiades, S.; O’ Mahony, M. Design and validation of a nonlinear vibration absorber to attenuate torsional oscillations of propulsion systems. Nonl. Dyn. 2020, 100, 33–49. [Google Scholar] [CrossRef] [Green Version]
- Dolatabadi, N.; Theodossiades, S.; Rothberg, S.J. Design Optimization Study of a Nonlinear Energy Absorber for Internal Combustion Engine Pistons. ASME J. Comp. Nonl. Dyn. 2018, 13, 090910-1–090910-12. [Google Scholar] [CrossRef] [Green Version]
- Dolatabadi, N.; Theodossiades, S.; Rothberg, S.J. Passive Control of Piston Secondary Motion using Nonlinear Energy Absorbers. ASME J. Vib. Acoust. 2017, 139, 051009-1–051009-12. [Google Scholar] [CrossRef] [Green Version]
- Vakakis, A.; Gendelman, O.V.; Bergman, L.A.; McFarland, D.M.; Kerschen, G.; Lee, Y.S. Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems: Solid Mechanics and Its Applications, 1st ed.; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Gendelman, O.; Manevitch, L.I.; Vakakis, A.F.; M’Closkey, R. Energy Pumping in Nonlinear Mechanical Oscillators: Part I—Dynamics of the Underlying Hamiltonian Systems. J. Appl. Mech. 2001, 68, 34–41. [Google Scholar] [CrossRef]
- Vakakis, A.F.; Gendelman, O. Energy Pumping in Nonlinear Mechanical Oscillators: Part II—Resonance Capture. J. Appl. Mech. 2001, 68, 42–48. [Google Scholar] [CrossRef]
- Kerschen, G.; Vakakis, A.F.; Lee, Y.S.; McFarland, D.M.; Kowtko, J.J.; Bergman, L.A. Energy Transfers in a System of Two Coupled Oscillators with Essential Nonlinearity: 1:1 Resonance Manifold and Transient Bridging Orbits. Nonl. Dyn. 2005, 42, 283–303. [Google Scholar] [CrossRef]
- McFarland, D.M.; Kerschen, G.; Kowtko, J.J.; Lee, Y.S.; Bergman, L.A.; Vakakis, A.F. Experimental Investigation of Targeted Energy Transfer in Strongly and Nonlinearly Coupled Oscillators. J. Acoust. Soc. Amer. 2005, 118, 791–799. [Google Scholar] [CrossRef]
- Kerschen, G.; Lee, Y.S.; Vakakis, A.F.; McFarland, D.M.; Bergman, L.A. Irreversible Passive Energy Transfer in Coupled Oscillators with Essential Nonlinearity. SIAM J. Appl. Math. 2005, 66, 648–679. [Google Scholar] [CrossRef] [Green Version]
- Vakakis, A.F.; Manevitch, L.I.; Gendelman, O.; Bergman, L.A. Dynamics of linear discrete systems connected to local, essentially non-linear attachments. J. Sound Vib. 2003, 264, 559–577. [Google Scholar] [CrossRef]
- Lund, A.; Dyke, S.J.; Song, W.; Bilionis, I. Identification of an experimental nonlinear energy sink device using the unscented Kalman filter. Mech. Syst. Sign. Proc. 2020, 136, 106512. [Google Scholar] [CrossRef]
- Javidialesaadi, A.; Wierschem, N.E. An inerter-enhanced nonlinear energy sink. Mech. Syst. Sign. Proc. 2019, 129, 449–454. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Lu, Y.N.; Zhang, W.; Teng, Y.Y.; Yang, H.X.; Yang, T.Z.; Chen, L.Q. Nonlinear energy sink with inerter. Mech. Syst. Sign. Proc. 2019, 125, 52–64. [Google Scholar] [CrossRef]
- Yao, H.; Wang, Y.; Xie, L.; Wen, B. Bi-stable buckled beam nonlinear energy sink applied to rotor system. Mech. Syst. Sign. Proc. 2020, 138, 106546. [Google Scholar] [CrossRef]
- Viguié, R.; Kerschen, G.; Golinval, J.C.; McFarland, D.M.; Bergman, L.A.; Vakakis, A.F.; van de Wouw, N. Using passive nonlinear targeted energy transfer to stabilize drill-string systems. Mech. Syst. Sign. Proc. 2009, 23, 148–169. [Google Scholar] [CrossRef]
- Gendelman, O.V.; Sigalov, G.; Manevitch, L.I.; Mane, M.; Vakakis, A.F.; Bergman, L.A. Dynamics of an Eccentric Rotational Nonlinear Energy Sink. J. Appl. Mech. 2012, 79, 011012-1–011012-9. [Google Scholar] [CrossRef]
- Hubbard, S.A.; McFarland, D.M.; Bergman, L.A.; Vakakis, A.F.; Andersen, G. Targeted Energy Transfer between a Swept Wing and Winglet-Housed Nonlinear Energy Sink. AIAA J. 2014, 52, 2633–2651. [Google Scholar] [CrossRef]
- Scagliarini, G.; Viguié, R.; Kerschen, G.; Pellicano, F. Spur Gear Vibration Mitigation by Means of Energy Pumping. In Proceedings of the IMAC-XXVII, Orlando, FL, USA, 9 February 2009. [Google Scholar]
- Friskney, B.; Motato, E.; Haris, A.; Mohammadpour, M.; Theodossiades, S. A Study on Attenuating Gear Teeth Oscillations at Low Engine Speeds Using Nonlinear Vibration Absorbers. SAE Tech. Pap. 2018. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Modulus of elasticity (E) | 2 × 1011 N/m2 |
Shim thickness (t) | 0.0012 m |
Shim width (w) | 0.012 m |
Shim length (L) | 0.076 m |
Half-length of the rocker arm (h) | 0.047 m |
Parameter | Value |
---|---|
Inertia of pinion [kgm2] | 0.0004 |
Inertia of gear [kgm2] | 0.005 |
Radius of pinion [m] | 30 × 10−3 |
Radius of gear [m] | 60 × 10−3 |
Pinion teeth number | 20 |
Gear teeth number | 40 |
Gear ratio | 2 |
Pinion base torque [Nm] | 2 |
Gear torque [Nm] | 4 |
Backlash [m] | 40 × 10−6 |
Torque amplitude [Nm] | 0.8 |
NES inertia [kgm2] | 0.0004 |
[Nms/rad] | 0.002 |
Mesh damping ratio [-] | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Friskney, B.; Alevras, P.; Londhe, S.; Theodossiades, S.; McFarland, D.M. A Nonlinear Energy Sink Design to Attenuate the Torsional Oscillations of Lightly Loaded Gear Pairs. Appl. Sci. 2022, 12, 6778. https://doi.org/10.3390/app12136778
Friskney B, Alevras P, Londhe S, Theodossiades S, McFarland DM. A Nonlinear Energy Sink Design to Attenuate the Torsional Oscillations of Lightly Loaded Gear Pairs. Applied Sciences. 2022; 12(13):6778. https://doi.org/10.3390/app12136778
Chicago/Turabian StyleFriskney, Brett, Panagiotis Alevras, Sourabh Londhe, Stephanos Theodossiades, and Donald Michael McFarland. 2022. "A Nonlinear Energy Sink Design to Attenuate the Torsional Oscillations of Lightly Loaded Gear Pairs" Applied Sciences 12, no. 13: 6778. https://doi.org/10.3390/app12136778
APA StyleFriskney, B., Alevras, P., Londhe, S., Theodossiades, S., & McFarland, D. M. (2022). A Nonlinear Energy Sink Design to Attenuate the Torsional Oscillations of Lightly Loaded Gear Pairs. Applied Sciences, 12(13), 6778. https://doi.org/10.3390/app12136778