Spatial Perception Correntropy Matrix for Hyperspectral Image Classification
Abstract
:1. Introduction
- This paper presents a neighbour selection method for sensing the spatial structure of local pixels. In this way, more pixels belonging to the same class can be selected. Therefore, the obtained representation is expected to well characterize the given class to which the pixel being processed belongs;
- This paper proposes a spatial perception correntropy matrix (SPCM) for feature representation. A larger proportion of similar pixels can improve the feature representation effect of the correntropy matrix. The experimental results obtained using three publicly available hyperspectral data sets indicate that the proposed HSI classification method can extract more discriminative spectral-spatial features without using a large amount of training data.
2. Spatial Perception Correntropy Matrix
2.1. Spatial Perception of Window
2.2. Construction of Correntropy Matrix
3. HSI Classification Based on SPCM
Algorithm 1: SPCM. |
4. Experimental Results
4.1. HSI Data Sets
- Pavia University: The first image is Pavia University, often used in HSI classification. The data were obtained by ROSIS sensors in Pavia, Italy. After processing, the size of the dataset is 610 × 340 × 103. The dataset contains 9 categories with 42,776 labelled pixels. The detailed information is tabulated in Figure 5.
- Kennedy Space Center: The second set of data comes from the Kennedy Space Center. It was collected on 23 March 1996, NASA AVIRIS (AVIRIS) at the Kennedy Space Center (KSC). A total of 176 bands were used in this experiment because of their absorptive capacity and low signal-to-noise ratio. There are 13 kinds of land covers, containing 5211 labelled pixels. The detailed information is tabulated in Figure 5.
- Botswana: The last dataset is Botswana. Between 2001 and 2004, NASA’s EO-1 satellite collected a set of data in the Okavango Delta in Botswana. On the EO-1, the Hyperion sensor can get 30-m pixels over a 7.7-km strip, and within a 10-nm window, 242 wavelengths in the 400–2500 nm band. The bands without calibration and noise are removed, and the remaining 145 bands are used for HSI classification. The detailed information is tabulated in Figure 5.
4.2. Parameters Setting
4.3. Performance Evaluation
4.3.1. Experiments with the Pavia University Data Set
4.3.2. Experiments with the KSC Data Set
4.3.3. Experiments with the Botswana Data Set
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wan, S.; Gong, C.; Zhong, P.; Du, B.; Zhang, L.; Yang, J. Multi-scale Dynamic Graph Convolutional Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 58, 3162–3177. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Benediktsson, J.A. Deep Learning for Hyperspectral Image Classification: An Overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef] [Green Version]
- Jia, S.; Jiang, S.; Lin, Z.; Li, N.; Yu, S. A Survey: Deep Learning for Hyperspectral Image Classification with Few Labeled Samples. Neurocomputing 2021, 448, 179–204. [Google Scholar] [CrossRef]
- Teke, M.; Deveci, H.S.; Haliloğlu, O.; Gürbüz, S.; Sakarya, U. A short survey of hyperspectral remote sensing applications in agriculture. In Proceedings of the International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, 12–14 June 2013. [Google Scholar]
- Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral Remote Sensing Data Analysis and Future Challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [Google Scholar] [CrossRef] [Green Version]
- Uzkent, B.; Rangnekar, A.; Hoffman, M.J. Aerial Vehicle Tracking by Adaptive Fusion of Hyperspectral Likelihood Maps; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Pan, B.; Shi, Z.; Xu, X. MugNet: Deep learning for hyperspectral image classification using limited samples. ISPRS J. Photogramm. Remote Sens. 2017, 145, 108–119. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, J.; Wang, Z.; Chen, C.; Liu, X. Hyperspectral Image Classification in the Presence of Noisy Labels. IEEE Trans. Geosci. Remote Sens. 2019, 57, 851–865. [Google Scholar] [CrossRef] [Green Version]
- Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm. Remote Sens. 2019, 158, 279–317. [Google Scholar] [CrossRef]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Zhang, L. An Adaptive Artificial Immune Network for Supervised Classification of Multi-/Hyperspectral Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2012, 50, 894–909. [Google Scholar] [CrossRef]
- Li, J.; Bioucas-Dias, J.M.; Plaza, A. Semisupervised Hyperspectral Image Classification Using Soft Sparse Multinomial Logistic Regression. IEEE Geosci. Remote Sens. Lett. 2013, 10, 318–322. [Google Scholar]
- Licciardi, G.; Marpu, P.R.; Chanussot, J.; Benediktsson, J.A. Linear Versus Nonlinear PCA for the Classification of Hyperspectral Data Based on the Extended Morphological Profiles. IEEE Geosci. Remote Sens. Lett. 2012, 9, 447–451. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zheng, Y. Hyperspectral remote sensing image classification based on combined SVM and LDA. Proc. SPIE Int. Soc. Opt. Eng. 2014, 9263, 462–468. [Google Scholar]
- Hsieh, P.F.; Yang, M.H.; Yi-Jay, G.U.; Liang, Y.C. Classification-Oriented Locally Linear Embedding. Int. J. Pattern Recognit. Artif. Intell. 2010, 24, 737–762. [Google Scholar] [CrossRef]
- Villa, A.; Chanussot, J.; Jutten, C.; Benediktsson, J.A. On the use of ICA for hyperspectral image analysis. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009. [Google Scholar]
- Green, A.A.; Berman, M.; Switzer, P.; Craig, M. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Uddin, M.P.; Mamun, M.A.; Afjal, M.I.; Hossain, M.A. Information-theoretic feature selection with segmentation-based folded principal component analysis (PCA) for hyperspectral image classification. Int. J. Remote Sens. 2021, 42, 286–321. [Google Scholar] [CrossRef]
- Uddin, M.P.; Mamun, M.A.; Hossain, M.A. PCA-based Feature Reduction for Hyperspectral Remote Sensing Image Classification. IETE Tech. Rev. 2020, 38, 377–396. [Google Scholar] [CrossRef]
- Plaza, A.; Plaza, J.; Martin, G. Incorporation of spatial constraints into spectral mixture analysis of remotely sensed hyperspectral data. In Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing, Grenoble, France, 2–4 September 2009. [Google Scholar]
- Shenming, Q.; Xiang, L.; Zhihua, G. A new hyperspectral image classification method based on spatial-spectral features. Sci. Rep. 2022, 12, 1541. [Google Scholar] [CrossRef]
- Falco, N.; Benediktsson, J.A.; Bruzzone, L. Spectral and Spatial Classification of Hyperspectral Images Based on ICA and Reduced Morphological Attribute Profiles. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6223–6240. [Google Scholar] [CrossRef] [Green Version]
- Jia, S.; Shen, L.; Li, Q. Gabor Feature-Based Collaborative Representation for Hyperspectral Imagery Classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1118–1129. [Google Scholar]
- Li, W.; Chen, C.; Su, H.; Du, Q. Local Binary Patterns and Extreme Learning Machine for Hyperspectral Imagery Classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3681–3693. [Google Scholar] [CrossRef]
- Fang, L.; Li, S.; Duan, W.; Ren, J.; Benediktsson, J.A. Classification of hyperspectral images by exploiting spectral-spatial information of superpixel via multiple kernels. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6663–6674. [Google Scholar] [CrossRef] [Green Version]
- Zhan, T.; Lu, Z.; Wan, M.; Yang, G. Multiscale Superpixel Kernel-Based Low-Rank Representation for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1642–1646. [Google Scholar] [CrossRef]
- Huang, H.; Duan, Y.; He, H.; Shi, G. Local Linear Spatial–Spectral Probabilistic Distribution for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1259–1272. [Google Scholar] [CrossRef]
- Kang, X.; Li, C.; Li, S.; Lin, H. Classification of Hyperspectral Images by Gabor Filtering Based Deep Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 11, 1166–1178. [Google Scholar] [CrossRef]
- Hang, R.; Liu, Q.; Hong, D.; Ghamisi, P. Cascaded Recurrent Neural Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5384–5394. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef] [Green Version]
- Zhong, P.; Gong, Z.; Li, S.; Schonlieb, C.B. Learning to Diversify Deep Belief Networks for Hyperspectral Image Classification. IEEE Trans. Geoence Remote Sens. 2017, 55, 3516–3530. [Google Scholar] [CrossRef]
- Liu, Q.; Xiao, L.; Yang, J.; Wei, Z. CNN-Enhanced Graph Convolutional Network With Pixel- and Superpixel-Level Feature Fusion for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 8657–8671. [Google Scholar] [CrossRef]
- Yang, X.; Ye, Y.; Li, X.; Lau, R.; Huang, X. Hyperspectral Image Classification With Deep Learning Models. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5408–5423. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Generative Adversarial Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5046–5063. [Google Scholar]
- Mou, L.; Ghamisi, P.; Zhu, X.X. Deep Recurrent Neural Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3639–3655. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Xie, J.; Chen, S.; Zhu, L. Generating labeled samples for hyperspectral image classification using correlation of spectral bands. Front. Comput. Sci. 2016, 10, 292–301. [Google Scholar] [CrossRef]
- Fang, L.; He, N.; Li, S.; Plaza, A.J.; Plaza, J. A New Spatial–Spectral Feature Extraction Method for Hyperspectral Images Using Local Covariance Matrix Representation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3534–3546. [Google Scholar] [CrossRef]
- Liu, W.; Pokharel, P.P.; Principe, J.C. Correntropy: Properties and Applications in Non-Gaussian Signal Processing. IEEE Trans. Signal Process. 2007, 55, 5286–5298. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, Y.; Cao, W.; Yao, H.; Peng, J.; Zhou, Y. Local Correntropy Matrix Representation for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Arsigny, V.; Fillard, P.; Pennec, X.; Ayache, N. Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices. Siam J. Matrix Anal. Appl. 2011, 29, 328–347. [Google Scholar] [CrossRef] [Green Version]
- Davis, L.S. Covariance discriminative learning: A natural and efficient approach to image set classification. In Proceedings of the Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012. [Google Scholar]
- Xu, Y.; Du, B.; Zhang, F.; Zhang, L. Hyperspectral image classification via a random patches network. ISPRS J. Photogramm. Remote Sens. 2018, 142, 344–357. [Google Scholar] [CrossRef]
- Pu, H.; Chen, Z.; Wang, B.; Jiang, G. A Novel Spatial–Spectral Similarity Measure for Dimensionality Reduction and Classification of Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7008–7022. [Google Scholar]
No. | LCMR | SCMK | CEGCN | RPNet | LCEM | SPCM |
---|---|---|---|---|---|---|
1 | 75.54 | 88.09 | 96.93 | 85.58 | 87.69 | 88.41 |
2 | 75.48 | 83.91 | 97.06 | 95.79 | 95.13 | 93.15 |
3 | 64.41 | 64.50 | 85.72 | 59.99 | 71.82 | 67.72 |
4 | 95.58 | 82.96 | 67.12 | 45.25 | 85.98 | 87.12 |
5 | 92.47 | 96.53 | 100.00 | 12.05 | 91.74 | 99.78 |
6 | 77.50 | 63.02 | 65.61 | 42.85 | 93.32 | 95.53 |
7 | 88.83 | 84.62 | 59.59 | 7.90 | 92.81 | 97.45 |
8 | 71.77 | 77.16 | 53.64 | 75.86 | 63.62 | 75.75 |
9 | 91.70 | 70.73 | 65.09 | 24.95 | 48.17 | 49.70 |
OA | 77.61 | 80.63 | 85.13 | 73.96 | 88.04 | 90.97 |
AA | 81.47 | 79.06 | 76.75 | 50.02 | 81.14 | 83.82 |
Kappa | 71.48 | 74.63 | 79.89 | 62.78 | 84.20 | 86.97 |
No. | LCMR | SCMK | CEGCN | RPNet | LCEM | SPCM |
---|---|---|---|---|---|---|
1 | 92.69 | 86.97 | 99.53 | 85.13 | 97.33 | 94.65 |
2 | 91.51 | 73.79 | 70.46 | 63.07 | 80.88 | 88.46 |
3 | 92.39 | 84.35 | 87.08 | 94.07 | 82.53 | 87.55 |
4 | 85.95 | 59.08 | 27.05 | 38.15 | 78.31 | 82.97 |
5 | 90.19 | 53.33 | 57.07 | 68.55 | 81.76 | 78.49 |
6 | 91.38 | 67.88 | 79.83 | 43.17 | 78.14 | 92.35 |
7 | 95.20 | 88.64 | 75.50 | 29.81 | 92.23 | 98.35 |
8 | 87.72 | 81.24 | 80.45 | 82.67 | 95.26 | 91.46 |
9 | 92.89 | 90.49 | 90.95 | 89.32 | 98.00 | 97.39 |
10 | 99.70 | 83.33 | 92.99 | 64.00 | 98.25 | 97.02 |
11 | 92.03 | 94.25 | 95.08 | 81.69 | 94.25 | 91.88 |
12 | 94.74 | 87.77 | 68.81 | 98.80 | 98.77 | 97.85 |
13 | 100.00 | 99.60 | 100.00 | 99.46 | 100.00 | 100.00 |
OA | 93.13 | 85.54 | 85.25 | 80.97 | 93.83 | 94.51 |
AA | 91.79 | 80.82 | 79.11 | 72.14 | 90.44 | 92.34 |
Kappa | 92.12 | 83.91 | 83.47 | 78.78 | 93.12 | 94.89 |
No. | LCMR | SCMK | CEGCN | RPNet | LCEM | SPCM |
---|---|---|---|---|---|---|
1 | 95.02 | 86.39 | 100.00 | 61.80 | 94.01 | 99.79 |
2 | 84.55 | 55.29 | 76.28 | 21.00 | 87.47 | 100.00 |
3 | 28.60 | 88.55 | 100.00 | 61.69 | 73.15 | 79.26 |
4 | 96.29 | 77.55 | 75.23 | 29.58 | 74.25 | 98.17 |
5 | 72.66 | 83.38 | 29.05 | 84.59 | 76.62 | 82.79 |
6 | 71.57 | 67.78 | 56.65 | 62.03 | 57.37 | 69.30 |
7 | 84.90 | 89.73 | 100.00 | 100.00 | 77.30 | 88.80 |
8 | 61.99 | 84.85 | 71.50 | 70.65 | 77.25 | 80.17 |
9 | 95.95 | 89.84 | 94.38 | 87.46 | 88.35 | 79.18 |
10 | 99.59 | 85.88 | 56.55 | 99.19 | 75.27 | 78.96 |
11 | 88.31 | 86.88 | 100.00 | 72.19 | 86.01 | 87.45 |
12 | 32.89 | 87.21 | 85.87 | 93.30 | 53.69 | 59.96 |
13 | 85.49 | 78.04 | 89.27 | 83.77 | 89.13 | 92.33 |
14 | 31.49 | 75.11 | 89.24 | 12.77 | 44.47 | 60.52 |
OA | 76.62 | 80.56 | 80.47 | 72.34 | 77.20 | 83.53 |
AA | 73.52 | 81.18 | 80.29 | 67.14 | 75.31 | 82.68 |
Kappa | 74.63 | 79.45 | 78.82 | 69.95 | 75.24 | 82.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Cao, W.; Wei, Y. Spatial Perception Correntropy Matrix for Hyperspectral Image Classification. Appl. Sci. 2022, 12, 6797. https://doi.org/10.3390/app12136797
Zhang G, Cao W, Wei Y. Spatial Perception Correntropy Matrix for Hyperspectral Image Classification. Applied Sciences. 2022; 12(13):6797. https://doi.org/10.3390/app12136797
Chicago/Turabian StyleZhang, Guochao, Weijia Cao, and Yantao Wei. 2022. "Spatial Perception Correntropy Matrix for Hyperspectral Image Classification" Applied Sciences 12, no. 13: 6797. https://doi.org/10.3390/app12136797
APA StyleZhang, G., Cao, W., & Wei, Y. (2022). Spatial Perception Correntropy Matrix for Hyperspectral Image Classification. Applied Sciences, 12(13), 6797. https://doi.org/10.3390/app12136797