
Citation: Ruiz, M.; Nieto, J.; Costa, V.;

Craciunescu, T.; Peluso, E.; Vega, J.;

Murari, A.; JET Contributors.

Acceleration of an Algorithm Based

on the Maximum Likelihood

Bolometric Tomography for the

Determination of Uncertainties in the

Radiation Emission on JET Using

Heterogeneous Platforms. Appl. Sci.

2022, 12, 6798. https://doi.org/

10.3390/app12136798

Academic Editor: Giuseppe

Marco Tina

Received: 5 June 2022

Accepted: 30 June 2022

Published: 5 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Acceleration of an Algorithm Based on the Maximum
Likelihood Bolometric Tomography for the Determination of
Uncertainties in the Radiation Emission on JET Using
Heterogeneous Platforms
Mariano Ruiz 1,* , Julián Nieto 1 , Víctor Costa 1 , Teddy Craciunescu 2 , Emmanuele Peluso 3 , Jesús Vega 4 ,
Andrea Murari 5 and JET Contributors †

1 Instrumentation and Applied Acoustic Research Group, Universidad Politécnica de Madrid,
28031 Madrid, Spain; julian.nieto.valhondo@upm.es (J.N.); victor.costa.perez@upm.es (V.C.)

2 National Institute for Laser, Plasma and Radiation Physics, Magurele, 077125 Bucharest, Romania;
c.teddy@ifa-mg.ro

3 Department of Industrial Engineering, University of Rome ‘Tor Vergata’, Via del Politecnico 1,
00133 Rome, Italy; emmanuele.peluso@uniroma2.it

4 Laboratorio Nacional de Fusión, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain; jesus.vega@ciemat.es
5 Consorzio RFX (CNR, ENEA, INFN, Universita’ di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4,

35127 Padova, Italy; andrea.murari@istp.cnr.it
* Correspondence: mariano.ruiz@upm.es
† JET Contributors are listed in the Acknowledgements.

Abstract: In recent years, a new tomographic inversion method based on the Maximum Likelihood
(ML) approach has been adapted to JET bolometry. Apart from its accuracy and reliability, the
key advantage is its ability to provide reliable estimates of the uncertainties in the reconstructions.
The original algorithm was implemented and validated using the MATLAB software tool. This
work presents the accelerated version of the algorithm implemented using a compatible ITER fast
controller platform with the Ubuntu 18.04 or the ITER Codac Core System distributions (6.1.2). The
algorithm has been implemented in C++ using the open-source libraries: ArrayFire, ALGLIB, and
MATIO. These libraries simplify the management of specific hardware accelerators such as GPUs and
increase performance. The speed-up factor obtained is approximately 10 times. The work presents the
methodology followed, the results obtained, and the advantages and drawbacks of implementation.

Keywords: heterogeneous applications; MATLAB; ArrayFire; GPUs; C++ maximum likelihood;
bolometry

1. Introduction

In Tokamaks, the measurement of the total emission of radiation and the reconstruction
of the internal and local emissivity profiles is very important for the interpretation of
Tokamak performance and for the design of experiments [1]. The reconstruction of the
plasma radiation offers important information about the power exhaust and divertor
detachment. In the case of a metallic first wall, the transport of heavy impurities, which
may have a strong impact on the machine performance, can be identified by means of the
radiation patterns. Important information related to instabilities that could potentially
trigger disruptions can also be derived.

Bolometry is the diagnostic typically used for measuring radiation emission. On JET,
this diagnostic is based on metal foil absorbers, which integrate the radiation emitted along
a set of lines-of-sight (LOS) [2,3]. They allow a horizontal and a vertical view across the
poloidal cross-section of the plasma, with an increased spatial resolution in the divertor
area (Figure 1). This geometry allows tomographic reconstruction, but the mathematical

Appl. Sci. 2022, 12, 6798. https://doi.org/10.3390/app12136798 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12136798
https://doi.org/10.3390/app12136798
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1337-0110
https://orcid.org/0000-0003-3315-7445
https://orcid.org/0000-0003-2994-8420
https://orcid.org/0000-0002-0012-4260
https://orcid.org/0000-0002-6829-2180
https://orcid.org/0000-0002-1622-3984
https://orcid.org/0000-0002-3932-3865
https://doi.org/10.3390/app12136798
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12136798?type=check_update&version=2

Appl. Sci. 2022, 12, 6798 2 of 14

problem is an ill-posed one due to the limited number of views. Various tomographic
methods have been proposed. Ingesson et al. [4] introduced a constrained optimization
(ICO) method. ICO uses anisotropic smoothness on flux surfaces as an objective function
and measurements as constraints. The reconstruction problem is discretized using a
grid of pyramid local basis functions. ICO has been used in JET for more than two
decades for various studies. It represents a landmark in what concerns the quality of
reconstructions. The minimization of the Fisher information of the unknown 2D distribution
has also been used to derive a bolometry reconstruction algorithm [5]. The Maximum
likelihood (ML) bolometry implements a nonlinear iterative algorithm for estimating the
emissivity distribution that is most consistent with the measured data, in the sense that,
among the variety of all possible emissivity distributions, the algorithm chooses the one
which maximizes the probability of obtaining the given experimental data set [6]. The
ML algorithm also includes an iteratively smoothing procedure, based on the magnetic
surfaces, either on closed or on open ones, given by the plasma equilibrium code used at
JET. The ML method’s key feature is its ability to routinely provide the confidence intervals.
Comprehensive studies regarding the uncertainties in bolometric tomography on JET have
been reported [7,8]. The proper assessment of the uncertainties is an important aspect of
investigating high radiative discharges on JET with the ITER Like Wall [9]. Based on deep
neural networks (DNN), a different conceptual approach has been proposed [10,11]. The
network was trained using a database of reconstructions provided by the ICO method.
Therefore, DNN generalizes the knowledge accumulated by using the ICO. The method
can provide very fast reconstructions.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 13

Figure 1. Schematic view of JET bolometric diagnostic layout.

The code used in [6] is implemented in MATLAB, taking input data from the JET
database formatted and organized accordingly. The execution time needed by MATLAB
in the hardware platform used for the evaluation requires around 63 s, but the target exe-
cution time to obtain a real-time performance is 25 ms. Reducing the execution time im-
plies that acceleration techniques are essential to approaching real-time performance.

2. Materials and Methods
The data used for the reconstruction were obtained from the bolometer diagnostic

configuration and specific pulses of the JET database. These are:
• The magnetic surfaces, the first wall, and the last closed surface (or separatrix) carte-

sian coordinates.
• The time traces of a few related quantities such as the radial position of the magnetic

axis and the vertical position of the so-called X-point.
• The data array obtained from JET bolometers that are averaged depending on the

phenomenon to analyze, typically with a time window of 25 ms around the time in-
stance of interest.
Once the algorithm is executed, among the outputs obtained, the back-calculated

projections and the tomographic images can be listed.

2.1. MATLAB Algorithm
The implemented MATLAB algorithm can be split into three different steps. Firstly,

the data are obtained and organized in different matrices. Secondly, several iterations con-
figured by the user allow different quantities to be obtained, mainly the image of the emis-
sivity distribution, the uncertainty one, the back-calculated projections, and the estimates
of the radiated power in different locations of the main vessel. Figures 2–4 show the evo-
lution of the reconstructed emissivity distribution, the related uncertainty, and the com-
parison between back-calculated and measured projections in subsequent iterations for
the exemplificative JET pulse #85423 at 58.875 s.

Figure 1. Schematic view of JET bolometric diagnostic layout.

Appl. Sci. 2022, 12, 6798 3 of 14

In ASDEX, the routine radiated power computation relies on the code first developed
in 1993 [12]. This code is based on a Tikhonov regularization scheme, which includes an
anisotropic diffusion term that imposes smoothness on the flux surfaces and allows steeper
gradients in the normal direction. Recently, the method has been improved by using a
refined evaluation of the tomographic projection matrix which takes into account the full
3D field of view of each channel [13]. A new algorithm to improve the computation of total
and local radiated power was recently developed [14].

A version of the constraint optimization approach, based on the error between the
measured tomographic projections and backprojection and the smoothing function, is
presented in this work [15].

Significant effort has been spent to achieve good-quality reconstruction with scarce to-
mographic geometries determined by the limited availability of location to install detectors
(usually confined to ports of the vacuum vessel). The development of various techniques
incorporating a priori information (mainly related to the magnetic configuration) played
an essential role in ensuring a good spatial resolution. The temporal resolution that can
be achieved in bolometry is suitable for studying rapid emissivity evolution. Bolometry
became an increasingly requested diagnostic during experimentation, and, therefore, an
increased amount of data should be processed. Therefore, the demand for high-speed com-
putational methods is increasing quickly. The method based on neural networks represents
a good solution for machines where a solid reconstruction database has been accumu-
lated (by using a traditional approach, e.g., ICO on JET). However, for new machines, the
implementation of very fast or even real-time algorithms is still at the beginning.

The code used in [6] is implemented in MATLAB, taking input data from the JET
database formatted and organized accordingly. The execution time needed by MATLAB in
the hardware platform used for the evaluation requires around 63 s, but the target execution
time to obtain a real-time performance is 25 ms. Reducing the execution time implies that
acceleration techniques are essential to approaching real-time performance.

2. Materials and Methods

The data used for the reconstruction were obtained from the bolometer diagnostic
configuration and specific pulses of the JET database. These are:

• The magnetic surfaces, the first wall, and the last closed surface (or separatrix) carte-
sian coordinates.

• The time traces of a few related quantities such as the radial position of the magnetic
axis and the vertical position of the so-called X-point.

• The data array obtained from JET bolometers that are averaged depending on the
phenomenon to analyze, typically with a time window of 25 ms around the time
instance of interest.

Once the algorithm is executed, among the outputs obtained, the back-calculated
projections and the tomographic images can be listed.

2.1. MATLAB Algorithm

The implemented MATLAB algorithm can be split into three different steps. Firstly,
the data are obtained and organized in different matrices. Secondly, several iterations
configured by the user allow different quantities to be obtained, mainly the image of
the emissivity distribution, the uncertainty one, the back-calculated projections, and the
estimates of the radiated power in different locations of the main vessel. Figures 2–4 show
the evolution of the reconstructed emissivity distribution, the related uncertainty, and the
comparison between back-calculated and measured projections in subsequent iterations for
the exemplificative JET pulse #85423 at 58.875 s.

Appl. Sci. 2022, 12, 6798 4 of 14Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 13

Figure 2. Evolution of the reconstruction ML (MATLAB) for iterations 1 (a), 2 (b), and 14 (c).

Figure 3. Evolution of the reconstruction uncertainty estimation process (MATLAB) for iterations 2
(a), 3 (b), and 4 (c).

Figure 4. Measured (in red) and back-calculated projections (in blue) for iterations 1 (a), 2 (b), and
15 (c).

Figure 2. Evolution of the reconstruction ML (MATLAB) for iterations 1 (a), 2 (b), and 14 (c).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 13

Figure 2. Evolution of the reconstruction ML (MATLAB) for iterations 1 (a), 2 (b), and 14 (c).

Figure 3. Evolution of the reconstruction uncertainty estimation process (MATLAB) for iterations 2
(a), 3 (b), and 4 (c).

Figure 4. Measured (in red) and back-calculated projections (in blue) for iterations 1 (a), 2 (b), and
15 (c).

Figure 3. Evolution of the reconstruction uncertainty estimation process (MATLAB) for iterations
2 (a), 3 (b), and 4 (c).

1

Figure 4. Measured (in red) and back-calculated projections (in blue) for iterations 1 (a), 2 (b), and
15 (c).

Finally, the main results are gathered and prepared to display the main information
results after the number of iterations are executed. These are the final emissivity distribution

Appl. Sci. 2022, 12, 6798 5 of 14

(Figure 5), its associated uncertainty (Figure 6), the radiation profile (Figure 7), and the
reconstructed projections, as well as the estimates of the radiated powers in a different
location outside of the main chamber, such as the total radiated power, the core one, i.e., the
radiated power inside the Last Closed Surface (LCFS), the one below the Xpoint position,
and the radiated power in the Scrape-Off Layer (SOL).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 13

Finally, the main results are gathered and prepared to display the main information
results after the number of iterations are executed. These are the final emissivity distribu-
tion (Figure 5), its associated uncertainty (Figure 6), the radiation profile (Figure 7), and
the reconstructed projections, as well as the estimates of the radiated powers in a different
location outside of the main chamber, such as the total radiated power, the core one, i.e.,
the radiated power inside the Last Closed Surface (LCFS), the one below the Xpoint posi-
tion, and the radiated power in the Scrape-Off Layer (SOL).

Figure 5. Final reconstruction.

Figure 6. Final reconstruction uncertainty estimation.

Figure 5. Final reconstruction.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 13

Finally, the main results are gathered and prepared to display the main information
results after the number of iterations are executed. These are the final emissivity distribu-
tion (Figure 5), its associated uncertainty (Figure 6), the radiation profile (Figure 7), and
the reconstructed projections, as well as the estimates of the radiated powers in a different
location outside of the main chamber, such as the total radiated power, the core one, i.e.,
the radiated power inside the Last Closed Surface (LCFS), the one below the Xpoint posi-
tion, and the radiated power in the Scrape-Off Layer (SOL).

Figure 5. Final reconstruction.

Figure 6. Final reconstruction uncertainty estimation. Figure 6. Final reconstruction uncertainty estimation.

Appl. Sci. 2022, 12, 6798 6 of 14

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 13

Figure 7. Final radiation profile as a function of the flux function 𝜓 ∈ ሾ0,1ሿ.
2.2. Analysis of the Different Alternatives

Off-line analysis of data using software tools such as MATLAB and programming
languages such as Python are widespread in the scientific community [16]. Nevertheless,
an alternative programming and deployment alternative must be used when a reduced
execution time is needed to implement the algorithm in a real-time experiment (for exam-
ple, in a nuclear fusion-related diagnostic) [17]. In addition, the use of graphical pro-
cessing units (GPUs) has emerged as a powerful solution for massive data processing,
especially in image processing with 1D or 2D detectors and cameras [18,19].

There are two different actions intended to reduce algorithm execution time. Firstly,
the algorithm’s steps must be identified, and secondly, the optimization options need to
be evaluated. The methodology used to accelerate the algorithm execution follows these
steps:
• MATLAB code analysis, which has an extension of approximately 2500 lines. This

code uses high-level functions from MATLAB’s toolboxes that solve curve fitting, 1D
and 2D interpolations, and median and Gaussian image filtering. Unfortunately,
from most parts of these functions, MathWorks does not provide the source code,
complicating the implementation of the final solution.

• The code profiling analysis with the specific MATLAB tool to identify the time
needed to execute the different algorithm phases. The algorithm is based on execut-
ing several configurable iterations, and the execution time depends on this.

• The analysis of the different options to shorten the execution time of the different
code sections according to two different scenarios:
a. Use of MATLAB:

 Use of MATLAB Executable Files (MEX);
 Use of parallel computing toolbox;
 Use of MATLAB-optimized libraries;
 Using GPUs in MATLAB (not all functions support GPU acceleration, and

using GPU arrays in MATLAB is not efficient if the arrays are small).
b. Use of other programming languages, rewriting the code in C++ with the help

of optimized libraries for heterogeneous platforms:
 CPU: ArrayFire, ALGLIB, libigl, armadillo, Intel MKL, IPP;
 GPU: ArrayFire, CUDA (NVCC compiler, cuBLAS libraries, etc.);
 FPGA: Use of IntelFPGA/XILINX acceleration techniques.

P
ra

d[M
W

]

Figure 7. Final radiation profile as a function of the flux function ψ ∈ [0, 1].

2.2. Analysis of the Different Alternatives

Off-line analysis of data using software tools such as MATLAB and programming
languages such as Python are widespread in the scientific community [16]. Nevertheless,
an alternative programming and deployment alternative must be used when a reduced
execution time is needed to implement the algorithm in a real-time experiment (for example,
in a nuclear fusion-related diagnostic) [17]. In addition, the use of graphical processing
units (GPUs) has emerged as a powerful solution for massive data processing, especially in
image processing with 1D or 2D detectors and cameras [18,19].

There are two different actions intended to reduce algorithm execution time. Firstly,
the algorithm’s steps must be identified, and secondly, the optimization options need to be
evaluated. The methodology used to accelerate the algorithm execution follows these steps:

• MATLAB code analysis, which has an extension of approximately 2500 lines. This code
uses high-level functions from MATLAB’s toolboxes that solve curve fitting, 1D and
2D interpolations, and median and Gaussian image filtering. Unfortunately, from most
parts of these functions, MathWorks does not provide the source code, complicating
the implementation of the final solution.

• The code profiling analysis with the specific MATLAB tool to identify the time needed
to execute the different algorithm phases. The algorithm is based on executing several
configurable iterations, and the execution time depends on this.

• The analysis of the different options to shorten the execution time of the different code
sections according to two different scenarios:

a. Use of MATLAB:

� Use of MATLAB Executable Files (MEX);
� Use of parallel computing toolbox;
� Use of MATLAB-optimized libraries;
� Using GPUs in MATLAB (not all functions support GPU acceleration,

and using GPU arrays in MATLAB is not efficient if the arrays are small).

b. Use of other programming languages, rewriting the code in C++ with the help
of optimized libraries for heterogeneous platforms:

� CPU: ArrayFire, ALGLIB, libigl, armadillo, Intel MKL, IPP;
� GPU: ArrayFire, CUDA (NVCC compiler, cuBLAS libraries, etc.);

Appl. Sci. 2022, 12, 6798 7 of 14

� FPGA: Use of IntelFPGA/XILINX acceleration techniques.

• Identification and selection of the most suitable hardware platform to accelerate a
specific portion of the algorithm. Due to some functions’ complexity, the most suitable
hardware is considered to be a heterogeneous solution using an Intel multicore CPU
and an NVIDIA GPU.

• Selection of the software to be used for the implementation considered criteria such as
being Open Source, the best performance for CPU or GPU, and the possibility of using
different programming languages.

Upon all these criteria, after a deep analysis, the solution was implemented by building
a C++ application using the ArrayFire [20], ALGLIB [21], and MATIO [22] libraries, running
in a commercial off-the-shelf (COTS) industrial computer with an Intel® CoreTM i9 10980XE
CPU @ 3 GHz, 128 GiB of RAM, and an NVIDIA RTX2080 SUPER GPU. The operating
systems used for the development and testing were: Ubuntu 18.04 LTS and a REDHAT 7.4
with the ITER CODAC Core System version 6.3 installed.

The basic description of the libraries selected is explained in the following paragraphs.

2.2.1. ArrayFire

ArrayFire is an open-source library available for different programming languages
such a C++, Python, and Rust. It has been developed to develop general-purpose solutions
using GPGPU, widely used in high-performance computing, HPC [23,24]. ArrayFire has an
API developed to simplify the development of applications that can be executed indistinctly
in a CPU and/or one or multiple GPUs. GPU programming is hidden from the user, and,
therefore, the learning curve is smoothed. ArrayFire follows the idea of “Code once, run
anywhere,” allowing code reuse. GPU programming can be deployed using CUDA (when
supported) or OpenCL. ArrayFire focuses on developing specific array elements called
ArrayFire arrays that are implemented in a different way than traditional arrays in C++
or Python. The ArrayFire API manages these array objects, which can be defined up to
4 dimensions of different types: single and double floating, booleans and integers, and
complex numbers.

2.2.2. ALGLIB—C++/C# Numerical Analysis Library

ALGLIB is a numeric library focused on solving general numerical problems. It can
be used with different programming languages such as C++, C#, and Delphi. It offers
a great variety of functions for different science fields. In this specific application, it is
required to interpolate the 2D data arrays that can or cannot be equally spaced (non-
uniformly distributed). The development of the function implementing the equivalent to
griddata requires the use of ALGLIB 2D interpolation functions for sparse/non-uniform
data. For the fitting part, the least square solver function is used, for which two options
are available: BlockLLS or FastDDDM. The FastDDDM option was chosen to achieve the
best possible performance. However, the configuration parameters used do not correspond
to the equivalent MATLAB “griddata” function, so there is a slight deviation from the
original code.

2.2.3. MATIO

This library allows MATLAB files to be read and written. In addition, this library
loads the source data (taken in the bolometry diagnostic) obtained from the JET database
in the C++ application.

2.3. Profiling of MATLAB Code

The execution time of the original MATLAB-implemented algorithm was measured for
the main functions and sections of the code using the MATLAB profiler. The most relevant
execution times are displayed in Table 1. These times are obtained with 15 iterations. The
total execution time for these iterations is around 63 s, which is fine for off-line processing
but is very far from a real-time approach.

Appl. Sci. 2022, 12, 6798 8 of 14

Table 1. Execution times (in ms) obtained with the MATLAB profiler.

Function Time (ms) Time for 15 Iterations

Initialization for smoothing on the open
magnetic curves 3183.0 n/a

Load projections 3.0 n/a
Load geometry 165.0 n/a
Backprojections 10.0 n/a

Uncertainty preparations 20.0 n/a
Projection lines approach loop 2560.0 38,400.0

Smooth the closed and open surfaces 160.0 2400.0
Smooth LCF inside and outside 326.8 4902.0

Evaluation of emissivity 1.8 27.0
Uncertainty estimation 1363.5 5454.0

Evaluation of the reconstruction projection
at iteration ith 42.0 630.0

Final projections 1.2 n/a
Compute profile radiation and noise 7624.0 n/a

TOTAL 15,460.3 62,819.2

2.4. Development of the C++ Application and ArrayFire Optimization Techniques

ArrayFire provides a complete API that solves the most common functionalities im-
plemented with MATLAB language. Therefore, it can be considered that porting MATLAB
to C++ using ArrayFire API is relatively straightforward, and some parts of the code are
even equivalent line by line. Nevertheless, ArrayFire does not include some powerful func-
tions available in MATLAB. For example, the function “griddata” allows different types
of interpolations using uniform and not-uniform input data distribution. This function in
MATLAB has some parts of the internal code visible to the user, but other parts are not
available, making it impossible to reproduce its calculations. While ArrayFire version 3.8.0
includes a function for interpolation, it expects that input data will be uniformly organized.
To solve this problem, we chose the open-source library ALGLIB, which provides a set of
functions for 2D interpolation that can be used to circumvent the problem. The translation
from MATLAB to C++ followed the rule of performing precisely the same calculations in
the different algorithm steps. Nonetheless, due to the use of functions such as griddata,
which does not have a straightforward translation, the results are not precisely the same.

Once the conversion is completed, the code is optimized to improve execution time,
maximizing parallelism and code execution in the GPU. The techniques applied are ex-
plained in the following paragraphs.

(a) Vectorization
The main technique to improve the execution time is the use of vectors. The objec-

tive is to execute the same operations in the different elements in a matrix. Of course,
dependency between elements must not exist for vectorization to be a viable solution. One
example of the application of this technique is the implementation using ArrayFire arrays
of the following piece of code (see function projection_bolo) extracted from the “original”
MATLAB code. In this case, pix(i,j,k) is the Projection matrix elements, which describes the
geometrical contribution of each measurement to a certain pixel in the image. Rec1 is the
reconstruction at the current iteration. The final result Prj represents the backprojection. In
MATLAB this is implemented using loops and an if statement.

The exact equivalent code implemented in C++, with the help of ArrayFire, is pre-
sented below (see af:.array method projection_bolo). The first step is to obtain the portion
of “ppix” with the relevant data to be processed, “ppixSlices”. Then, the “rec1” 2D matrix
is converted to a 3D matrix (repeating the data in the third dimension), using the function
tile. Next, the two 3D matrices, “ppixSlices” and “rec1Sclices” are multiplied, which is
the equivalent of the “pix(i,j,k)*rec1(i,j)” operation, for all the iterations, in the MATLAB
code. The resulting 3D array is summed using ArrayFire’s function af::sum. This operation

Appl. Sci. 2022, 12, 6798 9 of 14

results in a 1D matrix which needs to have the dimensions rearranged, to match the results
from the original MATLAB code.

function [prj] = projections_bolo(no_rays, nrpct_o, nrpct_v, pix, rec1)
for k = 1:no_rays
if (k <= 24) || (k >= 33)
mysum = 0;
for i = 1:nrpct_v
for j = 1:nrpct_o
mysum = mysum + pix(i,j,k)*rec1(i,j);
end
end
prj(k) = mysum;
else
prj(k) = 0;
end
end

end

The code obtained is vectorized and ready to be executed in parallel in the multiple
processing units available in the GPU, a process which is managed by ArrayFire with
minimal user configuration. This notably improves the execution time of the function.

af::array projections_bolo(const std::int32_t &no_rays, const af::array &pix, const
af::array &rec1)

{
af::array prj = af::constant(0, no_rays, f64);

af::array kSlices = af::join(0, seq(24 - 1), seq(33 - 1, no_rays - 1));
af::array ppixSlices = pix(span, span, kSlices);
af::array rec1Slices = af::tile(rec1, 1, 1, kSlices.elements());
af::array aux = ppixSlices * rec1Slices;
aux = af::sum(af::sum(aux));
prj(kSlices) = af::reorder(aux, 2, 0, 1);

return prj;
}

(b) Just-In-Time execution
The Just-In-Time (JIT) execution [25] is a built-in compilation engine that performs a

run-time analysis for the most computing demanding arithmetic functions. This process
could be hidden from the user or it could be triggered by a specific function call that allows
the data to be evaluated in order to be optimized by the JIT-supported functions. The most
significant number of operations on arrays are grouped in the smallest possible number of
kernels (kernel = minimum processing unit on a GPU). In this way, the execution times of
the algorithm are significantly reduced, as the number of kernels is minimized to reduce
the overhead that arises when small data sets are processed, when an element is reused
multiple times (better cache performance), or the data kept in the GPU memory avoid
unnecessary transfers.

(c) Data transfer
An attempt has been made to reduce the number of memory transfers between GPU

and CPU to as few as possible to avoid memory transfers and, consequently, time con-
sumption. However, this has not been possible for all code sections and functions. As
aforementioned, ArrayFire does not currently provide an equivalent MATLAB griddata
function supporting not-uniformly scattered data, so this solution uses the ALGLIB in-
terpolation library. This library performs the operations on the CPU, so it is necessary to
transfer the necessary matrices from the GPU memory to the CPU memory and then, after

Appl. Sci. 2022, 12, 6798 10 of 14

performing the necessary calculations, transfer the processed data back to the GPU for
later use. In addition, another part where data transfer from GPU to CPU is inevitable
is in the last stage of the algorithm where the data are transferred to write the necessary
output data.

3. Results

Once the C++ application is implemented, the code is optimized after different iter-
ations, checking to ensure that the results of the different algorithm’s steps are the same.
The applied techniques to vectorize the code and use a heterogeneous platform with a
CPU–GPU allow accelerating the original MATLAB by around 10 times (~×10). Table 2
shows the execution times for each step when 15 iterations are used as an input parameter.

Table 2. Execution times (in ms) obtained MATLAB vs. C++ application.

Function MATLAB for 15
Iterations (ms) C++ for 15 Iterations (ms) Gain (ms)

Initialization for
smoothing on the open

magnetic curves
3183.0 125.6 3057.4

Load projections 3.0 5.0 −2.0
Load geometry 165.0 103.3 61.7
Backprojections 10.0 0.6 9.5

Uncertainty preparations 20.0 0.5 19.5
Projection lines
approach loop 38,400.0 19.5 38,380.5

Smooth the closed and
open surfaces 2400.0 54.5 2345.6

Smooth LCF inside
and outside 4902.0 2703.5 2198.6

Evaluation of emissivity 27.0 3.3 23.7
Uncertainty estimation 5454.0 2953.1 2500.9

Evaluation of the
reconstruction projection

at iteration ith
630.0 12.8 617.3

Final projections 1.2 1.2 0.0
Compute profile

radiation and noise 7624.0 264 7360.0

TOTAL 62,819.2 6246.7 56,572.5

While most of the code and functions of the algorithm in MATLAB were translated
into C++ and optimized, others could not be translated directly. The reason is that there
is no information about the internal calculations of some of the functions in MATLAB.
This implies that the results obtained in both implementations are slightly different. These
differences are mainly evident in the implementation of the griddata function. For this
application, it has been used with the “bicubic splines” interpolation method, incorporated
in the FastDDM solver belonging to the ALGLIB library. Therefore, the differences between
the results with the MATLAB version are minor, but not negligible.

Figures 8 and 9 show the results when comparing the tomographic reconstructions
obtained in both versions of the algorithm and the absolute relative error of the projection
reconstruction. In the first, it can be seen that the error between the algorithms for the
projection reconstruction is less than 5%.

Appl. Sci. 2022, 12, 6798 11 of 14

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 13

Figures 8 and 9 show the results when comparing the tomographic reconstructions
obtained in both versions of the algorithm and the absolute relative error of the projection
reconstruction. In the first, it can be seen that the error between the algorithms for the
projection reconstruction is less than 5%.

Figure 8. Comparison of the projection reconstruction for 15 iterations between the original
MATLAB code and the C++ implementation.

Figure 9. Comparison between the final reconstruction (15 iterations) obtained using the original
MATLAB code and the C++ implementation, respectively.

Figure 8. Comparison of the projection reconstruction for 15 iterations between the original MATLAB
code and the C++ implementation.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 13

Figures 8 and 9 show the results when comparing the tomographic reconstructions
obtained in both versions of the algorithm and the absolute relative error of the projection
reconstruction. In the first, it can be seen that the error between the algorithms for the
projection reconstruction is less than 5%.

Figure 8. Comparison of the projection reconstruction for 15 iterations between the original
MATLAB code and the C++ implementation.

Figure 9. Comparison between the final reconstruction (15 iterations) obtained using the original
MATLAB code and the C++ implementation, respectively.

Figure 9. Comparison between the final reconstruction (15 iterations) obtained using the original
MATLAB code and the C++ implementation, respectively.

Appl. Sci. 2022, 12, 6798 12 of 14

4. Discussion

The initial goal was achieved by speeding up the algorithm’s execution by a factor of
ten (×10), porting a MATLAB application of ~6000 lines of code to an optimized standalone
C++ application of ~4000 lines of code. As can be expected, the execution times obtained do
not allow a real-time operation, but open the possibility of implementing other strategies
or solutions that could achieve it. For example, the possibility of examining which parts
of the code could be ported to other hardware platforms based on FPGA could also be
analyzed to improve the execution time of specific parts. This is a good approach providing
that software platforms are used that do not involve much effort in redoing all the code, as
would be the case with OpenCL [26]. Although the desired speed had not been achieved,
the speed-up obtained thanks to this first version is already approximately a factor of 10.
While it is not yet fast enough for a real-time application of the ITER experiment, this work
brings improved performance for the use of the code in inter-shot analysis on JET. Usually,
discharges follow at 30 min intervals, the first ~5–7 min comprises the discharge itself and
the data storage, the remaining interval of ~15 min for certain calculations, and ~5 min for
decisions, based on these calculations. Considering then that the main bottlenecks slowing
down the implementation have been identified, and that efforts are currently ongoing to
improve the main algorithm implementing the ML methodology, it is expected to reach the
objective of 25 ms per iteration in a future release.

All of the source code was generated with open-source libraries (no proprietary code
was used), allowing better traceability, updating, building from scratch, and reuse by the
scientific community. The testing platform is based on ITER CODAC Core System (RHEL)
or Ubuntu 18.04. The former is quite interesting because the solution can be executed in
an ITER Fast Controller platform. The selection of the ArrayFire library as the core of the
application is an excellent choice because the MATLAB data structures and functions can
be ported in a fairly direct way, requiring less effort than building the same application
with other programming environments.

Additionally, ArrayFire simplifies enormously the use of the GPU. Another outstand-
ing feature is the possibility of using a heterogeneous platform based on CPU and GPU,
which allows balancing or choosing the most suitable for the nature of a given algorithm.
Finally, it should be noted that the methodology followed can be applied to the develop-
ment of applications into more complex frameworks used in large-scale science facilities,
such as those corresponding to nuclear fusion.

Author Contributions: Methodology, validation and writing—review M.R., formal analysis and
writing—review J.N., software, validation and writing—review V.C., conceptualization T.C., con-
ceptualization E.P., investigation J.V., investigation A.M. All authors have read and agreed to the
published version of the manuscript.

Funding: Grants PID2019-108377RB-C33 and PID2019-108377RB-C31 funded by MCIN/AEI/10.130-
39/501100011033; Comunidad de Madrid grant number PEJ-2019-AI/TIC-14507. Euratom Research
and Training Programme (Grant Agreement No. 101052200—EUROfusion).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available upon
reasonable request from the authors.

Acknowledgments: JET Contributors: See the author list of “Overview of JET results for optimising
ITER operation” by J. Mailloux et al. to be published in the Nuclear Fusion Special Issue: Overview
and Summary Papers from the 28th Fusion Energy Conference (Nice, France, 10–15 May 2021). This
work was carried out within the framework of the EUROfusion Consortium, funded by the European
Union via the Euratom Research and Training Programme (Grant Agreement No. 101052200—
EUROfusion). Views and opinions expressed are, however, those of the author(s) only and do not
necessarily reflect those of the European Union or the European Commission. Neither the European
Union nor the European Commission can be held responsible for them.

Appl. Sci. 2022, 12, 6798 13 of 14

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wesson, J. Tokamaks, 4th ed.; Oxford University Press: Oxford, UK, 2011; ISBN 9780199592234.
2. Huber, A.; McCormick, K.; Andrew, P.; de Baar, M.R.; Beaumont, P.; Dalley, S.; Fink, J.; Fuchs, J.C.; Fullard, K.;

Fundamenski, W.; et al. Improved radiation measurements on JET–First results from an upgraded bolometer system.
J. Nucl. Mater. 2007, 363–365, 365–370. [CrossRef]

3. Huber, A.; McCormick, K.; Andrew, P.; Beaumont, P.; Dalley, S.; Fink, J.; Fuchs, J.C.; Fullard, K.; Fundamenski, W.;
Ingesson, L.C.; et al. Upgraded bolometer system on JET for improved radiation measurements. Fusion Eng. Des. 2007, 82,
1327–1334. [CrossRef]

4. Ingesson, L.C.; Alper, W.B.; Chen, H.; Edwards, A.W.; Fehmers, G.C.; Fuchs, J.C.; Giannella, R.; Gill, R.D.; Lauro-Taroni, L.;
Romanelli, M. Soft X ray tomography during ELMs and impurity injection in JET. Nucl. Fusion 1998, 38, 1675. [CrossRef]

5. Mlynar, J.; Craciunescu, T.; Ferreira, D.R.; Carvalho, P.; Ficker, O.; Grover, O.; Imrisek, M.; Svoboda, J. Current Research into
Applications of Tomography for Fusion Diagnostics. J. Fusion Energy 2019, 38, 458–466. [CrossRef]

6. Craciunescu, T.; Peluso, E.; Murari, A.; Gelfusa, M.; JET Contributors. Maximum likelihood bolometric tomography for the
determination of the uncertainties in the radiation emission on JET TOKAMAK. Rev. Sci. Instrum. 2018, 89, 053504. [CrossRef]
[PubMed]

7. Peluso, E.; Craciunescu, T.; Murari, A.; Carvalho, P.; Gelfusa, M. A comprehensive study of the uncertainties in bolometric
tomography on JET using the maximum likelihood method. Rev. Sci. Instrum. 2019, 90, 123502. [CrossRef] [PubMed]

8. Peluso, E.; Craciunescu, T.; Gelfusa, M.; Murari, A.; Carvalho, P.J.; Gaudio, P. On the effects of missing chords and systematic
errors on a new tomographic method for JET bolometry. Fusion Eng. Des. 2019, 146, 2124–2129. [CrossRef]

9. Murari, A.; Peluso, E.; Craciunescu, T.; Lowry, C.; Aleiferis, S.; Carvalho, P.; Gelfusa, M. Investigating the thermal stability of
highly radiative discharges on JET with a new tomographic method. Nucl. Fusion 2020, 60, 46030. [CrossRef]

10. Matos, F.A.; Ferreiraa, D.R.; Carvalho, P.J. Deep learning for plasma tomography using the bolometer system at JET. Fusion Eng.
Des. 2017, 114, 18–25. [CrossRef]

11. Ferreira, D.R.; Carvalhob, P.J.; Carvalho, I.S.; Stuart, C.; Lomas, P.J. Monitoring the plasma radiation profile with real-time
bolometer tomography at JET. Fusion Eng. Des. 2021, 164, 112179. [CrossRef]

12. Fuchs, J.; Neu, R.; Dux, R.; Fuchs, J.C.; Junker, W.; Kallenbach, A.; Mertens, V.; de PefiarHempel, S.; Schonmann, K.; ASDEX Up-
grade Team. Influence of the Carbon and the Oxygen Concentration on the Density Limit in ASDEX Upgrade ECA. In Proceedings
of the 21st EPS Conference Contribution, Montpellier, France, 27 June–1 July 1994; Volume 18B.

13. Carr, M.; Meakins, A.; Bernert, M.; David, P.; Giroud, C.; Harrison, J.; Henderson, S.; Lipschultz, B.; Reimold, F. Description of
complex viewing geometries of fusion tomography diagnostics by ray-tracing. Rev. Sci. Instrum. 2018, 89, 083506. [CrossRef]
[PubMed]

14. David, P.; Bernert, M.; Pütterich, T.; Fuchs, C.; Glöggler, S.; Eich, T. Optimization of the computation of total and local radiated
power at ASDEX Upgrade. Nucl. Fusion 2021, 61, 066025. [CrossRef]

15. Konoshima, S.; Leonard, A.W.; Ishijima, T.; Shimizu, K.; Kamata, I.; Meyer, W.H.; Sakurai, S.; Kubo, H.; Hosogane, N.; Tamai, H.
Tomographic reconstruction of bolometry for JT-60U diverted tokamak characterization. Plasma Phys. Control. Fusion 2001, 43, 959.
[CrossRef]

16. Blas, J.G.; Dolz, M.F.; Garcia, J.D.; Carretero, J.; Daducci, A.; Aleman, Y.; Canales-Rodriguez, E.J. Porting Matlab Applications to
High-Performance C++ Codes: CPU/GPU-Accelerated Spherical Deconvolution of Diffusion MRI Data. Lect. Notes Comput. Sci.
2016, 10048, 630–643.

17. Castro, R.; Romero, J.A.; Vega, J.; Nieto, J.; Ruiz, M.; Sanz, D.; Barrera, E.; de Arcas, G. Soft real-time EPICS extensions for fast
control: A case study applied to a TCV equilibrium algorithm. Fusion Eng. Des. 2014, 89, 638–643. [CrossRef]

18. Esquembri, S.; Nieto, J.; Carpeño, A.; Ruiz, M.; Astrain, M.; Costa, V.; de Garcia, A. Application of Heterogeneous Computing
Techniques for the Development of an Image-Based Hot Spot Detection System Using MTCA. IEEE Trans. Nucl. Sci. 2021, 68,
2151–2158. [CrossRef]

19. Esquembri, S.; Nieto, J.; Ruiz, M.; de Gracia, A.; de Arcas, G. Methodology for the implementation of real-time image processing
systems using FPGAs and GPUs and their integration in EPICS using Nominal Device. Fusion Eng. Des. 2018, 130, 26–31.
[CrossRef]

20. ArrayFire. Available online: https://arrayfire.com/ (accessed on 1 May 2022).
21. ALGLIB. Available online: https://www.alglib.net/ (accessed on 1 May 2022).
22. MATIO. Available online: https://github.com/tbeu/matio (accessed on 1 May 2022).
23. Aguilar-Rivera, A. A GPU fully vectorized approach to accelerate performance of NSGA-2 based on stochastic non-domination

sorting and grid-crowding. Appl. Soft Comput. 2020, 88, 106047. [CrossRef]
24. HajiRassouliha, A.; Taberner, A.J.; Nash, M.P.; Nielsen, P.M.F. Suitability of recent hardware accelerators (DSPs, FPGAs, and

GPUs) for computer vision and image processing algorithms. Signal Processing Image Commun. 2018, 68, 101–119. [CrossRef]

http://doi.org/10.1016/j.jnucmat.2007.01.124
http://doi.org/10.1016/j.fusengdes.2007.03.027
http://doi.org/10.1088/0029-5515/38/11/307
http://doi.org/10.1007/s10894-018-0178-x
http://doi.org/10.1063/1.5027880
http://www.ncbi.nlm.nih.gov/pubmed/29864891
http://doi.org/10.1063/1.5119441
http://www.ncbi.nlm.nih.gov/pubmed/31893818
http://doi.org/10.1016/j.fusengdes.2019.03.120
http://doi.org/10.1088/1741-4326/ab7536
http://doi.org/10.1016/j.fusengdes.2016.11.006
http://doi.org/10.1016/j.fusengdes.2020.112179
http://doi.org/10.1063/1.5031087
http://www.ncbi.nlm.nih.gov/pubmed/30184695
http://doi.org/10.1088/1741-4326/abf2e1
http://doi.org/10.1088/0741-3335/43/7/309
http://doi.org/10.1016/j.fusengdes.2014.03.044
http://doi.org/10.1109/TNS.2021.3087124
http://doi.org/10.1016/j.fusengdes.2018.02.051
https://arrayfire.com/
https://www.alglib.net/
https://github.com/tbeu/matio
http://doi.org/10.1016/j.asoc.2019.106047
http://doi.org/10.1016/j.image.2018.07.007

Appl. Sci. 2022, 12, 6798 14 of 14

25. Performance of ArrayFire JIT Code Generation. Available online: https://arrayfire.com/blog/performance-of-arrayfire-jit-code-
generation/ (accessed on 1 May 2022).

26. Astrain, M.; Ruiz, M.; Carpeño, A.; Esquembri, S.; Barrera, E.; Vega, J. A methodology to standardize the development of
FPGA-based high-performance DAQ and processing systems using OpenCL. Fusion Eng. Des. 2020, 155, 111561. [CrossRef]

https://arrayfire.com/blog/performance-of-arrayfire-jit-code-generation/
https://arrayfire.com/blog/performance-of-arrayfire-jit-code-generation/
http://doi.org/10.1016/j.fusengdes.2020.111561

	Introduction
	Materials and Methods
	MATLAB Algorithm
	Analysis of the Different Alternatives
	ArrayFire
	ALGLIB—C++/C# Numerical Analysis Library
	MATIO

	Profiling of MATLAB Code
	Development of the C++ Application and ArrayFire Optimization Techniques

	Results
	Discussion
	References

