Biovalorization of Grape Stalks as Animal Feed by Solid State Fermentation Using White-Rot Fungi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Cultures and Spawn Preparation
2.2. Substrate Preparation and Biological Pre-Treatment
2.3. Chemical Analyses
2.4. In Vitro Organic Matter Digestibility
2.5. Enzymatic Activities
2.5.1. Carboxymethylcellulase
2.5.2. Avicelase
2.5.3. Xylanase
2.5.4. Feruloyl Esterase
2.5.5. Laccase
2.5.6. Manganese Peroxidase
2.5.7. Lignin Peroxidase
2.6. Scanning Electron Microscopy
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Devesa-Rey, R.; Vecino, X.; Varela-Alende, J.L.; Barral, M.T.; Cruz, J.M.; Moldes, A.B. Valorization of winery waste vs. the costs of not recycling. Waste Manag. 2011, 31, 2327–2335. [Google Scholar] [CrossRef]
- Câmara, J.S.; Lourenço, S.; Silva, C.; Lopes, A.; Andrade, C.; Perestrelo, R. Exploring the potential of wine industry by-products as source of additives to improve the quality of aquafeed. Microchem. J. 2020, 155, 1–10. [Google Scholar] [CrossRef]
- Prozil, S.O.; Evtuguin, D.V.; Lopes, L.P.C. Chemical composition of grape stalks of Vitis vinifera L. from red grape pomaces. Ind. Crops Prod. 2012, 35, 178–184. [Google Scholar] [CrossRef]
- Da Ros, C.; Cavinato, C.; Bolzonella, D.; Pavan, P. Renewable energy from thermophilic anaerobic digestion of winery residue: Preliminary evidence from batch and continuous lab-scale trials. Biomass Bioenergy 2016, 91, 150–159. [Google Scholar] [CrossRef]
- Sousa, D.; Venâncio, A.; Belo, I.; Salgado, J.M. Mediterranean agro-industrial wastes as valuable substrates for lignocellulolytic enzymes and protein production by solid-state fermentation. J. Sci. Food Agric. 2018, 98, 5248–5256. [Google Scholar] [CrossRef] [PubMed]
- Antonic, B.; Dordevic, D.; Jancikova, S.; Holeckova, D.; Tremlova, B.; Kulawik, P. Effect of grape seed flour on the antioxidant profile, textural and sensory properties of waffles. Processes 2021, 9, 131. [Google Scholar] [CrossRef]
- van Kuijk, S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W. Fungal treated lignocellulosic biomass as ruminant feed ingredient: A review. Biotechnol. Adv. 2015, 33, 191–202. [Google Scholar] [CrossRef]
- Hanušovský, O.; Gálik, B.; Bíro, D.; Šimko, M.; Juráček, M.; Rolinec, M.; Zábranský, L.; Philipp, C.; Puntigam, R.; Slama, J.A.; et al. The nutritional potential of grape by-products from the area of Slovakia and Austria. Emir. J. Food Agric. 2020, 32, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kolláthová, R.; Gálik, B.; Halo, M.; Kováčik, A.; Hanušovský, O.; Bíro, D.; Rolinec, M.; Juráček, M.; Šimko, M. The effects of dried grape pomace supplementation on biochemical blood serum indicators and digestibility of nutrients in horses. Czech J. Anim. Sci. 2020, 65, 58–65. [Google Scholar] [CrossRef]
- Kewan, K.Z.; Salem, F.A.; Salem, A.Z.M.; Abdou, A.R.; El-Sayed, H.M.; Eisa, S.S.; Zaki, E.A.; Odongo, N.E. Nutritive utilization of Moringa oleifera tree stalks treated with fungi and yeast to replace clover hay in growing lambs. Agrofor. Syst. 2019, 93, 161–173. [Google Scholar] [CrossRef]
- Sharma, R.K.; Arora, D.S. Biodegradation of paddy straw obtained from different geographic locations by means of Phlebia spp. for animal feed. Biodegradation 2011, 22, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Atuhaire, A.M.; Kabi, F.; Okello, S.; Mugerwa, S. Optimizing bio-physical conditions and pre-treatment options for breaking lignin barrier of maize stover feed using white rot fungi. Anim. Nutr. 2016, 2, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, B.; Nandal, P.; Sharma, A.; Jain, K.K.; Khasa, Y.P.; Das, T.K.; Mani, V.; Kewalramani, N.J.; Kundu, S.S.; Kuhad, R.C. Solid state bioconversion of wheat straw into digestible and nutritive ruminant feed by Ganoderma sp. Bioresour. Technol. 2012, 107, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Arora, D.S.; Sharma, R.K. Effect of different supplements on bioprocessing of wheat straw by Phlebia brevispora: Changes in its chemical composition, in vitro digestibility and nutritional properties. Bioresour. Technol. 2011, 102, 8085–8091. [Google Scholar] [CrossRef]
- Chebaibi, S.; Leriche Grandchamp, M.; Burgé, G.; Clément, T.; Allais, F.; Laziri, F. Improvement of protein content and decrease of anti-nutritional factors in olive cake by solid-state fermentation: A way to valorize this industrial by-product in animal feed. J. Biosci. Bioeng. 2019, 128, 384–390. [Google Scholar] [CrossRef]
- Zheng, M.; Zuo, S.; Niu, D.; Jiang, D.; Tao, Y.; Xu, C. Effect of Four Species of White Rot Fungi on the Chemical Composition and In vitro Rumen Degradability of Naked Oat Straw. Waste Biomass Valorization 2021, 12, 435–443. [Google Scholar] [CrossRef]
- Omarini, A.B.; Labuckas, D.; Zunino, M.P.; Pizzolitto, R.; Fernández-Lahore, M.; Barrionuevo, D.; Zygadlo, J.A. Upgrading the nutritional value of rice bran by Solid-State fermentation with pleurotus sapidus. Fermentation 2019, 5, 44. [Google Scholar] [CrossRef] [Green Version]
- Ravichandran, A.; Rao, R.G.; Thammaiah, V.; Maheswarappa, S. A Versatile Peroxidase from Lentinus squarrosulus towards Enhanced Delignification and in vitro Digestibility of Crop Residues. BioResources 2019, 14, 5132–5149. [Google Scholar]
- Sánchez, C. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv. 2009, 27, 185–194. [Google Scholar] [CrossRef]
- Sharma, R.K.; Arora, D.S. Production of lignocellulolytic enzymes and enhancement of in vitro digestibility during solid state fermentation of wheat straw by Phlebia floridensis. Bioresour. Technol. 2010, 101, 9248–9253. [Google Scholar] [CrossRef]
- Okano, K.; Kitagawa, M.; Sasaki, Y.; Watanabe, T. Conversion of Japanese red cedar (Cryptomeria japonica) into a feed for ruminants by white-rot basidiomycetes. Anim. Feed Sci. Technol. 2005, 120, 235–243. [Google Scholar] [CrossRef]
- Tuyen, V.D.; Cone, J.W.; Baars, J.J.P.; Sonnenberg, A.S.M.; Hendriks, W.H. Fungal strain and incubation period affect chemical composition and nutrient availability of wheat straw for rumen fermentation. Bioresour. Technol. 2012, 111, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, B.; Zhan, L.; Wang, P.; Ju, M.; Wu, W. Solid-State Fermentation of Ammoniated Corn Straw to Animal Feed by Pleurotus ostreatus Pl-5. BioResources 2017, 12, 1723–1736. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Wang, F.; Fang, Y.; Zhou, D.; Wang, S.; Wu, D.; Wang, L.; Zhong, R. High-potency white-rot fungal strains and duration of fermentation to optimize corn straw as ruminant feed. Bioresour. Technol. 2020, 312. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 20th ed.; AOAC: Arlington, VA, USA, 2016; p. 70. [Google Scholar] [CrossRef]
- Tilley, J.M.A.; Terry, R.A.; Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Marten, G.C.; Barnes, R.F. Prediction of energy digestibility of forages with in vitro rumen fermentation and fungal enzyme systems. In Standardization of Analytical Methodology for Feeds; IDRC: Ottawa, ON, USA, 1980; pp. 61–71. [Google Scholar]
- Dias, A.A.; Freitas, G.S.; Marques, G.S.M.; Sampaio, A.; Fraga, I.S.; Rodrigues, M.A.M.; Evtuguin, D.V.; Bezerra, R.M.F. Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi. Bioresour. Technol. 2010, 101, 6045–6050. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Singh, S.; Tyagi, C.H.; Dutt, D.; Upadhyaya, J.S. Production of high level of cellulase-poor xylanases by wild strains of white-rot fungus Coprinellus disseminatus in solid-state fermentation. New Biotechnol. 2009, 26, 165–170. [Google Scholar] [CrossRef]
- Mastihuba, V.; Kremnický, L.; Mastihubová, M.; Willett, J.L.; Côté, G.L. A spectrophotometric assay for feruloyl esterases. Anal. Biochem. 2002, 309, 96–101. [Google Scholar] [CrossRef]
- Dinis, M.J.; Bezerra, R.M.F.; Nunes, F.; Dias, A.A.; Guedes, C.V.; Ferreira, L.M.M.; Cone, J.W.; Marques, G.S.M.; Barros, A.R.N.; Rodrigues, M.A.M. Bioresource Technology Modification of wheat straw lignin by solid state fermentation with white-rot fungi. Bioresour. Technol. 2009, 100, 4829–4835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasehi, M.; Torbatinejad, N.M.; Zerehdaran, S.; Safaie, A.R. Effect of solid-state fermentation by oyster mushroom (Pleurotus florida) on nutritive value of some agro by-products. J. Appl. Anim. Res. 2017, 45, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Niu, D.; Zuo, S.; Jiang, D.; Tian, P.; Zheng, M.; Xu, C. Treatment using white rot fungi changed the chemical composition of wheat straw and enhanced digestion by rumen microbiota in vitro. Anim. Feed Sci. Technol. 2018, 237, 46–54. [Google Scholar] [CrossRef]
- Shin, H.; Kim, S.; Hun, J.; Lim, S. Solid-state fermentation of black rice bran with Aspergillus awamori and Aspergillus oryzae: Effects on phenolic acid composition and antioxidant activity of bran extracts. Food Chem. 2019, 272, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Šelo, G.; Planinić, M.; Tišma, M.; Grgić, J.; Perković, G.; Koceva Komlenić, D.; Bucić-Kojić, A. A Comparative Study of the Influence of Various Fungal-Based Pretreatments of Grape Pomace on Phenolic Compounds Recovery. Foods 2022, 11, 1665. [Google Scholar]
- Van Camp, J.; Dierckx, S. Handbook of Food Analysis—Physical Characterization and Nutrient Analysis; Nollet, L.M.L., Ed.; Marcel Dekker Inc.: New York, NY, USA, 2004; Volume 1, Chapter 7; pp. 167–202. [Google Scholar]
- Walker, G.M.; White, N.A. Introduction to Fungal Physiology. Fungi Biol. Appl. 2018, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Lourenço, M.; Hassim, H.A.; Baars, J.J.P.; Sonnenberg, A.S.M.; Cone, J.W.; De Boever, J.; Fievez, V. Improving ruminal degradability of oil palm fronds using white rot fungi. Anim. Feed Sci. Technol. 2011, 169, 157–166. [Google Scholar] [CrossRef]
- Hassim, H.A.; Lourenço, M.; Goh, Y.M.; Baars, J.J.P.; Fievez, V. Rumen degradation of oil palm fronds is improved through pre-digestion with white rot fungi but not through supplementation with yeast or enzymes. Can. J. Anim. Sci. 2012, 92, 79–87. [Google Scholar] [CrossRef]
- Tuyen, D.V.; Phuong, H.N.; Cone, J.W.; Baars, J.J.P.; Sonnenberg, A.S.M.; Hendriks, W.H. Effect of fungal treatments of fibrous agricultural by-products on chemical composition and in vitro rumen fermentation and methane production. Bioresour. Technol. 2013, 129, 256–263. [Google Scholar] [CrossRef]
- Okano, K.; Fukui, S.; Kitao, R.; Usagawa, T. Effects of culture length of Pleurotus eryngii grown on sugarcane bagasse on in vitro digestibility and chemical composition. Anim. Feed Sci. Technol. 2007, 136, 240–247. [Google Scholar] [CrossRef]
- van Erven, G.; Nayan, N.; Sonnenberg, A.S.M.; Hendriks, W.H.; Cone, J.W.; Kabel, M.A. Mechanistic insight in the selective delignification of wheat straw by three white-rot fungal species through quantitative 13C-IS PY-GC–MS and whole cell wall HSQC NMR. Biotechnol. Biofuels 2018, 11, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Fackler, K.; Schmutzer, M.; Manoch, L.; Schwanninger, M.; Hinterstoisser, B.; Ters, T.; Messner, K.; Gradinger, C. Evaluation of the selectivity of white rot isolates using near infrared spectroscopic techniques. Enzyme Microb. Technol. 2007, 41, 881–887. [Google Scholar] [CrossRef]
- Jin, B.; Zepf, F.; Bai, Z.; Gao, B.; Zhu, N. A biotech-systematic approach to select fungi for bioconversion of winery biomass wastes to nutrient-rich feed. Process Saf. Environ. Prot. 2016, 103, 60–68. [Google Scholar] [CrossRef]
- Zhao, X.; Gong, J.; Zhou, S.; Ouyang, K.; Song, X.; Fu, C.; Xu, L.; Qu, M. Effect of Fungal Treatments of Rape Straw on Chemical Composition and in vitro Rumen Fermentation Characteristics. BioResourses 2015, 10, 622–637. [Google Scholar] [CrossRef] [Green Version]
- van Kuijk, S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; del Río, J.C.; Rencoret, J.; Gutiérrez, A.; de Ruijter, N.C.A.; Cone, J.W. Chemical changes and increased degradability of wheat straw and oak wood chips treated with the white rot fungi Ceriporiopsis subvermispora and Lentinula edodes. Biomass Bioenergy 2017, 105, 381–391. [Google Scholar] [CrossRef]
- Mukherjee, R.; Nandi, B. Improvement of in vitro digestibility through biological treatment of water hyacinth biomass by two Pleurotus species. Int. Biodeterior. Biodegrad. 2004, 53, 7–12. [Google Scholar] [CrossRef]
- Anand, G.; Yadav, S.; Yadav, D. Multiple Factors Influencing the Strategy of Lignin Mycodegradation. In Mycodegradation of Lignocelluloses, 1st ed.; Naraian, R., Ed.; Springer: Cham, Switzerland, 2019; pp. 193–209. [Google Scholar] [CrossRef]
- Dashtban, M.; Schraft, H.; Syed, T.A.; Qin, W. Fungal biodegradation and enzymatic modification of lignin. Int. J. Biochem. Mol. Biol. 2010, 1, 36–50. [Google Scholar]
- Wan, C.; Li, Y. Fungal pretreatment of lignocellulosic biomass. Biotechnol. Adv. 2012, 30, 1447–1457. [Google Scholar] [CrossRef]
- Xie, C.; Yan, L.; Gong, W.; Zhu, Z.; Tan, S.; Chen, D.; Hu, Z.; Peng, Y. Effects of Different Substrates on Lignocellulosic Enzyme Expression, Enzyme Activity, Substrate Utilization and Biological Efficiency of Pleurotus Eryngii. Cell. Physiol. Biochem. 2016, 39, 1479–1494. [Google Scholar] [CrossRef]
- Lynch, J.P.; O’Kiely, P.; Murphy, R.; Doyle, E.M. Changes in chemical composition and digestibility of three maize stover components digested by white-rot fungi. J. Anim. Physiol. Anim. Nutr. 2014, 98, 731–738. [Google Scholar] [CrossRef]
- Mukherjee, R.; Nandi, B. Changes in Dry Matter Digestibility and Composition of Bioconverted Mustard Biomass by two Pleurotus spp. Under Mushroom Growing Conditions. J. Sci. Ind. Res. 2001, 60, 405–409. [Google Scholar]
- Kaal, E.E.J.; De Jong, E.; Field, J.A. Stimulation of ligninolytic peroxidase activity by nitrogen nutrients in the white rot fungus Bjerkandera sp. strain BOS55. Appl. Environ. Microbiol. 1993, 59, 4031–4036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
IP | Fungi | DM | Ash | CP | NDFom | ADFom | HC | Cel | Lignin(sa) | HC/L | Cel/L | IVOMD |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | 31.5 a | 5.6 f | 4.8 d | 68.3 cd | 62.1 abc | 7.02 cd | 27.9 c | 33.7 ab | 0.21 ef | 0.84 c | 289 d | |
28 | L. edodes | 22.4 ef | 8.3 c | 8.2 b | 63.0 e | 53.1 de | 9.9 a | 30.6 abc | 22.7 e | 0.44 bc | 1.36 b | 380 c |
P. citrinopileatus | 21.1 f | 9.1 b | 8.8 b | 70.1 bc | 61.2 bc | 10.34 a | 30.7 abc | 28.1 cd | 0.37 cd | 1.09 c | 287 d | |
P. eryngii | 26.2 bcd | 6.8 de | 6.6 c | 73.0 a | 65.3 ab | 7.9 bcd | 31.4 abc | 34.2 a | 0.23 ef | 0.93 c | 268 d | |
35 | L. edodes | 25.1 cde | 8.0 d | 8.4 b | 60.6 ef | 51.7 e | 8.9 abc | 32.6 a | 18.7 f | 0.48 b | 1.73 a | 448 b |
P. citrinopileatus | 21.3 f | 9.5 ab | 9.0 ab | 68.7 cd | 58.9 c | 9.6 a | 29.4 bc | 29.0 bcd | 0.33 de | 1.01 c | 289 d | |
P. eryngii | 28.6 ab | 7.1 d | 6.7 c | 72.1 ab | 66.8 a | 6.8 d | 33.0 a | 33.6 a | 0.20 f | 0.98 c | 292 d | |
42 | L. edodes | 23.4 def | 8.4 c | 8.5 b | 58.7 f | 49.1 e | 9.6 a | 32.0 ab | 16.1 f | 0.60 a | 2.00 a | 496 a |
P. citrinopileatus | 20.8 f | 9.8 a | 9.9 a | 66.3 d | 56.9 cd | 9.4 ab | 28.6 def | 27.2 d | 0.35 cd | 1.06 c | 344 c | |
P. eryngii | 28.0 abc | 6.5 e | 6.3 c | 72.2 ab | 65.5 ab | 7.4 cd | 32.6 a | 31.9 abc | 0.23 ef | 0.99 c | 293 d | |
SEM | 0.96 | 0.27 | 0.30 | 0.78 | 1.33 | 0.46 | 0.81 | 1.10 | 0.017 | 0.081 | 1.13 | |
Effects | ||||||||||||
IP | 0.061 | 0.764 | 0.250 | <0.001 | 0.030 | 0.032 | 0.439 | 0.001 | 0.031 | 0.003 | <0.001 | |
Fungi | <0.0001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
IP × Fungi | 0.391 | 0.069 | 0.051 | 0.017 | 0.157 | 0.638 | 0.037 | 0.009 | 0.003 | <0.001 | <0.001 |
IP | Fungi | Lacc | MnP | LnP | Avicelase | CMCase | Xylanase | FAEs |
---|---|---|---|---|---|---|---|---|
7 | L. edodes | 0.114 jk | 0.339 j | 0 i | 0.200 fg | 0.409 f | 0.747 g | 0.144 j |
P. citrinopileatus | 0.279 j | 0.087 k | 0 i | 0.159 ij | 0.400 fg | 0.463 i | 0.879 ef | |
P. eryngii | 0 k | 0.120 k | 0 i | 0.092 l | 0.179 ij | 0.294 j | 0.802 h | |
14 | L. edodes | 0.670 i | 1.896 e | 0.259 h | 0.580 a | 1.509 a | 1.0 f | 0.379 i |
P. citrinopileatus | 1.451 g | 1.624 f | 0.266 h | 0.233 de | 0.600 cd | 0.637 gh | 1.138 c | |
P. eryngii | 0.858 h | 0.383 j | 0 i | 0.356 c | 0.456 ef | 1.148 f | 0.839 fgh | |
21 | L. edodes | 1.581 fg | 2.355 cd | 1.490 d | 0.221 ef | 0.620 c | 1.577 d | 0.820 gh |
P. citrinopileatus | 1.714 ef | 1.770 ef | 0.494 g | 0.253 d | 0.654 c | 0.681 gh | 1.151 c | |
P. eryngii | 1.641 f | 0.738 i | 0 i | 0.174 hi | 0.256 hi | 0.541 hi | 0.855 fg | |
28 | L. edodes | 2.734 b | 2.539 bc | 1.820 c | 0.203 fg | 0.471 ef | 2.034 c | 1.016 d |
P. citrinopileatus | 2.093 c | 1.895 e | 1.119 d | 0.401 b | 0.938 b | 1.318 e | 1.218 b | |
P. eryngii | 1.856 de | 0.945 h | 0 i | 0.152 ij | 0.212 ij | 0.472 i | 0.880 ef | |
35 | L. edodes | 3.618 a | 2.598 ab | 1.995 b | 0.181 gh | 0.426 f | 2.348 b | 1.168 c |
P. citrinopileatus | 2.762 b | 1.778 ef | 0.782 f | 0.221 ef | 0.527 de | 1.623 d | 1.160 c | |
P. eryngii | 1.921 cd | 1.167 g | 0 i | 0.140 jk | 0.176 ij | 0.402 ij | 0.919 e | |
42 | L. edodes | 1.873 de | 2.770 a | 2.330 a | 0.151 ij | 0.326 gh | 2.963 a | 1.379 a |
P. citrinopileatus | 1.962 cd | 1.693 f | 0.711 f | 0.156 ij | 0.445 f | 2.395 b | 1.138 c | |
P. eryngii | 1.831 de | 2.248 d | 0 i | 0.121 k | 0.146 j | 0.054 k | 1.003 d | |
SEM | 0.0196 | 0.0215 | 0.0164 | 0.0026 | 0.0090 | 0.0184 | 0.0047 | |
Effects | ||||||||
IP | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Fungi | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
IP × Fungi | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa-Silva, V.; Anunciação, M.; Andrade, E.; Fernandes, L.; Costa, A.; Fraga, I.; Barros, A.; Marques, G.; Ferreira, L.; Rodrigues, M. Biovalorization of Grape Stalks as Animal Feed by Solid State Fermentation Using White-Rot Fungi. Appl. Sci. 2022, 12, 6800. https://doi.org/10.3390/app12136800
Costa-Silva V, Anunciação M, Andrade E, Fernandes L, Costa A, Fraga I, Barros A, Marques G, Ferreira L, Rodrigues M. Biovalorization of Grape Stalks as Animal Feed by Solid State Fermentation Using White-Rot Fungi. Applied Sciences. 2022; 12(13):6800. https://doi.org/10.3390/app12136800
Chicago/Turabian StyleCosta-Silva, Valéria, Mariana Anunciação, Ederson Andrade, Lisete Fernandes, Aida Costa, Irene Fraga, Ana Barros, Guilhermina Marques, Luís Ferreira, and Miguel Rodrigues. 2022. "Biovalorization of Grape Stalks as Animal Feed by Solid State Fermentation Using White-Rot Fungi" Applied Sciences 12, no. 13: 6800. https://doi.org/10.3390/app12136800
APA StyleCosta-Silva, V., Anunciação, M., Andrade, E., Fernandes, L., Costa, A., Fraga, I., Barros, A., Marques, G., Ferreira, L., & Rodrigues, M. (2022). Biovalorization of Grape Stalks as Animal Feed by Solid State Fermentation Using White-Rot Fungi. Applied Sciences, 12(13), 6800. https://doi.org/10.3390/app12136800