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Abstract: Remote sensing of coastal sediments for the purpose of automated mapping of their
physical properties (grain size, mineralogy and carbonate content) across space has not been widely
applied globally or in South Africa. This paper describes a baseline study towards achieving this aim
by examining the spectral reflectance signatures of field sediment samples from a beach–dune system
at Oyster Bay, Eastern Cape, South Africa. Laboratory measurements of grain size and carbonate
content of field samples (n = 134) were compared to laboratory measurements of the spectral signature
of these samples using an analytical spectral device (ASD), and the results interrogated using different
statistical methods. These results show that the proportion of fine sand, CaCO3 content and the
distributional range of sediment grain sizes within a sample (here termed span) are the parameters
with greatest statistical significance—and thus greatest potential interpretive value—with respect
to their spectral signatures measured by the ASD. These parameters are also statistically associated
with specific wavebands in the visible and near infrared, and the shortwave infrared parts of the
spectrum. These results show the potential of spectral reflectance data for discriminating elements
of grain size properties of coastal sediments, and thus can provide the baseline towards achieving
automated spatial mapping of sediment properties across coastal beach–dune environments using
hyperspectral remote sensing techniques.

Keywords: grain size analysis; coastal sediments; analytical spectral device; hyperspectral data

1. Introduction

Sediment properties of sandy beaches and sand dunes, including grain size, carbonate
content, moisture content, organic content, magnetic susceptibility and grain mineralogy,
are most commonly measured and quantified based on field observations or field sampling,
and then laboratory analysis of these samples using different analytical equipment [1–4].
Following this, a range of statistical techniques (e.g., calculation of moment measures, mul-
tivariate analyses) can be used on the grain size data in particular, in order to characterise
sediment properties and to interpret depositional processes and environments and their
changes over time and space, e.g., [5–11]. This standard methodology has been undertaken
on many beaches and dunes worldwide, resulting in an understanding of spatial patterns
of different sediment properties (based mainly on grain size) across different coastal depo-
sitional environments, e.g., [12–15]. The main problem of such a field-based approach is
that it provides only a limited view of local-scale coastal sediment properties and dynam-
ics, which is often strongly affected by the specific spatial and temporal context of field
sampling at individual sites. In addition, studies also use different sampling strategies and
methods of data analysis, which means that results from these individual studies may not
be comparable. By contrast, remote sensing methods using a variety of platforms have po-
tential to consistently map and quantify spatial patterns of sediments and landforms across
beach–dune systems, and this has been undertaken in several studies e.g., [16–21]. There
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are fewer studies, however, that have examined spectral data on sediment properties and
stratigraphy. Sediment cores have been examined using different hyperspectral imaging
techniques, mainly in the shortwave infrared (SWIR) wavebands, in order to identify strati-
graphic variations in sediment grain size and mineralogy [22–24]. These studies have been
used to produce spectral time series maps that represent variations in sediment properties
through the cores, rather than identify individual spectra that represent certain sediment
endmembers. There are only a few studies that have examined the spectral properties of
sediments in coastal environments, and these have considered the role of variations in
water content and mineralogy as key factors influencing their spectral signatures [18,25].
Mineral compositions can then be used to derive endmembers for spatial modelling.

Most work on spectral signatures of sediment has been done on river depositional
environments [26,27], and work on coastal sediments can be informed by these previous
studies. For example, river and coastal sediment samples in NE Italy were evaluated
by Ciampalini et al. [28] using an analytical spectral device (ASD) in order to derive a
spectral library representing sample grain size and mineralogy, which was then compared
to laboratory results. Principal component analysis was then used to identify sediment
provenance endmembers. The same research approach was used by Ibrahim et al. [19]
along the Belgian coast. Grain size properties along beaches were examined using Landsat
visible, near infrared (VNIR) and thermal infrared bands in SE India [29], but these bands
may have been influenced by a high concentration of heavy minerals (50–80%) at this
site. Using IKONOS imagery, Park et al. [30] showed that all spectral bands have a good
correlation (>0.8) with grain size, and Williams and Greeley [31] showed that different
spectral bands from synthetic aperture radar imagery are affected by surface moisture.
Thus, there are several studies that have analysed the spectral properties of beach sand but
these have tended to focus on the role of local environmental factors rather than the appli-
cation of different techniques or methodologies. A key question is how location-specific
measurements can be applied to similar depositional settings elsewhere [27,32] or how
patterns of (for example) grain size, calcium carbonate (CaCO3), organic carbon or biomass
content can be mapped across space using automated remote sensing techniques [21,33–35].

Although field and laboratory hyperspectral devices have been used to derive data
on coastal sediment properties [16,28,36], there have been hitherto no published studies
using the spectral properties of sediments from coastal settings in South Africa. This
study uses laboratory hyperspectral measurements of sediment samples collected from a
beach–dune system on the coast of South Africa, focusing on relationships between selected
properties of the field samples (including grain size and carbonate content) and their
associated spectral signatures. The aims of this study are to describe the nature of beach–
dune samples in terms of their spectral signatures and to examine these relationships
using statistical methods. This can be considered as a first step towards developing a
robust methodology for automated mapping of sediment properties across beach–dune
environments applicable globally.

2. Study Area and Methods

The study area examined, from which surface sediments were sampled, is at Oyster
Bay, Eastern Cape Province, South Africa (Figure 1). Prevailing winds in this region are
towards the northeast (in summer) and the west/northwest (in winter). Tidal range is high
microtidal/low mesotidal and swell waves from the Southern Ocean have a significant
wave height of >5 m [37]. Oyster Bay is an asymmetrical zeta-shape embayment [38] with
an extensive sandy beach that is 6.1 km in total length and with a variable beach width of
30 to 290 m at low tide. Bedrock headlands to the east and west define the overall shape
of the bay. An extensive supratidal zone is present, containing parallel-aligned transverse
dunes with crests that are 40–50 m apart, similar to those found elsewhere along the South
African coast [39]. Dune migration periodically blocks off the mouth of the incoming
Klipdrift River. The landward boundary of the supratidal dunes at the back of the beach is
marked by dune migration into a zone of highly vegetated and variably cemented linear
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palaeodunes that extend for ~40 km along this coastline. These ridges broadly correspond
to the Nahoon Formation of the late Pleistocene Algoa Group, covering the period of
marine isotope stages 5 to 2 inclusively [40–42]. Holocene-age dunes in this region, fronting
the eroded older dunes, correspond to largely unvegetated foredunes of the Schelm Hoek
Formation and are composed of unconsolidated calcareous aeolian sand [43].
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Figure 1. (a) Location of the study area at Oyster Bay, Eastern Cape, South Africa; (b) large-scale
geomorphic setting of Oyster Bay with the sampling region (panel c) shown in the red box; (c) distri-
bution of sediment sampling points 006–139 (background image in (c) from Google Earth, image date
25 August 2013, which is the latest available image before the sampling period).

Surficial (top 5 cm) sediment samples (~400 g each, n = 134, labelled 6–139) were
collected in the field across the beach–supratidal dune system in the centre of the Oyster
Bay embayment (Figure 1c). A random sampling approach was used but covering the full
width of the beach including the intertidal zone. These samples were bagged, labelled,
and sampling locations and their geomorphic settings marked using a Garmin Etrex
20 handheld GPS (x y accuracy ± 3 m). In addition, shells of different species (that were
broken and did not contain organisms) were also collected from the intertidal zone. Samples
were of the Cape brooding oyster (Ostrea atherstoni, sample 1), Brown mussel (Perna perna,
sample 2), Agulhas ridged nut clam (Lembulus belcheri, sample 3), Southern cuttlefish
(Sepia australis, sample 4), and a mixed shell sample combining these and other shell species
found within the intertidal zone (sample 5) (Figure 2). In the laboratory, shell samples (n = 5)
were dried and crushed using a pestle and mortar to generate broken fragments >2 mm
diameter. Sediment samples were dried, sieved to remove the >2 mm fraction, and a
subsample (~50 g) evaluated for CaCO3 content using the loss on ignition method. In this
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method, the subsample was weighed, combusted in a muffle furnace for 5 h at 950 ◦C,
and reweighed. Combustible CaCO3 content (% of sample mass) was then calculated.
Three replicates were undertaken for each sample, and the results averaged. Variation
between the replicates was commonly <0.1%. The grain size distribution for each sample
was measured using a Mastersizer 3000 Hydro EV for the size range 0.01–2000 µm with
a subsample size of ~5 g. Each subsample was sonificated for 20 s prior to measurement,
and five individual grain size distribution patterns were measured using the Mastersizer,
and the average taken. The key grain size distribution parameters (D10, D50, D90, kurtosis,
skewness, standard deviation and mean) generated by the Mastersizer software were used
for analysis. Additionally, a derived parameter herein called span, which describes the
width of the particle size distribution, was calculated as

Span =
(D90 − D10)

D50
(1)

where D90 and D10 are the 90th and 10th percentile values of the grain size distribution,
and D50 is the median grain size.
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Figure 2. Shell samples collected from Oyster Bay. (a) Cape brooding oyster (Ostrea atherstoni,
sample 1); (b) Brown mussel (Perna perna, sample 2); (c) Agulhas ridged nut clam (Lembulus belcheri,
sample 3); (d) Southern cuttlefish (Sepia australis, sample 4).

The spectral signatures of sediment and shell samples were acquired under controlled
environmental conditions in the laboratory using an Analytical Spectral Device (ASD)
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FieldSpec®3spectrometer (ASD Inc., Boulder, CO, USA) and a light mug (Figure 3). The
instrument measures wavelengths from 350 to 2500 nm and compares samples to a white
reference panel. The 2 mm-sieved sediment and shell samples were placed in 100 mL
glass bottles (Figure 3) and then placed on top of the light mug to measure the reflectance
from each sample. Five spectral scans were captured for each sample to ensure spectral
stability and an average reflectance was considered for further analysis. The spectrometer
was calibrated using the white reference Spectralon® (Figure 3). The spectrometer was
recalibrated after every 20 sample scans. The spectral measurement were stored in a
notebook computer connected to the device. Figure 3 shows the laboratory setup used in
this study.
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Figure 3. Laboratory spectral measurement system. The system involves an ASD spectroradiometer
and a light mug device.

Following ASD data collection, the spectral data were first combined and converted
from digital numbers to reflectance values using the ViewSpecPro® software. The spectral
resolution was 1 nm which causes several data redundancy difficulties and affects the
processing time. The spectral data also went through several pre-processing steps including
removing noise-affected spectra located at the edge of the scans. First, the reflectance data
less than 375 nm and greater than 2460 nm were removed from further analysis in order to
disregard edge effects. Second, the moisture absorption spectral bands (at ~2500, 1950 and
1450 nm; [44]) were therefore eliminated from the final pre-processing stage. A correlation
analysis was first performed on the data to identify the spectral wavelengths that show a
significant association with different sediment properties. Based on the correlation analysis,
specific wavelength regions were then selected. Linear regression analysis and partial least
squares regression analysis were then performed on the selected spectral wavelengths based
on the magnitude of the correlation coefficient. The data were partitioned into training and
testing datasets. Approximately 70% (94 samples) of the dataset was used for the statistical
model training, and 30% (40 samples) was used for model testing and validation.
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3. Results
3.1. Site Geomorphology and Sediment Dynamics

Oyster Bay contains transgressive transverse dunes within the supratidal part of the
beach (Figure 1b), and in the field these are observed to be asymmetric in profile and actively
migrating towards the northeast, in the direction of the regional prevailing wind [45] and
reflecting the relatively high sediment availability in Oyster Bay. The transgressive dunes
show steep slipfaces (Figure 4b) and migrating free dunes over the beach surface (Figure 4c).
Older vegetated dunes are left as residual eroded hummocks (Figure 4d).
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Figure 4. Dune and beach morphology at Oyster Bay. (a) Dissipative beachface within the lower part
of the beach system; (b,c) migrating transverse dune ridges within the supratidal zone; (d) erosional
hummock of an older vegetated dune system, now isolated within the upper part of the beach.

3.2. Sediment Properties

Detailed laboratory analysis of sediment sample grain size data (Table 1) shows that
the samples (n = 134) are remarkably uniform. In terms of texture, samples are dominantly
(98%) medium sand with only one sample fine grained and two samples coarse grained. In
terms of sorting, most samples (66%) are well sorted, 31% are moderately well sorted and
3% moderately sorted. For skewness, 98% are near symmetrical and 2% are coarse skewed.
CaCO3 values vary from 8.22% to 27.29%. For kurtosis, >99% are mesokurtic and only
one sample is leptokurtic. The sediment samples were collected from backshore, beach,
dune crest, ramp, slipface and interdune positions (Figure 1c). There are some statistically
significant differences between grain size end-members (fine and coarse/very coarse sand)
and CaCO3 values between some of these sampling positions (Table 2), in particular in
beach samples where wave action can contribute to sediment sorting and from supratidal
dunes where wind transport leads to effective sediment sorting. As a result, there are some
statistical differences between D10, D90 and D50 values.
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Table 1. Details of sediment samples examined in this study. Sample location codes are: BAB: Backshore, beach; BAC: Backshore, crest; BAI: Backshore, interdune;
BAR: Backshore, ridge; BAS: Backshore, slipface; BAT: Backshore, trough; BEC: Beach, crest; BEI: Beach, interdune; BER: Beach, ridge; BES: Beach, slipface; BET:
Beach, trough; CRI: Crest, interdune; CRR: Crest, ridge; CRS: Crest, slipface; CRT: Crest, trough; INT: Interdune, ridge; INS: Interdune, slipface; INT: Interdune,
trough; RAS: Ramp, slipface; RAT: Ramp, trough; SLT: Slipface, trough. Sample numbers are indicated in Figure 1c.

Sample # Location
Code Lat Long Elevation

(m asl)
D10 (Mi-
crons)

D50 (Mi-
crons)

D90 (Mi-
crons) Kurtosis Skewness CaCO3

(%)
Fine

sand (%)
Medium
Sand (%)

Coarse
Sand (%)

Very
Coarse

Sand (%)

006 BEC −34.171938 24.642923 4.211 209 315 478 0.95 0.00 18.83 24.34 68.06 7.59 0.00

007 BET −34.171984 24.642668 2.048 220 340 528 0.95 −0.01 13.78 18.57 68.07 13.35 0.00

008 SLT −34.172052 24.642489 4.932 199 289 421 0.97 0.00 10.40 31.47 65.92 2.61 0.00

009 BES −34.172016 24.642389 8.777 302 488 804 0.95 −0.02 21.40 3.16 49.36 44.73 2.75

010 BET −34.172011 24.642128 7.816 226 350 547 0.96 −0.01 13.69 16.50 68.12 15.38 0.00

011 BET −34.171679 24.641879 5.172 201 323 538 0.98 −0.04 16.20 25.10 61.41 11.89 0.88

012 BEC −34.171517 24.642276 11.661 204 307 465 0.94 0.00 17.04 26.57 66.99 6.44 0.00

013 BEI −34.171702 24.642363 11.661 198 288 420 0.97 0.00 9.89 31.79 65.61 2.60 0.00

014 CRS −34.171690 24.642476 9.739 279 442 715 0.96 −0.02 21.98 5.30 57.36 36.33 1.01

015 SLT −34.171666 24.642576 8.296 203 303 453 0.95 −0.01 12.30 27.39 67.18 5.43 0.00

016 BET −34.171933 24.643384 6.134 220 340 529 0.95 −0.01 14.58 18.69 67.89 13.42 0.00

017 BEC −34.172137 24.643902 9.739 254 392 609 0.96 −0.01 19.09 9.01 66.63 24.29 0.06

018 BEC −34.171929 24.643805 7.816 207 311 470 0.95 −0.01 16.44 25.28 67.90 6.82 0.00

019 CRS −34.171833 24.644029 12.382 248 382 589 0.95 −0.01 16.60 10.45 67.69 21.83 0.03

020 BET −34.171374 24.643891 5.893 189 287 440 0.96 −0.01 12.66 34.09 61.50 4.41 0.00

021 BEC −34.171120 24.643643 9.017 214 321 485 0.96 0.00 19.35 22.28 69.53 8.19 0.00

022 INR −34.171363 24.643649 7.095 228 374 631 0.96 −0.03 18.76 15.15 60.88 23.40 0.50

023 INR −34.171499 24.643289 9.498 217 351 583 0.97 −0.04 16.97 18.85 62.41 17.85 0.56

024 RAS −34.171600 24.642989 9.979 218 343 543 0.96 −0.01 16.90 19.06 66.14 14.79 0.00

025 RAS −34.171869 24.643010 6.134 204 318 503 0.95 −0.02 12.93 25.10 64.54 10.36 0.00

026 BAB −34.172203 24.642861 8.537 199 302 459 0.95 −0.01 16.21 28.53 65.40 6.06 0.00
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Table 1. Cont.

Sample # Location
Code Lat Long Elevation

(m asl)
D10 (Mi-
crons)

D50 (Mi-
crons)

D90 (Mi-
crons) Kurtosis Skewness CaCO3

(%)
Fine

sand (%)
Medium
Sand (%)

Coarse
Sand (%)

Very
Coarse

Sand (%)

027 BAT −34.171951 24.642091 1.087 219 339 528 0.95 −0.01 16.78 19.19 67.50 13.30 0.00

028 BAT −34.171980 24.641696 6.134 226 372 631 0.97 −0.03 21.13 15.64 60.75 22.84 0.70

029 BAC −34.171961 24.641441 7.095 211 314 472 0.95 0.00 14.73 23.86 69.23 6.91 0.00

030 BAT −34.171942 24.641264 5.893 200 311 490 0.96 −0.02 13.61 26.92 64.19 8.89 0.00

031 BEC −34.171955 24.641151 5.653 221 344 530 0.95 0.01 19.22 18.14 68.19 13.67 0.00

032 BES −34.171565 24.641033 6.134 261 416 669 0.95 −0.01 20.08 7.88 60.64 30.94 0.54

033 BEC −34.171277 24.640809 3.250 187 274 402 0.95 0.00 22.41 38.30 59.87 1.83 0.00

034 BAT −34.171125 24.640865 8.296 202 307 466 0.95 0.00 17.58 27.05 66.48 6.47 0.00

035 RAS −34.171038 24.640841 7.816 219 336 514 0.95 0.00 12.13 19.35 68.71 11.94 0.00

036 BAC −34.171123 24.640999 5.653 210 316 481 0.96 0.00 20.16 23.92 68.25 7.83 0.00

037 BAT −34.171193 24.641281 0.125 254 466 1020 1.06 −0.13 26.58 9.31 46.06 34.29 8.86

038 BAC −34.171223 24.641788 4.692 191 284 425 0.96 0.00 19.23 34.60 62.35 3.04 0.00

039 BAR −34.171376 24.641656 6.374 180 264 388 0.96 −0.01 12.38 42.81 55.96 1.22 0.00

040 BAT −34.171621 24.641768 4.451 213 327 508 0.95 −0.01 14.72 21.97 67.04 11.00 0.00

041 BAC −34.171713 24.641632 7.335 239 366 565 0.95 −0.01 18.44 13.12 68.71 18.16 0.00

042 BAB −34.172004 24.639971 1.808 225 363 589 0.95 −0.01 14.92 16.26 63.45 20.20 0.09

043 BAC −34.171775 24.639973 6.854 235 340 488 0.95 0.02 18.42 14.63 77.03 8.34 0.00

044 BAC −34.171648 24.639890 9.258 219 328 494 0.96 −0.01 15.84 19.78 71.01 9.20 0.00

045 BAS −34.171388 24.639973 8.296 253 393 611 0.96 −0.01 19.06 9.30 66.09 24.55 0.06

046 BAC −34.171020 24.639773 10.700 213 322 490 0.96 0.00 19.00 22.25 68.96 8.79 0.00

047 BAS −34.171247 24.640023 5.413 203 310 481 0.96 −0.02 10.27 26.40 65.66 7.94 0.00

048 RAT −34.171330 24.640202 6.374 206 318 495 0.95 −0.01 15.96 24.55 66.09 9.36 0.00

049 RAS −34.171756 24.640200 6.134 239 391 671 0.97 −0.05 17.20 12.77 59.31 26.55 1.37

050 BAC −34.171887 24.640709 5.653 222 350 556 0.96 −0.01 17.06 17.60 66.07 16.32 0.01
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Table 1. Cont.

Sample # Location
Code Lat Long Elevation

(m asl)
D10 (Mi-
crons)

D50 (Mi-
crons)

D90 (Mi-
crons) Kurtosis Skewness CaCO3

(%)
Fine

sand (%)
Medium
Sand (%)

Coarse
Sand (%)

Very
Coarse

Sand (%)

051 BAC −34.171602 24.640481 3.730 217 359 625 0.99 −0.06 20.63 18.40 59.74 20.10 1.31

052 RAT −34.171232 24.640564 3.971 176 248 347 0.96 −0.01 15.27 51.21 48.62 0.17 0.00

053 RAT −34.171263 24.640642 7.816 192 274 391 0.96 0.00 16.61 37.27 61.61 1.12 0.00

054 INT −34.171117 24.640536 6.374 201 300 448 0.96 0.00 15.57 28.33 66.84 4.84 0.00

055 BAT −34.171473 24.641231 5.893 207 319 498 0.95 −0.01 14.82 24.19 66.06 9.75 0.00

056 BAT −34.171814 24.641265 7.335 205 326 530 0.95 −0.03 14.89 23.92 62.98 13.00 0.07

057 BAB −34.172157 24.641878 3.730 197 289 427 0.97 0.00 13.48 31.65 65.29 3.06 0.00

058 BAB −34.171930 24.639000 6.374 226 350 549 0.96 −0.01 15.02 16.61 67.71 15.67 0.00

059 CRI −34.171679 24.639045 7.576 207 306 454 0.95 −0.01 17.67 26.14 68.32 5.54 0.00

060 BAC −34.171248 24.639070 8.537 214 344 568 0.96 −0.03 20.12 20.34 62.49 17.06 0.11

061 BAC −34.171124 24.639230 6.374 243 443 1240 1.09 −0.25 24.65 11.32 46.87 27.58 11.11

062 BAT −34.171242 24.639314 0.606 195 291 438 0.96 −0.01 9.97 31.81 64.08 4.11 0.00

063 MAI −34.171381 24.639556 5.893 219 345 551 0.96 −0.02 17.32 18.71 65.64 15.63 0.01

064 RAT −34.171685 24.639376 4.451 217 354 620 1.00 −0.07 19.63 18.90 60.14 18.94 1.53

065 BAT −34.171786 24.639684 7.816 216 329 504 0.96 0.00 16.76 20.70 68.83 10.47 0.00

066 INT −34.171465 24.639731 3.730 214 351 616 0.99 −0.07 15.92 19.78 59.69 18.78 1.41

067 INR −34.170996 24.639434 13.103 208 324 510 0.95 −0.01 18.77 23.52 65.21 11.27 0.00

068 INS −34.171154 24.640406 8.777 219 327 488 0.96 0.00 18.75 19.95 71.52 8.53 0.00

069 CRI −34.171594 24.629845 −5.641 238 406 722 0.98 −0.04 23.67 12.58 55.56 29.39 2.34

070 CRI −34.171147 24.630392 12.863 246 396 639 0.96 0.00 18.05 11.02 61.88 26.90 0.21

071 CRI −34.170616 24.630827 12.622 252 388 594 0.96 0.00 19.25 6.45 67.59 22.95 0.01

072 CRS −34.170290 24.631101 10.700 262 392 583 0.95 0.00 19.47 7.53 70.20 22.27 0.01

073 BAR −34.171394 24.631663 8.296 195 302 474 0.96 −0.02 18.67 29.59 6.97 7.43 0.00

074 BER −34.172438 24.631051 −0.354 223 334 498 0.96 0.00 14.11 18.15 72.14 9.72 0.00
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Table 1. Cont.

Sample # Location
Code Lat Long Elevation

(m asl)
D10 (Mi-
crons)

D50 (Mi-
crons)

D90 (Mi-
crons) Kurtosis Skewness CaCO3

(%)
Fine

sand (%)
Medium
Sand (%)

Coarse
Sand (%)

Very
Coarse

Sand (%)

075 BAR −34.170938 24.635953 6.134 220 358 581 0.95 0.00 22.10 17.65 62.85 19.47 0.03

076 BAT −34.171616 24.635743 10.459 196 287 423 0.97 0.00 11.41 32.60 64.59 2.81 0.00

077 BAC −34.171935 24.635784 4.692 215 331 512 0.95 −0.01 17.54 20.85 67.59 11.56 0.00

078 BER −34.172500 24.636502 5.653 219 337 521 0.95 −0.01 14.71 19.23 68.12 12.65 0.00

079 BAT −34.171834 24.636919 8.537 241 361 545 0.96 −0.01 13.34 12.68 71.64 15.68 0.00

080 BAR −34.171110 24.637048 8.777 213 343 562 0.96 −0.02 20.47 20.49 62.92 16.54 0.05

081 CRS −34.170847 24.638189 13.584 253 432 808 0.99 −0.08 27.25 9.38 53.07 33.00 4.49

082 BAB −34.171690 24.638149 4.932 234 354 530 0.94 0.01 15.92 14.35 71.73 13.92 0.00

083 BAB −34.172336 24.638428 7.335 239 429 865 0.99 −0.10 25.33 12.28 49.43 31.89 6.09

084 BAI −34.171595 24.638524 2.048 197 294 442 0.96 −0.01 20.45 30.71 64.88 4.41 0.00

085 INR −34.171029 24.638807 10.459 236 371 584 0.94 −0.01 20.34 13.49 65.94 20.54 0.04

086 CRI −34.170733 24.638722 13.584 190 275 396 0.96 0.00 15.50 37.34 61.22 1.44 0.00

087 BET −34.172485 24.640166 5.413 196 281 400 0.96 0.00 12.29 34.09 64.39 1.51 0.00

088 BET −34.172541 24.641305 5.653 234 385 642 0.95 −0.01 19.48 13.60 60.30 25.74 0.36

089 BET −34.172570 24.642399 1.567 275 436 699 0.95 −0.01 19.73 5.96 58.23 35.16 0.65

090 BET −34.172851 24.643780 5.893 336 517 801 0.96 −0.01 24.00 1.02 45.16 51.74 2.09

091 BAB −34.172520 24.644298 4.451 204 296 430 0.96 0.00 12.54 28.48 68.45 3.07 0.00

092 BAS −34.172002 24.644281 6.134 193 272 385 0.96 0.00 8.26 37.81 61.32 0.87 0.00

093 BAS −34.171981 24.644318 7.335 200 297 443 0.96 −0.01 8.86 29.30 66.25 4.45 0.00

094 BAC −34.171375 24.644495 9.739 256 403 643 0.96 −0.01 17.99 8.82 63.06 27.87 0.25

095 BAR −34.170761 24.644425 8.296 224 338 511 0.96 −0.01 17.33 17.64 70.80 11.57 0.00

096 BAT −34.171188 24.644581 6.614 215 338 553 0.97 −0.04 13.67 20.53 64.14 14.33 0.54

097 BAI −34.171828 24.644937 7.816 213 330 518 0.95 −0.01 13.86 21.65 66.14 12.21 0.00

098 BAT −34.172261 24.644822 5.413 201 289 416 0.96 0.00 8.22 30.99 66.75 2.26 0.00
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Table 1. Cont.

Sample # Location
Code Lat Long Elevation

(m asl)
D10 (Mi-
crons)

D50 (Mi-
crons)

D90 (Mi-
crons) Kurtosis Skewness CaCO3

(%)
Fine

sand (%)
Medium
Sand (%)

Coarse
Sand (%)

Very
Coarse

Sand (%)

099 BAB −34.172608 24.645214 6.134 217 329 504 0.96 −0.01 14.48 20.40 69.15 10.46 0.00

100 BER −34.172899 24.645462 4.451 249 375 565 0.96 0.00 13.02 10.23 71.10 18.67 0.00

101 BAC −34.172244 24.645432 8.056 235 353 535 0.95 −0.01 18.51 14.37 71.23 14.40 0.00

102 BAC −34.171919 24.645569 9.258 225 349 541 0.96 0.00 21.15 16.78 68.35 14.88 0.00

103 BAS −34.171447 24.645305 10.700 294 479 796 0.96 −0.02 22.23 3.75 50.59 42.96 2.71

104 BAT −34.171306 24.645469 7.576 227 355 564 0.96 −0.02 14.56 16.22 66.43 17.32 0.02

105 RAS -34.296997 24.645517 10.700 219 340 532 0.95 −0.01 18.10 18.95 67.40 13.65 0.00

106 CRS −34.170927 24.645926 10.459 250 444 1030 1.11 −0.19 24.17 9.93 48.97 30.52 8.51

107 SLT −34.170939 24.645957 9.498 214 314 460 0.95 0.00 10.60 22.94 71.26 5.80 0.00

108 CRR −34.170890 24.646282 10.459 229 361 571 0.96 0.00 17.58 15.24 66.17 18.57 0.02

109 CRR −34.171110 24.646571 11.901 218 351 573 0.96 −0.01 20.53 18.70 63.19 18.05 0.05

110 CRT −34.170858 24.646711 7.335 195 293 442 0.96 0.00 12.43 31.15 64.41 4.41 0.00

111 CRS −34.170820 24.646927 9.258 250 392 625 0.97 −0.02 20.51 10.04 64.54 25.21 0.21

112 CRT −34.170819 24.647034 4.451 209 322 503 0.95 −0.01 11.89 23.57 66.05 10.37 0.00

113 CRR −34.171350 24.647209 13.103 213 316 469 0.95 0.00 16.22 22.98 70.41 6.61 0.00

114 RAS −34.171908 24.647452 19.832 179 265 391 0.95 0.00 12.67 42.77 55.89 1.34 0.00

115 CRR −34.171724 24.647273 21.995 190 272 388 0.96 0.00 16.95 38.57 60.42 1.00 0.00

116 BAC −34.171782 24.646935 20.313 204 308 467 0.95 −0.01 20.51 26.57 66.85 6.58 0.00

117 BAS −34.171910 24.646599 12.622 200 295 437 0.96 0.00 12.42 29.66 66.46 3.88 0.00

118 BAC −34.171930 24.646544 17.910 220 327 489 0.96 0.00 18.03 19.74 71.69 8.57 0.00

119 BAC −34.172095 24.646437 12.622 244 372 571 0.96 −0.01 19.95 11.50 69.24 19.25 0.01

120 CRS −34.171342 24.648271 4.451 197 280 393 0.96 0.00 8.99 34.25 64.66 1.09 0.00

121 CRS −34.171682 24.648521 11.421 202 309 476 0.95 −0.01 13.09 26.68 65.85 7.47 0.00

122 CRS −34.171691 24.648334 13.824 203 288 407 0.96 0.00 16.36 30.69 67.61 1.70 0.00
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Table 1. Cont.

Sample # Location
Code Lat Long Elevation

(m asl)
D10 (Mi-
crons)

D50 (Mi-
crons)

D90 (Mi-
crons) Kurtosis Skewness CaCO3

(%)
Fine

sand (%)
Medium
Sand (%)

Coarse
Sand (%)

Very
Coarse

Sand (%)

123 CRS −34.171218 24.648048 13.103 266 422 678 0.94 −0.01 19.95 7.19 60.04 32.25 0.53

124 CRS −34.171781 24.647969 22.716 189 264 372 0.96 0.01 19.57 41.90 57.63 0.47 0.00

125 CRS −34.172032 24.647721 16.948 188 263 371 0.96 0.01 12.07 42.40 57.15 0.45 0.00

126 INR −34.172320 24.647587 12.863 201 295 432 0.96 0.00 11.01 29.49 67.17 3.34 0.00

127 CRS −34.172309 24.647358 16.468 301 466 733 0.96 −0.02 20.23 2.83 54.98 41.19 1.09

128 BAT −34.172380 24.647111 9.979 214 330 512 0.95 −0.01 13.46 21.34 67.11 11.56 0.00

129 BAC −34.172293 24.646948 12.382 213 313 458 0.95 0.00 17.74 23.50 70.80 5.70 0.00

130 BAT −34.172286 24.646591 10.940 217 325 488 0.96 0.00 14.41 20.83 70.66 8.52 0.00

131 BAC −34.172367 24.646384 10.459 212 317 478 0.96 0.00 14.05 23.17 69.29 7.54 0.00

132 BAB −34.172595 24.646253 4.932 220 330 497 0.96 0.00 12.53 19.34 71.00 9.66 0.00

133 BAB −34.172955 24.646132 6.854 285 500 941 0.96 −0.06 27.29 5.15 44.90 41.99 7.86

134 BAB −34.172679 24.646923 4.692 208 312 471 0.95 −0.01 14.71 25.00 68.10 6.90 0.00

135 BER −34.173066 24.647486 6.614 250 373 558 0.96 0.00 14.17 10.10 72.04 17.87 0.00

136 BAB −34.172787 24.647920 5.172 216 316 463 0.96 0.00 13.70 22.17 71.79 6.04 0.00

137 BAT −34.172667 24.648487 3.490 221 331 494 0.96 0.00 14.50 18.94 71.83 9.24 0.00

138 CRS −34.172431 24.648988 6.614 229 333 485 0.96 0.00 16.86 16.69 75.25 8.06 0.00

139 CRT −34.172160 24.649022 4.451 210 293 408 0.97 0.01 13.16 27.66 70.87 1.48 0.00



Appl. Sci. 2022, 12, 6826 13 of 25

Table 2. Table of p-values obtained for different sediment properties from different sampling locations
(Table 1), analysed using Fisher’s partial least squares discriminant analysis. Significance levels are:
ˆ 0.1, * 0.05, ** 0.01 and *** 0.001.

Location D10 D50 D90 CaCO3 Fine Sand Medium
Sand

Coarse
Sand

Very Coarse
Sand

Backshore, beach 0.0002 *** 0.0004 *** 0.0041 ** 0.0455 * 0.0120 * 0.2313 0.0003 ** 0.0148 *

Backshore, crest 0.0265 * 0.0318 * 0.0475 * 0.0005 ** 0.1433 0.9129 0.0221 * 0.1460

Backshore,
interdune 0.8668 ˆ 0.5823 0.5154 0.9509 0.7269 0.8188 0.3936 0.8481

Backshore, ramp 0.1903 0.3554 0.6308 0.9566 0.0472 * 0.5359 0.7108 0.9965

Backshore, slip face 0.4271 0.4077 0.5417 0.0813 ˆ 0.2634 0.7330 0.4244 0.9953

Backshore, trough 0.4534 0.8241 0.7296 0.0782 ˆ 0.3678 0.8872 0.9339 0.4140

Beach, crest 0.0113 * 0.0144 * 0.0817 ˆ 0.5547 0.0814 ˆ 0.1914 0.0192 * 0.0967 ˆ

Beach, interdune 0.0038 ** 0.0141 * 0.0757 ˆ 0.1113 0.0803 ˆ 0.2343 0.0283 * 0.0674 ˆ

Beach, ramp <0.0001 *** <0.0001 *** 0.0022 * 0.0705 ˆ <0.0001 *** 0.5811 0.0003 ** 0.0241 *

Beach, slip face 0.0069 ** 0.0076 ** 0.0365 * 0.0067 ** 0.0172 * 0.3404 0.0081 * 0.1989

Beach, trough <0.0001 * <0.0001 *** 0.0032 ** 0.0002 *** 0.0004 ** 0.1425 <0.0001 *** 0.0379 *

Crest, interdune 0.1626 0.3588 0.4935 0.0148 * 0.5158 0.7372 0.4968 0.4123

Crest, ramp 0.0007 *** 0.0036 ** 0.0235 * 0.0031 ** 0.0004 ** 0.5245 0.0163 * 0.2081

Crest, slip face 0.0879 ˆ 0.0868 ˆ 0.1549 0.0015 ** 0.0819 ˆ 0.6903 0.0820 ˆ 0.5586

Crest, trough 0.0001 *** 0.0019 ** 0.0328 * <0.0001 *** 0.0018 ** 0.7333 0.0039 * 0.4294

Interdune, ramp 0.2232 0.2070 0.3184 0.9891 0.0532 ˆ 0.4740 0.2720 0.8547

Interdune, slip face 0.4023 0.2783 0.3484 0.0957 ˆ 0.2141 0.8496 0.2197 0.9095

Interdune, trough 0.4658 0.4445 0.6438 0.1765 0.2997 0.8822 0.3813 0.7004

Ramp, slip face 0.9154 0.7360 0.7257 0.0839 ˆ 0.9405 0.5169 0.5545 0.9972

Ramp, trough 0.4020 0.3912 0.3970 0.1098 0.1386 0.4083 0.6216 0.4729

Slip face, trough 0.6099 0.4454 0.4397 0.2822 0.4334 0.7691 0.3904 0.7306

Analysis of the covariation between different sediment properties shows that there
are statistically significant relationships between several property types (Table 3). The
properties that refer specifically to dimensional values of the grain size distribution (D10,
D50 and D90) show evidence for very high correlation coefficients (<0.95) which is indicative
of autocorrelation. Dimensionless parameters of skewness and kurtosis show more variable
relationships but are also relatively strongly correlated (both positively and negatively)
with grain size variables. The nondimensional parameter span broadly expresses the
distributional range of particle sizes within the sample (Equation (1)) and thus has a high
correlation coefficient with distributional parameters (Table 3). The independent parameter
of CaCO3 content shows a strong positive (negative) relationship with coarse (fine) sand
because of the mechanical break up of marine shells over time, forming relatively large
shell fragments mixed in with coarse mineral sand [46].

Averaged spectral characterisation of sediment samples from different geomorphic
positions at Oyster Bay are presented in Figure 5. There are generally similar patterns seen
at all positions, consistent with their generally similar sediment grain size compositions
(Table 2), with some consistent variability in the water absorption bands. There is greatest
variability in particular within the SWIR at ~1850–2400 nm. It is also notable that beach
samples show somewhat more variability than samples from other positions, with higher
reflectance values (compared to other positions) in the VNIR and lower values in the SWIR
(Figure 5a). Based on the high correlation coefficients of beach samples with fine sand
and CaCO3 values (Table 2), we therefore speculate that this spectral variability of beach
samples reflects the disproportionate influence of fine sand and CaCO3 from shell fragments
within these samples. The nature of these samples are now explored in more detail.
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Table 3. Pearson Product Moment Correlation of different sediment properties across all samples
(n = 134). F = fine, M = medium, C = coarse and VC = very coarse. Variable span is defined in the text.
Significance levels are: ˆ 0.1, * 0.05, ** 0.01 and *** 0.001.

D10 D50 D90 Kurtosis Skewness CaCO3 F Sand M Sand C Sand VC Sand

D10 1.000

D50 0.951 *** 1.000

D90 0.754 *** 0.903 *** 1.000 ***

Kurtosis 0.139 0.318 *** 0.634 *** 1.000

Skewness −0.252 ** −0.477 *** −0.793 *** −0.890 *** 1.000

CaCO3 0.571 *** 0.679 *** 0.698 *** 0.337 *** −0.463 *** 1.000

F sand −0.914 *** −0.918 *** −0.761 *** −0.156 ˆ 0.300 *** −0.557 *** 1.000

M sand −0.201 * −0.332 *** −0.451 *** −0.383 *** 0.478 *** −0.411 *** 0.030 1.000

C sand 0.928 *** 0.984 *** 0.872 *** 0.266 ** −0.443 *** 0.679 *** −0.880 *** −0.393 *** 1.000

VC sand 0.414 *** 0.603 *** 0.853 *** 0.813 *** −0.895 *** 0.566 *** −0.367 *** −0.529 *** 0.545 *** 1.000

Span 0.403 *** 0.642 *** 0.902 *** 0.782 *** −0.941 *** 0.593 *** −0.493 *** −0.469 *** 0.616 *** 0.885 ***

3.3. Spectral Analysis of Sediment Samples

The spectral variation at the VNIR and SWIR bands can be examined in detail using
the correlation matrices between selected sample particle size characteristics and CaCO3
content. Here, we systematically calculate the correlation coefficient of D10, CaCO3, D90,
fine sand and kurtosis at 1 nm wavelength increments through the NVIR and SWIR
wavebands (Figure 6). This shows that certain parts of the spectrum are associated with
greater (positive or negative) correlation coefficient values and thus are more useful in
terms of discriminating between different sediment properties at those wavelengths. For
example, in the range ~700–1350 nm there is a clear discrimination between high positive
correlations for D10 and D90 and high negative correlation for fine sand (Figure 6). Here,
kurtosis and CaCO3 shows no correlation. Likewise, in the range ~1850–2450 nm there
is greater statistical discrimination between fine sand (highest positive correlation) and
CaCO3 (highest negative correlation) values. By contrast, the region ~1450–1700 nm is not
useful for discriminating any sediment properties, because there are very low correlation
coefficients throughout (i.e., all correlation coefficients are around zero).

The statistical relationships of CaCO3 values, fine sand and grain size span to different
wavelengths are described in Table 4, which shows the outputs of a linear regression
model for each variable. The results highlight that certain wavelengths have a statistically
significant relationship to some sediment properties. For example, CaCO3 shows greatest
significance in the wavelength range ~1052–1252 nm, which falls within the VNIR part
of the spectrum. Fine sand has the greatest significance at shorter VNIR wavelengths
(~852–952 nm), and span shows significance in isolated parts of the spectrum (2300, 2400 and
2447 nm) at the end of the SWIR range, which may be an artefact of sediment composition
within the sample as a whole, e.g., [47]. Water absorption at the 1352 nm waveband has a
strong signal and therefore this waveband is removed from the analysis (Table 4) in order
to avoid erroneous overfitting.
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Figure 5. Results of spectral analysis of samples from different geomorphic positions at Oyster Bay.
(a) Full average spectrum for samples from the different position; detailed results at (b) the VNIR
(552–1352 nm) and (c) SWIR (1852–2450 nm) parts of the spectrum.
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sediment CaCO3, and particle size characteristics.

Table 4. Analysis of p-values of linear regression of CaCO3, fine sand and grain size span with selected
wavelengths (see Figure 5). Significance levels are: ˆ 0.1, * 0.05, ** 0.01 and *** 0.001.

Wavelength (nm) CaCO3 Fine Sand Span

552 0.0928 ˆ 0.6264 0.9885

652 0.2507 0.9883 0.4891

752 0.7211 0.0928 ˆ 0.0734 ˆ

852 0.7343 0.0096 ** 0.1257

952 0.9410 0.0026 ** 0.2164

1052 0.0077 ** 0.7944 0.3640

1152 0.0100 * 0.9415 0.2201

1252 0.0087 ** 0.4923 0.1494

1462 0.0834 ˆ 0.2163 0.3150

1552 0.3162 0.8246 0.2073

1652 0.2605 0.9801 0.1364

1752 0.1525 0.8957 0.1300

1789 0.1064 0.0480 * 0.0158 *

1962 0.0264 * 0.7977 0.0528 ˆ

2028 0.4413 0.4095 0.2356

2082 0.9618 0.5296 0.6334

2152 0.4212 0.4293 0.7909

2200 0.5897 0.5675 0.6655

2252 0.3046 0.0789 ˆ 0.3075

2300 0.0098 ** 0.4795 0.0085 **

2335 0.1032 0.8612 0.8394
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Table 4. Cont.

Wavelength (nm) CaCO3 Fine Sand Span

2338 0.1530 0.8069 0.7031

2350 0.7137 0.0696 ˆ 0.4356

2352 0.2443 0.0253 * 0.9282

2370 0.3290 0.2500 0.7780

2400 0.3596 0.3150 0.0041 **

2420 0.3237 0.1892 0.2231

2435 0.2855 0.0127 * 0.7258

2447 0.6500 0.0760 ˆ 0.0024 **

2450 0.2281 0.0470 * 0.5175

Adjusted R2 0.8978 0.7510 0.5510

Overall p-value 2.2 × 10−16 *** 2 × 10−16 *** 4.88 × 10−16 ***

CaCO3 values can be estimated using single wavelength relationships as:

CaCO3 = 54.1 − 98.37R2335

(
R2 = 0.718, n = 94

)
(2)

where R2335 is reflectance at the 2335 nm wavelength. A similar model performance can
be achieved at the wavelength between 2038 and 2435 nm. A multilinear relationship can
improve the model estimation as follows:

CaCO3 = 38.99 + 460.23R2200 − 1272.89R2300 + 1158.99R2335 − 409.99R2370(
R2 = 0.872, n = 94

) (3)

where R2200, R2300, R2335, R2335, and R2335 are reflectances at the 2200, 2300, 2335 and 2370
nm wavelengths, respectively. Fine sand can be estimated using the following linear rela-
tionship:

F Sand = 179.06R2450 − 41.01
(

R2 = 0.463, n = 94
)

(4)

where F Sand is the fine sand percentage, and R2450 is reflectance at the 2450 nm wavelength.
Fine sand values can also be estimated using the reflectance from the wavelengths ranging
between 552 and 1789 nm. This can also be used to develop an improved model to estimate
the fine sand percentage as follows:

F Sand = 21.55 − 364.86R1462 + 369.07R2082

(
R2 = 0.721, n = 94

)
(5)

where F Sand is the fine sand percentage and R1462 and R2082 are reflectances at the 1462
and 2082 nm wavelengths, respectively. Span had very poor performing models when
a single band was utilised. For example, the following model was the best performing
single-wavelength model:

Span = 2.15 − 2.43R2038

(
R2 = 0.183, n = 94

)
(6)

where R2038 is the reflectance at the 2038 nm wavelength. A multilinear model can be
developed using highly correlated wavelengths ranging between 852 and 2450 nm, as
shown below:

Span = 1.68 − 24.66R852 + 29.62R952 + 59.44R2252 − 131.36R2300 + 79.47R2350−
73.27R2400 + 62.52R2447

(
R2 = 0.516, n = 94

) (7)
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where R852, R952, R2252, R2300, R2350, R2400, and R2447 are reflectances at the 852, 952, 2252,
2300, 2350, 2400 and 2447 nm wavelengths, respectively.

Fine sand and span are not well predicted using single wavelength models (see Table 4),
whereas CaCO3 shows a much stronger relationship. The models were then validated using
40 independent samples that were not used in the model development (Figure 7). It is no-
table that a multilinear model leads to a better fit between measured and estimated values.
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Cross-validation of the output of the linear regression model (Table 4) through compar-
ison between predicted and measured samples is shown in Figure 8. R2 values, adjusted for
the number of variables considered in each model, are higher for CaCO3 with decreasing
values for fine sand and span. An increased degree of scatter reflects the inability of the
model to describe all of the sample points, and this is particularly the case for span (see
Figure 7). Thus, CaCO3 and fine sand values show the most robust statistical relationships
to the spectral measurement data.
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The spectral characteristics of shell samples 1–5 are presented in Figure 9. Throughout,
this shows higher absorption values in the SWIR with consistent dips between all samples
at the wavelengths ~1100, 1600 and 2000 nm. The latter may correspond to the water
absorption wavelength at ~1950 nm. There is also a very slight jump in reflectance at the
water absorption wavelength at ~1450 nm. In addition, the individual shell samples show
some variability in the VNIR bands in particular, because of the different shell colours
present (Figure 2).
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In order to consider whether there are any spectral differences between individual
sediment samples with different values of CaCO3, fine sand and span, the samples with
the highest and lowest values of these parameters (Table 1) are compared to each other
(Figure 10). All these samples reflect the aggregated patterns shown in Figure 5a, in which
there are decreases in reflectance in the water absorption bands. The samples also show
that, irrespective of individual values of CaCO3, fine sand and span, there are similar
reflectance values in the range 1400–1950 nm (see Figure 6). In more detail, comparison of
the CaCO3 values within individual samples shows that shorter wavelengths have a higher
reflectance where higher CaCO3 values are present, but that the sample with the lowest
CaCO3 values has a higher reflectance at longer wavelengths (Figure 10a). This is mirrored
by the results for fine sand (Figure 10b), where the signature for the sample with the lowest
amount of fine sand (i.e., the coarsest sample) is very similar to the sample with the highest
amount of CaCO3. The reason for this is that broken marine shells (as the source of CaCO3
in the sample) give rise to coarse rather than fine sediment [46]. The parameter span, as a
reflection of sediment sorting, tends to reflect the presence of coarser outliers in the sample
(see the potential autocorrelation with coarse sediment in Table 3) and is therefore of less
interpretive significance than either CaCO3 or fine sand (see Figure 8).
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4. Discussion

The presence of a wave-dominated shoreface and wide supratidal zone with mi-
grating transverse dunes (Figures 1 and 4) is typical of the south- and southeast-facing
South African coast, in which the dunes have a net eastward migration rate of some
3–12 m yr−1 [39,48,49]. Sediment grain size analysis of field samples from Oyster Bay
shows that overall they are fairly texturally uniform but with some significant differ-
ences in properties between different beach–dune sub-environments (Table 2) and a wide
range of carbonate contents (Table 1). The values obtained for grain size properties are
similar to other beach–dune systems in the region, e.g., [50,51]. The relatively limited
textural and compositional differences mean that it is sometimes difficult to distinguish
between such coastal samples, especially in wave-dominated shoreface environments
and wind-affected supratidal environments, where sediments are relatively well sorted
e.g., [2,4,11,52]. This is certainly the case with beach–dune sediments along the South
African coast, e.g., [39,45,49,51,53]. However, detailed statistical analysis shows that differ-
ent landforms and beach–dune settings at Oyster Bay have different sediment properties
(Table 2). This is particularly the case with grain size endmembers (fine and coarse sand)
and CaCO3 values that reflect the presence of broken marine shells (not land snail shells)
and thus a shoreface source. It is also notable that there are similar overall spectral sig-
natures of all samples (Figure 5), irrespective of their depositional environment (Table 2),
which means that the depositional environment of any one sediment sample cannot be
resolved by their spectral signature alone. One potential reason for this is that all of the
field sediment samples examined here are quartz-dominated (data not shown) and thus,
variations in mineralogy cannot be considered as a significant control on their spectral
signatures, unlike in previous studies, e.g., [29,47,54]. Although the spectral signature
of interstitial water is a dominant feature in other previous studies of coastal sediments
e.g., [25,26,32], we deliberately excluded this by drying the samples prior to analysis. This
enabled the spectral data of the Oyster Bay samples to be a better representation of grain
size and CaCO3 properties (Figure 6), which is the primary aim of this study.

Spectral characteristics of sand systems (beaches, dunes and deserts) have been ex-
amined in several studies, e.g., [54,55], and these highlight the potential application of
spectral analysis techniques to inform on, in particular, mineralogy and depositional envi-
ronments [29,32,34–36,47]. Similar to this study, the VNIR part of the spectrum has been
previously identified as the most useful in terms of sediment discrimination [55]. There are
fewer studies, however, that have looked at grain size data and CaCO3 content. In detail,
the spectral reflectance of these samples, however, revealed some fundamental differences
between CaCO3 content, fine sand proportion and span (Figure 6). These properties also
show statistically significant correlations with certain wavelengths (Table 4). However,
despite the evidence for some differences in spectral reflectance at different wavelengths for
samples with different values of CaCO3 and fine sand (Figure 10), this does not mean that
spectral reflectance can be used to predict values of these sediment properties in unknown
samples. This is because measured reflectance values at any wavelength are the net result
of all grains within the entire sample and not one single component such as shell fragments.
In addition, detrital sediment samples of different provenance or found in different depo-
sitional environments could have a range of lithologies, water, organic content or other
materials, such as microplastics, that may affect spectral reflectance, e.g., [56]. Previous
field studies also show the spectral dominance of water absorption signals, e.g., [18,25],
and these tend to drown out any signals related to sediment grain size or CaCO3, hence
the methodology applied in this study.

These results and their caveats highlight that the potential for spatial mapping of sedi-
ment properties across beach–dune environments using hyperspectral imaging techniques
may be challenging because of (1) the uncertainties associated with the interpretation of
spectral signatures, even under laboratory conditions, and (2) the multiple environmental
factors that may be present in a natural beach–dune environment and that may also affect
spectral reflectance signatures, including microtopography, vegetation/algae, and salt and
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water content. Studies on tidal flats also highlight specific problems related to silt and mud
particles and chlorophyll content [25,30,35], and these also have to be considered along
coastlines that may contain many different types of depositional settings, as well as the
spatial transitions between them.

5. Conclusions

This study, based on field samples from a South African beach–dune system, shows
both the complexity and potential of hyperspectral techniques to analyse the properties of
these samples (with respect to grain size and CaCO3 content), and their limitations. The
major conclusions from this study are:

Statistically, CaCO3, fine sand and span are the most important sediment properties in
terms of their ability to distinguish between coastal depositional environments (Table 3);

These properties in particular have distinctive spectral signatures in different parts of
the VNIR and SWIR wavebands (Table 4);

Fine sand and CaCO3 in particular are clearly distinguishable at ~1850–2450 nm in the
SWIR waveband (Figure 6);

Shell content (giving rise to CaCO3 values) and different shell types show somewhat
different spectral signatures (Figure 9).

It is notable that previous studies have not described these sediment properties using
such analytical techniques and in such a level of detail. The results from this study provide
the basis for working towards the automated mapping of a beach–dune environment using
hyperspectral satellite data, which must be seen as a long-term goal vital for ongoing
monitoring of climate change-sensitive environments.
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52. Çelikoğlu, Y.; Yüksel, Y.; Kabdaşlı, M.S. Cross-shore sorting on a beach under wave action. J. Coast. Res. 2006, 22, 487–501.

[CrossRef]
53. Olivier, M.J.; Garland, G.G. Short-term monitoring of foredune formation on the east coast of South Africa. Earth Surf. Proc. Landf.

2003, 28, 1143–1155. [CrossRef]
54. Bandfield, J.L.; Edgett, K.S.; Christensen, P.R. Spectroscopic study of the Moses Lake dune field, Washington: Determination of

compositional distributions and source lithologies. J. Geophys. Res. 2002, 107, 5092. [CrossRef]
55. Sadiq, A.; Howari, F. Remote Sensing and Spectral Characteristics of Desert Sand from Qatar Peninsula, Arabian/Persian Gulf.

Remote Sens. 2009, 1, 915–933. [CrossRef]
56. Moshtaghi, M.; Knaeps, E.; Sterckx, S.; Garaba, S.; Meire, D. Spectral reflectance of marine macroplastics in the VNIR and SWIR

measured in a controlled environment. Sci. Rep. 2021, 11, 5436. [CrossRef] [PubMed]

http://doi.org/10.1007/s00367-021-00717-4
http://doi.org/10.2113/gssajg.117.1.109
http://doi.org/10.25131/sajg.124.0032
http://doi.org/10.1016/0033-5894(72)90035-X
http://doi.org/10.1016/S0016-7061(98)00023-8
http://doi.org/10.1016/0037-0738(82)90026-4
http://doi.org/10.1155/2018/3168974
http://doi.org/10.1007/BF02394038
http://doi.org/10.1016/j.aeolia.2019.02.003
http://doi.org/10.1080/03736245.1985.10559704
http://doi.org/10.2112/05-0567.1
http://doi.org/10.1002/esp.549
http://doi.org/10.1029/2000JE001469
http://doi.org/10.3390/rs1040915
http://doi.org/10.1038/s41598-021-84867-6
http://www.ncbi.nlm.nih.gov/pubmed/33686150

	Introduction 
	Study Area and Methods 
	Results 
	Site Geomorphology and Sediment Dynamics 
	Sediment Properties 
	Spectral Analysis of Sediment Samples 

	Discussion 
	Conclusions 
	References

