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Abstract: Carbon dioxide (CO2) emissions from fossil fuels have led industries to seek cheaper carbon
abatement technologies to mitigate environmental pollution. Herein, the effect of a magnetic photo-
catalyst (Fe-TiO2) on biogas production in anaerobic digestion (AD) of wastewater was investigated
with three bioreactors coupled with UV-light (18 W). Three experimental setups defined as the control
(AD system with no Fe-TiO2), biophotoreactor (BP), and biophotomagnetic (BPM) systems were
operated at a mesophilic temperature (35 ± 5 ◦C) for a hydraulic retention time (HRT) of 30 days.
The control system (ADs) had no Fe-TiO2 additives. The BPMs with 2 g Fe-TiO2 were exposed to a
magnetic field, whereas the BPs were not. The removal rate of the chemical oxygen demand (COD),
volatile solids (VS), and total solids (TS), together with biogas production and composition were
monitored for each reactor. The degree of degradation of 75% COD was observed for the BPMs at a
pH of 6.5 followed by the BPs (65% COD) and the ADs (45% COD). The results showed that the rate
of degradation of COD had a direct correlation with the cumulative biogas production of the BPMs
(1330 mL/d) > BPs (1125 mL/d) > AD (625 mL/d). This finding supports the use of biophotomagnetic
systems (BPMs) in wastewater treatment for resource recovery and CO2 reduction (0.64 kg CO2/L)
as an eco-friendly technology.

Keywords: anaerobic digestion; biogas; biophotomagnetic; biophotocatalysis; magnetised photocatalysts;
CO2 reduction; nanotechnology; photocatalysis

1. Introduction

The development of zero waste technology and municipal waste management is
critical for sustainable development, as CO2 emissions from fossil fuel combustion continue
to be a global concern [1,2]. In essence, conventional energy sources such as natural gas,
coal, and petroleum are continuously exploited. Due to the current overdependence on
these fuel sources, which are depleting but have significant ecological impacts, there is a
rising need for alternative fuels [3]. Furthermore, anthropogenic CO2 emissions, which
contribute to global warming and climate change, have prompted the globe to seek out
alternate actions to mitigate or control CO2 emissions [4]. The wastewater treatment settings
cannot be overlooked in this regard, particularly considering the prospect of boosting its
circular economy [5–9]. Herein, energy-saving wastewater treatment systems have become
essential, especially with the upgradation of biogas produced by anaerobic digesters (ADs).

Anaerobic digestion (AD) is a technique that transforms organic matter in biomass
resources into biogas with methane (CH4) as a source of sustainable energy [5,10,11]. Of
essence, AD creates economic opportunities by producing bioenergy (60–70% methane) and
stabilized digestate under suitable conditions to ease pollution [12]. The AD process utilises
microorganisms’ degradation potential in an ecologically responsible, odour-reducing, and
pathogenic organism-degrading mode, particularly in bioreactors operating at temperatures

Appl. Sci. 2022, 12, 6840. https://doi.org/10.3390/app12146840 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12146840
https://doi.org/10.3390/app12146840
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1400-7847
https://orcid.org/0000-0002-9046-1892
https://orcid.org/0000-0002-4677-5309
https://doi.org/10.3390/app12146840
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12146840?type=check_update&version=2


Appl. Sci. 2022, 12, 6840 2 of 9

within the mesophilic (25–45 ◦C) or thermophilic (>45 ◦C) ranges [5,10,13]. Additionally,
produced biogas frequently contains pollutants such as H2S and CO2, which reduce the
calorific value of the biogas and corrode equipment such as pipelines and incineration
engines [5,10]. Co-digestion, pre-treatment, reactor design, and additives to stimulate
bacteria growth and prevent inhibitory effects are some of the strategies utilized to address
this [5,13–15]. In this study, the concept of photoreduction of CO2, which involves the con-
version of the non-energy-rich component of the biogas into methane, is highlighted [11].

In essence, biogas has been exploited as an alternative to fossil fuel for energy gen-
eration, and the concept of reducing the CO2 component to methane is limited. Biogas
produced via anaerobic digestion of organic waste is composed of 55–65% methane and
35–45% CO2 and other gases such as H2S [16]. To solve the shortcomings, several abatement
solutions have been proposed, whereby the AD process coupled with CO2 photoreduction
is gaining attention [12,17,18]. This technology involves the use of a photocatalyst in the
presence of UV-light, visible light, or sunlight to convert the CO2 to methane, which is rich
in energy [4,19]. In photocatalytic CO2 reduction, an incident light (UV, visible light, or
sunshine) activates the photocatalyst surface. In doing so, it causes the electrons to shift
from the valence band to the conduction band to form a hole and produce electrons [20,21].
The water molecules divide into hydroxyl and hydrogen ions, which then react with the
released electron species. For example, CO2 generated from fossil fuel combustion is ab-
sorbed and converted to energy-rich methane by catalytic electrolysis [3]. Subsequently,
the addition of nanoparticles to the AD process to enhance biogas production has gained
attention [22,23].

Therefore, a biophotocatalytic reduction of CO2 produced anaerobically into methane
by the seeding of a magnetic photocatalyst is shown in this study (Fe-TiO2). Three distinct
configuration systems were explored in this study for reducing sugar refinery wastewater
contamination, biogas generation, and methane yield, as well as reducing CO2 emis-
sions. The modified Gompertz model was utilised to establish the model’s operational
variables kinematically.

2. Materials and Methods
2.1. Wastewater and Activated Sludge

In this study, The wastewater samples were taken from the biofiltration stream that
goes into a bio-digester and clarifier at a sugar refinery wastewater treatment plant in
Durban, KwaZulu–Natal, South Africa. This sample point (Figure 1) had a mixture of
dewatered centrate with less than 5% solids and biofiltration effluent. The supernatant
was employed as substrate in this experiment, whereas the digested sludge was used as
inoculum. The magnetite photocatalyst (Fe-TiO2 NPs) used was engineered and charac-
terised at a high magnification of 10–50 kx and landing energy capacity of 20 keV and, as
depicted in our previous studies [5], had a surface and average crystallite size of 6.5 mm
and 20 µm [7,24]. Characteristics of the wastewater sample is presented in Table 1.
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Table 1. Composition of wastewater sample.

Parameters Value

pH 7.5
Chemical oxygen demand (mg COD/L) 1600 ± 16.2

Turbidity (NTU) 155 ± 2.6
Colour (Pt.Co; 465 nm) 85 ± 3.6
Total solids (mgTS/L) 135 ± 12

Volatile solids (mgVS/L) 94 ± 6.8

2.2. Experimental Setup

Experimental setup protocols were adapted from Kweinor Tetteh and Rathilal [5]
and Tetteh and Rathilal [7]. Figure 2 presents the experimental setup employed in this
study. Three 1-L Duran Schott bottles used as bioreactors were coupled with UV-light (T8
blacklight-blue bulbs 400 nm, Philips, Netherland), a hotplate magnetic stirrer (temperature
regulator), and biogas collection system. Each duplicated reactor was charged with 80%
working volume of inoculum to substrate ratio of 3:5 seeded with or without a magnetic
photocatalyst of 2 g of Fe-TiO2 NPs. Herein, these bioreactors, defined as control (AD system
with no NPs), biophotoreactor (BP system with NPs) and biophotomagnetic (BPM system
with NPs), were operated at a hydraulic retention time (HRT) of 30 days at a temperature of
40 ◦C and intermittent mixing at 15 rpm. Two magnetic bars (GMX model 400) used on the
BPM system was obtained from Chino, California, USA. The daily biogas was monitored
by downward displacement techniques, while its composition was characterised by Gas
Chromatography (GC 2014, Shimadzu). The degree of efficiency of the contaminant removal
and the modified Gompertz kinetic model for the biogas production were respectively
estimated by Equations (1) and (2).
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where, Ci = Substrate influent and C f = Substrate effluent. The cumulative biogas produc-
tion data obtained were evaluated by the modified Gompertz Equation (2) [5,7].

Y = ym.exp
(
−exp

[
Rmax. Ce

ym
[λ− t]

]
+ 1

)
(2)

where, Y = cumulative specific biomethane (mL/g COD) at time t (days), ym = the methane
potential (mL/g COD), λ = lag phase of producing biogas (day), Ce = mathematical constant
(2.718282), Rmax = the maximum specific substrate uptake rate per maximum biogas
produced (mL/g COD.day) and k is the methane production rate constant (1/d), expressed
as k = Rmax. Ce

ym .

3. Results

The magnetic field and photocatalyst (Fe-TiO2) influence on the BPs and BPMs were
compared with a control AD system for the degradation of the organic matter (COD),
biogas production and methanation (biogas enhancement). Among these bioreactors is
the biophotomagnetic (BPM) system, whose efficiency supersedes that of the BP and AD
systems. Table 2 presents the comparative summary of results obtained after the 30-day
incubation of the three bioreactors by monitoring the degree of degradation in terms of
COD reduction to ascertain the treatability performance. Evidently, the rate of degrading
the solid content of the wastewater, as revealed by the VS/TS ratio, contributed to the
COD reduction (Figure 3). The cumulative biogas data (Figure 4) were also fitted on the
Gompertz kinetic model (2), whereby the kinetic conditions obtained are presented in
Table 3. Moreover, each bioreactor system achieved distinctive potential for the carbon-
based content of the biogas produced and methane yield (Figure 5).

Table 2. Summary of bioreactor performance after 30 days of incubation.

Parameters AD System BP System BPM System

pH 6.8 6.5 6.5
Chemical oxygen demand (mg COD/L) 880 560 400

VS/TS 0.776 0.962 0.979
Cumulative biogas produced (mL) 625 1125 1330

Methane portion (%)
Carbon dioxide (%)

65.5
34.5

95
5

98
2

Total energy produced in 30 days (kWh) 550 1470 2027
Assumed 33% electricity produced (kWh) 182 485 669

CO2 emission reduction (kg CO2/L) 0.173 0.464 0.640

Table 3. Summary of modified Gompertz kinetic model parameters.

Bioreactor AD System BP System BPM System

Measured (Y, mL/g.d COD) 625 1125 1330
Predicted (Y, mL/g.d COD) 658.58 1117.828 1370.55

k (d−1) 0.131 0.189 0.193
λ (d) 10.7 9.62 9.21
SSE 8102.02 5551.23 4131.10
R2 0.994 0.998 0.999
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4. Discussion

In this section, the wastewater degradation efficiency, the biogas produced and compo-
sition as well as the estimated energy produced, and the CO2 emission reduction are discussed.

4.1. Degradation of the Organics

The Fe-TiO2 additions in the BP and BPM systems increased the degradability activity
as shown with an increase in the COD removal (Figure 3). Evidently, the anaerobic hydroly-
sis and methanogenesis were thermodynamically favoured when Fe-TiO2 was magnetically
seeded with electron donors (Fe, OH, H, and Ti species) [5,20]. This electroreceptive reac-
tion expressed in Equations (3) and (4), demonstrated the release of the Fe3+ species in the
bioreactors facilitated the sulphur-reducing microbes [20,25].

Fe + 2H2O→ Fe (OH)2 + H2 (3)

4Fe + SO2 + 4H2O→ 3Fe(OH)2 + FeS + 2OH− (4)

According to Ajay et al. [26], the aggregation of trace metals is responsible for the
acidification or alkalinity surge in the reactor system. The microbial activity in the system
indicates metal imbalance scorn the nutritional benefits of most metals [25–27]. This shows
that bioavailability of metal species for microbial uptake in the reactors (AD alone, BM,
and BPM) may vary based on chemical and biological circumstances. Thus, improving
the reactor requires metals as macro or micronutrients for microbial metabolic enzymatic
activities and growth. The nutritional balance aided substrate breakdown and biogas
production [6,15,22].
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4.2. Biogas Production

Generally, biogas constituting hydrogen (H2), methane (CH4), and carbon dioxide
(CO2) are the biologically digester end-products of the wastewater substrates. In essence,
reducing the CO2 content into a more ecofriendly gas involves a series of mechanism [15,28].
The methanation reaction between the CO2 and H2, was being influenced by the Fe-TiO2
induced with the activated energy of the UV-light. Herein, the hydrogenation process
or hydrolysis of the water molecules splitting (H2 and O2) was being ignited by coupled
photocatalysis [29]. In addition, the incorporation of the magnetic field influenced the
agglomeration of the action of the hydrogenotrophic methanogens in conversion of the
CO2 into methane [5]. This reaction mechanism is expressed in Equation (5).

CO2 + 4H2 → CH2 + 2H2O (5)

Figure 4 shows the cumulative biogas production volume at different levels of the
three bioreactors operated at the same conditions for 30 days. The maximum cumulative
biogas estimated for the biogas produced by the bioreactors (BP = 1125 mL; BPM = 1330 mL)
with the Fe-TiO2 additives were found to be significantly different from that of the control
(AD = 625 mL). The BPM system, where 2 g of Fe-TiO2 additives was added on an average
basis, was estimated to be 788 mL/d, followed by the BP system with 671 mL/d and
the AD system with 345 mL/d. Kinetically, the cumulative data obtained were well-
fitted on the modified Gompertz model (2), where the operating variables obtained are
presented in Table 3. There exists a significant correlation (95% confidence level) between
the degradation of the carbon content of the wastewater to biogas with a high regression
coefficient (R2 > 0.9). These findings correlate with other studies, whereby the Fe-TiO2
additives increased the surface area of the sludge. This enhanced the microbial activity and
hence resulted in high biogas production as compared to the AD system [20,25].

After the HRT of 30 days for methanogenesis, the biogas composition was charac-
terised as showing a high methane yield greater than 65% in the increasing order of the
systems as AD < BP < BPM. As shown in Figure 5, there was an impact in both the biogas
and methane of the BP and BPM systems. There was partial degradation in the AD system,
which is consistent with previous studies that showed the AD process to be kinetically
unstable with a general methane potential of 50–65% [7,20,25].

4.3. Energy Estimation and CO2 Reduction Estimation

The energy efficiency and environmental impact was estimated based on the conver-
sion rate of the biomethane into electricity. This was estimated based on the assumed 78%
of the energy produced (Table 2), where 33% was electricity generated from the biogas
and 45% was generated from the heat in a cogeneration process. In Expression (6), for the
electricity generated (Elbio ) from the biomethane per unit effluent volume (kWh/m3), the
Elbio is the total biogas generated [6,26].

Elbio = 0.33Ebio (6)

Herein, CO2 emission reduction was therefore estimated as a function of the electricity
produced to power the UV lamp of the photoreactors with respect to the base line grid
emission factor of 0.957 kg CO2 e/kWh as given in Equation (7).

CER = GEF× Ebio (7)

Generally, the bioconversion of carbon dioxide to methane of anthropogenic emission
from wastewater treatment plants and landfill gases can necessitate the reduction in global
warming [15,17,30]. In this case, the maximum CO2 emission reduction (kg CO2) was
estimated to be 0.640 kg CO2/L for the BPM system with the rest depicted in Table 2.

Therefore, the BPM system has shown great potential in significantly contributing to
decreasing greenhouse gas emissions and mitigating unusual climate change. Additionally,
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the abatement of greenhouse effects in the wastewater settings can easily be managed with
less effort as compared to petrochemical industries. Moreover, the wastewater from the
sugar refinery used in this study constitute a high carbon content, which can be used by
the BPM system to produce enough energy to offset the photoreactor. Furthermore, the
magnetic field incorporated in the BPM, as reported in previous studies [7], has the potential
impact for recoverability of the magnetised photocatalyst for reuse. Hence, expanding
this technology will also warrant reduction in operation costs such as the pressing cost of
chemicals used in the wastewater settings.

5. Conclusions

This study presents a biophotomagnetic system as an energy-saving wastewater treat-
ment option with the upgradation of biogas produced by anaerobic digesters. This study
strengthened the knowledge of valorisation of sugar refinery wastewater anaerobically
for biogas production and CO2 emission reduction via photoreduction. Three bioreactor
configurations were investigated at the same conditions for 30 days. Among them, the
biophotomagnetic (BPM) system seeded with Fe-TiO2 was found to be the most effective
inherent to wastewater treatment (75% COD removal), biogas produced (13,330 mL), and
methane yield (98% CH4) as compared to the ADs of 65.5% CH4. The good performance of
the BPM system has been attributed to the biostimulation influence of the Fe-TiO2 addi-
tives ignited by the UV-light and the magnetic field. Cumulatively, the biogas data were
well-fitted on a modified Gompertz kinetic model, and the operational variables defined
were found to be significant (p < 0.05). It also revealed that the start-up and acclimatisation
of the microbes in the BPM system was shorter (9 days; k = 0.19 d−1) as compared to the
BP (10 days; k = 0.18 d−1) and AD (11 days; k = 0.13 d−1) processes. To offset the energy
demand by the UV-light for the BPM system and environmental conservation, a CO2 emis-
sion reduction of 0.64 kg CO2 e/L was attained. Conclusively, the BPM system is foreseen
to be an eco-friendly technology and therefore integrating its industrial applications must
be given attention.
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