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Abstract: An experiment with a multistage high-speed compressor is conducted to investigate the
high noise with abnormal blade vibration. Different points are selected to monitor the noise in
the compressor and the amplitude of blade vibration. The evolution rhythm of sound frequency
and sound pressure level against speed is captured. The relation between the vibration and the
noise is obtained. A research method based on an acoustic analogy is developed to investigate
the characteristics and mechanisms of high-intensity sound in a rectangular cavity pipeline. The
calculated distribution of the first four-order acoustic mode inside the rectangular cavity pipe is
consistent with the results in the literature, and the maximum calculation error of the acoustic mode
frequency value is 2.7%, which certifies the effectiveness of the method. A simplified compressor
model is established to study the vortex system and the sound field characteristics of this method
when high-intensity sound occurs. The results present the motion law of shedding vortices with high-
intensity sound, and the calculation error of the frequency corresponding to the high-intensity sound
is 3.6%. The “frequency-locked phase-locked” characteristics (i.e., character frequency) keep constant
at a range of velocities, showing similarity with the phenomenon obtained in experiment above, and
beta mode forms of Parker are captured. The study in the present paper makes a contribution for the
cognition of mechanisms with high-intensity sound in aeroengine compressors.

Keywords: compressor; high-intensity sound; frequency locked; shedding vortex; acoustic mode

1. Introduction

Research institutions such as the National Aeronautics and Space Administration
(NASA) in the United States and Deutsches Zentrum für Luft- und Raumfahrt (DLR) in
Germany have discovered many structural failures in engine casing components, such
as rotor blades and casing, which all result from high-intensity sound [1,2]. Additionally,
the “Engine Structural Integrity Plan” presents the notion that the verification of high-
intensity sound in aeroengines is difficult because of the simultaneous occurrence of
multiple acoustic modes within a closed space. The emergence of multiple modes actually
reduces the intensity of every acoustic mode [3]. The establishment of the theoretical
model for predicting the occurrence of high-intensity sound in a compressor is rather
complicated due to numerous factors including changed duct geometry, the propagation of
acoustic waves, load changes, and so on. The simulation of the whole process of pressure
disturbance, as well as the coupling calculations in the three-dimensional field for flow,
sound and structure are difficult to finish with unsteady methods due to unacceptable
computational costs. Therefore, it is necessary to derive a simplified model to study
high-intensity sound in multistage compressors [4].
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Parker [5] successfully established the first high-intensity sound model based on the
plate cascade and experimentally studied acoustic waves and the interaction between shed-
ding vortices and sound. The typical characteristic of “frequency-locked” was presented
in the experiment. The proposal of Parker’s mode further clarifies that the plate vibration
pattern is determined by the interaction between the sound and plate in the duct [6–8].
Clements made a detailed explanation for the evolution of the shedding vortex of the
rectangular plate with a numerical simulation on a two-dimensional cascade model [9]. The
key factors affecting high-intensity sound, including slab thickness, the shape of the plate
trailing edge, the dimensions of the pipeline, and so on, are ensured, as is the interaction
mechanism between plate wake flow and flow-induced high-intensity sound in hard-walled
pipelines [10]. Thompson completed the recovery of the shedding vortex from the trailing
edge of the plate locked in the duct with the assumption that there was little influence on
the results from flow velocity changing, and found the phenomenon of the coupling of
sound wave frequency and vortex frequency and the interaction between the sound wave
and the shedding vortex [11,12]. For the study of high-intensity sound in real compressors,
Hellmich used a numerical model to capture the interaction of the compressor blades and the
acoustic waves during propagation in a multi-stage compressor [1]. Courtiade then used an
experiment base from that model to explore the reason for the occurrence of high-intensity
sound [13]. Cooper established an excited disk model that could recover the processing
of the high-intensity sound of aeroengines and pointed out that the high-intensity sound
only occurred in certain combined conditions of the parameters, such as rotor speed, flow
velocity, and some other elements [14]. Some investigation into broken components in
aeroengines has been implemented [15–17]. Parker’s study regarding the high-intensity
sound in ducts points out the importance of the interaction between acoustic waves and
plate wake vortices, which make a foundation for the failure of the components—especially
the blades in the compressor of the aeroengine—that arise with high-intensity sound.

Structural acoustic resonance is the coupled vibration between the sound and the struc-
ture, and is associated with the high-intensity sound in the internal cavity of the structure,
and the physical essence of it is the fluid-induced cavity sound. In 1878, Strouhal conducted
an experimental study of the sound of a wire at discrete velocity ranges of wind, which
was a precedent study for the wake sounds of turbulent fluid in a flow field. Experiments
showed that the vortex shedding frequency of the wire wake was approximately equal to
the sound frequency which occurred under specific wind speed conditions. The method,
which combined computational fluid dynamics (CFD) technology with acoustic analogy, is
taken by most researchers to solve problems when performing the numerical simulation
of flow-induced acoustic problems in the development of computational aeroacoustics.
The most famous Lighthill equation provides a good theoretical foundation for solving
aeroacoustic problems, and is also an important technical mean for the development of
numerical calculation methods [18]. Bailly extracted the sound source information from
the turbulent shear layer with the Lighthill equation in the study of supersonic aircraft
jet noise [19]. The final noise directivity prediction results showed good agreement with
the experimental results. Taking the Reynolds-averaged Navier–Stokes (RANS) method to
extract the sound source information from the flow field is impossible due to the fact that
it is only suitable for average flow problems, which results in the failure of representing
unsteady flow information effectively [20]. In order to solve that problem, a hybrid large
eddy simulation (LES)/RANS method was developed to capture the velocity and pressure
information of the unsteady flow field, using the acoustic analogy method to achieve the
effective prediction of jet noise [21]. In dealing with the radiation noise prediction of the
three-dimensional square cavity structures under complex flow conditions, Lai completed
the calculation of the acoustic radiation characteristics of the structure in the far field with
a method combining the LES and The Ffowcs Williams and Hawkings Model.(FW-H) equa-
tions [22]. Flemming first achieved the simulation of the combustion reaction flow field at
a low Mach number with LES, and loaded the sound source term and nonuniform flow
field information caused by combustion into the acoustic wave equation with the acoustic
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analogy method, thereby realizing the prediction of combustion noise [23]. The combined
use of the LES and the acoustic analogy method make a significant contribution to the
noise prediction problem under the action of complex turbulence. A relevant adjustment
should be made in the acoustic analogy equation according to the boundary conditions,
flow characteristics and other factors.

The influence of the solid wall was taken into context by Curle, who made a contribu-
tion to the calculation of the problem of the variable flow cross section and then improved
the equation that had been established with the base of the Lighthill equation [24]. Thus,
researchers try to rectify convection-induced sound sources by solving the flow field where
the structure is located, then converting the aerodynamic force as the sound source term
with the acoustic analogy equation. Some numerical simulations have been validated for
this method [25–27]. The sound source arising from the action of the solid wall shows a
relation between it and the force from the wall. Thus, there is a need to take this aerody-
namic force resulting from the solid wall into account for flow-induced sound problems.
Blasius established the relationship between aerodynamic force and vortices with theory,
making it possible to exclude the force arising from the object, as verified by Howe [28].
Escoba studied the reappearance of sound information in a structure through numerical
simulation, but did not consider the influence of sound on flow [29]. Although numerous
investigations have aimed to characterize this flow-induced sound issue, there is a huge
gap in its application in engineering [30]. Therefore, there is urgent need for an accurate
and reasonable numerical method to solve the coupling problem of sound and flow. This
paper focuses on the sound problem of the shedding vortex from the trailing edge of the
plate inside a rectangular cavity pipeline using a method combining LES and acoustic
analogy, which is regarded as a good solution for the complex turbulent sound problem.

The experiment on the multistage high-speed compressor is conducted to investigate
abnormal vibration with the high noise of the blades. The noise spectrum is obtained by the
deployed monitored points. Characteristic frequency gradually increases with increasing
rotational speed, and there is a phenomenon that the characteristic frequency is locked in a
range of rotor speed. The research method based on the acoustic analogy is developed to
study the characteristics and mechanisms of high-intensity sound in this paper. Initially, a
rectangular cavity pipeline model is established to analyze the distribution characteristics
of the vortex system and the acoustic mode distribution in the duct under flow conditions,
and verify the validity of the acoustic analogy method with the identification of the acoustic
modes in the pipeline. Then, we use the acoustic analogy method to calculate the built-in
plate pipeline model, which is a simplified compressor model based on Parker’s model.
The sound pressure level spectrum of this model includes high-amplitude pure sound
components and is characterized by a frequency-locked, phase-locked system, which is
consistent with the phenomenon in the experiment. The method proposed in the present
investigation may make a contribution to the cognition of mechanisms with high-intensity
sound in aeroengine compressors.

2. Numerical Calculation Theory
2.1. Flow-Induced Sound Theory

During the calculation, the renormalization group (RNG) k− ε model is selected to
calculate the steady-state flow field. The LES turbulence model is taken in the present
investigation for transient flow field calculations [31]. After addressing the flow field, the
Lighthill acoustic analogy method is taken to derive the sound source information from the
flow field information [32]. The mass conservation and momentum conservation equations
are as follows: 

∂ρ
∂t +

∂ρvi
∂xi

= 0
∂ρvi
∂t +

∂ρvivj
∂xj

= − ∂pij
∂xi

(1)
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In the above equation, the term pij can be expressed as:

pij = pδij − τij (2)

where ρ, p and v are the density, pressure and velocity in the presence of acoustic distur-
bances in the flow. δij is the Kronecker notation (δij = 1, δij = 0; i 6= j).

Taking the time and space partial derivatives of the formula in Equation (1), the
following can be obtained:

∂2ρ

∂t2 =
∂

∂xi

(
∂ρvivj

∂xj
+ δij

∂p
∂xi

+
∂τij

∂xj

)
(3)

Subtracting c0
2 ∂2ρ

∂xi
2 from both sides of Equation (3) simultaneously:

∂2ρ

∂t2 − c0
2 ∂2ρ

∂xi
2 = −

∂2Tij

∂xi∂xj
(4)

The parameters of Equation (4) satisfy the following relationship:
Tij = ρvivj − (p− c0ρ)δij + τij
p = p0 + pa
ρ = ρ0 + ρa

(5)

where p0 and ρ0 are the airflow pressure and density when there are no sound, pa and ρa
are the pressure and density changes arising from the pulsation of sound pressure, and c0
is the sound velocity separate from the sound source and the mean flow area. Tij is the
Lighthill stress tensor.

Due to ∂2ρ0
∂t2 − c0

2 ∂2ρ0
∂xixi

= 0, the simultaneous Equation (4) is derived as:

∂2ρa

∂t2 − c0
2 ∂2ρa

∂xi∂xi
= −

∂2Tij

∂xi∂xj
(6)

At low Mach numbers and small amplitudes, regardless of the entropy source terms
and viscous stress conditions, the following relation can be obtained:

ρvivj = (ρ0 + ρa)vivj ≈ ρ0vivj = Tij (7)

Therefore, the Lighthill acoustic analogy equation is derived as follows:
∂2ρa
∂t2 − c0

2 ∂2ρa
∂xi∂xi

= − ∂2Tij
∂xi∂xj

∂2 p
∂xi∂xi

= 1
c0

2
∂2 p
∂t2

(8)

This method considers the flow field separately from the sound field. In the first
equation of Equation (8), the right term can be regarded as the source term which can be
calculated from the flow field, and the left is a typical sound wave equation.

2.2. Rotating Sound Source Theory

The instability pressure wave p(ϕF, t) shows the difference at different reference
coordinates. The pressure wave form which is locked in the fixed coordinate frame can be
expressed as [33]:

p(ϕF, t) =
∞

∑
n=1

+∞

∑
α=−∞

AF
nα cos(αϕF −ωF

nt− φF
nα) (9)
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and when the rotating noise source frequency (RS) is ωS
RS/2π, Equation (9) can be repre-

sented as follows in the noise source coordinate frame (s):

p(ϕS, t) =
∞

∑
n=1

+∞

∑
α=−∞

AS
nα cos(αϕS −ωS

nt− φS
nα) (10)

The above equation can be re-expressed as follows in the rotor blade coordinate
frame (R):

p(ϕR, t) =
∞

∑
n=1

+∞

∑
α=−∞

AR
nα cos(αϕR −ωR

n t− φR
nα) (11)

The relations between various sound sources at different coordinate frames are
as follows: 

ϕF = ϕS + ΩF
St

ϕF = ϕR + ΩF
Rt

ϕS = ϕR + ΩF
Rt

ΩF
R = ΩF

S + ΩS
R

(12)

Taking the above relation equations to Equation (10):

p(ϕF, t) =
∞

∑
n=1

+∞

∑
α=−∞

AF
nα cos(αϕF − (ωS

n + αΩF
S)t− φF

nα) (13)

The rotating noise source frequency ωS
RS/2π with the fixed coordinate frame is as follows:

ωF
RS = ωS

RS + αΩF
S (14)

Taking the propagation of the sound source into account in the compressor, the mode
number α of the source is derived:

|α| =
∣∣ωF

RS

∣∣± ∣∣ωR
RS

∣∣∣∣∣ΩF
R

∣∣∣ (15)

3. Noise Experiment of the Compressor

The noise experiment of a certain turbo-fan high-pressure compressor component is
conducted with a derived noise test system. This system is consistent with the acoustic
waveguide, microphone mounting base, semi-infinite attenuator tube, data acquisition and
analysis equipment. The acoustic waveguide is connected to the engine compressor casing
and a 1/4-inch condenser microphone is placed inside the microphone support. One end
of the microphone support is connected with the acoustic waveguide, and the other end
is connected with the semi-infinite attenuator tube. A total of four measuring points are
settled to measure the sound pressure distribution along the axis direction in the casing
of the compressor. The four measuring points are locked on the zero-stage guide vane
channel (IGV), the inter-stage between the zero-stage guide vane and the first-stage rotor
blade (IGV/R1), the first-stage rotor blade (R1), and the first stage of the stator (S1) of the
high-pressure compressor, respectively. The schematic diagram of the measuring point
positions along the axis direction are shown in Figure 1. At the same time, the vibration of
R1 with the high-pressure compressor is monitored by a non-contact blade vibration test
system which uses three vibration detection points along the circumferential position of
the casing. This system is consistent and consists of an optical fiber sensor, photoelectric
converter, signal preprocessor and blade vibration data acquisition and analysis software.
A fiber optic sensor probe is installed at the designated position of the casing near the
top of R1, and the positioning sensor is placed on the surface of the rotor blade. The
time difference between the blade tip amplitude pulse and the speed pulse is obtained by
measuring and calculating. During the vibration of the blade, the blade tip will shift in
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the direction of rotation during the process of blade vibration, making the time to reach
the sensor change, so the vibration parameter information such as blade amplitude, phase,
frequency, and so on, are obtained. The schematic diagrams of different circumferential
positions of the vibration measuring points of the first-stage rotor blades are shown in
Figure 2.
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The adjustment of the deflection angle of the zero-stage stator vanes is associated with
the air flow state in the flow channel of the high-pressure compressor in the experiment.
The noise signals in the flow channel significantly vary with different deflection angles, and
abnormal vibration occurs on R1 at the same time. At the condition of a certain deflection
angle of IGV of the compressor and a certain rotational speed, the noise signal with charac-
teristic frequency structure in the flow channel is detected, and high-amplitude vibration
occurs on the R1. The time series of the character frequency noise signal monitored by the
microphones at the four measuring points is shown in Figure 3. The noise signal spectrum
with the characteristic frequency monitored in the experiment is shown in Figure 4, and
is characterized with typical broadband. 1BPF is the blade passing frequency of the first
stage of rotor blades, AR is a special characteristic frequency with the highest peak value.
The values measured at the four measuring points all present the characteristic frequencies
with multiple high-peak discrete pure tone components. These characteristic frequencies
are 1402 Hz for the highest peak value of the pure tone component, 6285 Hz for the high-
pressure R1 passing frequency (1 BPF) and 12,595 Hz for the multiplier of the high-pressure
R1 passing frequency. Moreover, 4883 Hz had a certain combined relationship with the
pass frequencies of the high-pressure R1.
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The internal noise and vibration of R1 in the high-pressure compressor were simul-
taneously measured under different rotational speed conditions in the experiment. The
relationship between the vibration displacement of R1 and the sound pressure level (SPL)
of the internal characteristic frequency with the rotational speed was obtained through the
arranged vibration and noise measurement points, as shown in Figure 5. It is obvious that
the vibration amplitude of the high-pressure R1 and the sound pressure level of the noise
signal at the characteristic frequency measured directly above the rotor blade increased
and decreased synchronously against the rotational speed, and the evolution trends were
consistent. When the blade vibration amplitude reached the maximum value, the SPL of
the noise signal at the characteristic frequency was also the highest. Therefore, there may
be a relation between this characteristic frequency and the vibration of R1. Figure 6 shows
the noise spectrum in the compressor with different rotor speeds. The evolution rhythms
of the characteristic frequencies and SPLs corresponding with the increasing rotor speeds
are derived in Figure 7. It was found that this characteristic frequency increased with the
rotor speed. The SPL corresponding to characteristic increased with increasing rotor speed;
it reached the maximum value of 153 dB at the rotor speed of 10,020 r/min. Then, SPL
suddenly decreased with the rotor speed. Additionally, there was a special phenomenon
in a certain rotor speed range which the characteristic frequency did not change with the
rotation speed.
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The consistency of the character frequency evolution rhythm and the vibration of the
rotor blades with rotor speed suggest the relationship between these factors. Figure 8 shows
that, when high-amplitude vibration appears on a rotor blade, several peak frequencies
with equal space appear around a characteristic frequency of 1410 Hz. This phenomenon is
consistent with the characteristics of rotational sound sources. This frequency interval is
perfectly matched to the rotational speed of the rotor and further confirms that a certain
connection between character frequency and the vibration of the first-stage rotor blades
can be made.
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Figure 8. Sound pressure spectrum near frequency 1410 Hz.

It can be assumed that rotational noise source is the reason for the vibration of R1.
Then, the rotational noise source frequency should be consistent with the blade vibration
frequency when the high amplitude appears on R1, i.e., ωS

RS/2π =746 Hz. When the rota-
tional noise source rotates around the rotor blade circumferentially at a certain rotational
frequency, a series of pure tone components with equal frequency intervals which are
consistent with the rotational frequency will be modulated under different circumferential
modal numbers. These pure tone components comprise the rotational noise source fre-
quency, ωF

RS/2π, measured in a fixed coordinate system. Figure 8 shows that the rotational
frequency of rotational noise source is ΩF

S = 166Hz. Taking the ωS
RS/2π and ΩF

RS values
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into Formula (12), the rotational noise sources corresponding to different circumferential
modal number systems can be obtained, as shown in Figure 9.
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Figure 9. Rotating sound source frequency corresponds to different circumferential modal numbers.

According to the above assumptions, the rotational instability noise source frequency
and the rotational frequency corresponding to the resonant frequency of the high-pressure
first-stage rotor blade are taken as input. When the circumferential modal number of
the rotating noise source is 4 or 13, the 1410 Hz pure sound component when the high-
amplitude first-stage rotor blade vibrates can be recovered. Additionally, under other
circumferential modal numbers, the peak frequencies at equal frequency intervals near the
pure tone component can also be recovered. Considering that the rotationally unstable
pressure wave usually occurs in the compressor with a higher modal number, the modal
number corresponding to the 1410 Hz pure tone component should be 13. Therefore, we can
be sure that the assumption is reasonable and correct, and the mechanisms of characteristic
frequency noise sources and the high-amplitude vibrations of the rotor blades are clear. It
is worth noting that the noise frequencies of other circular mode numbers do not appear,
which may be ascribed to the internal structural dimensions of the compressor.

4. Numerical Method Validation

A research method based on this acoustic analogy is developed to investigate the
characteristics and mechanisms of high-intensity sound generated in a rectangular cavity
pipeline, and is established on the basis of Ziada’s experimental devices for built-in plate
pipelines. The whole process of the calculation is described in detail. The validity and
applicability of this method are verified with comparison between the results calculated
and the corresponding data achieved in the experiment.

4.1. Computational Model

The calculation of cavity flow-induced acoustics is the basis for the study of sound
induced by the wake vortices of plates. In this paper, the rectangular cavity pipeline model
proposed by Ziada is used as a reference [34] to calculate and analyze the flow-induced
sound characteristics of a rectangular pipeline. At the same time, the calculation method
used in this paper is verified. Ziada established a rectangular cavity pipeline model and
designed rectangular cavities with different geometric dimensions to investigate flow-
induced sound in industrial valve pipelines. By means of experimental measurement
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and numerical simulation, a link between intake air flow and acoustic mode inside the
rectangular cavity pipeline is studied. The rectangular cavity pipeline model is consistent
with two circular straight pipes and a rectangular cavity, and the incoming air enters the
middle rectangular cavity through the intake pipe, and then is freely discharged through
the exhaust pipe. The diameter of the circular pipe is 150 mm, and the thickness L of the
rectangular cavity is 25.4 mm. The schematic diagram of the rectangular cavity pipeline
model experimental device and the location of the sound pressure measurement points
are shown in Figure 10. The geometric dimensions of the rectangular cavity are shown in
Table 1.
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Figure 10. Schematic diagram of experimental device of rectangular cavity pipe model and sound
pressure measurement positions.(a) is a schematic diagram of the cross-section of the device. (b) is a
schematic diagram of the position of the microphone measuring point and the direction of the flow
velocity (1,2,3 and 4 represent the position of the microphone).

Table 1. Geometric dimensions of rectangular cavity.

Shape W/H H/mm W/mm

Square cavity 1.0 254 254
Rectangular cavity 1 0.95 254 241.3
Rectangular cavity 2 0.9 254 228.6

4.2. Calculation Parameter Settings

In the calculation process of flow-induced sound in the rectangular cavity pipeline,
the characteristics of the unsteady flow field are first calculated and analyzed in the present
investigation, and then the sound source information is derived using the acoustic analogy
method. The results, including acoustic modal frequency and distribution characteristics,
are obtained. Firstly, the steady flow field calculation is carried out, and then the results
of it are taken for the initialization of the transient flow. The RNG k− ε turbulence model
is used for the steady flow and a standard wall is selected to process the flow near the
wall. Transient flow uses the LES turbulence model. There are two steps of correction in
the process of applying the Pressure-Implicit with Splitting of Operators (PISO) algorithm
to solve the pressure equation. Firstly, the first velocity correction value is obtained by
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solving the momentum equation on the premise of a given assumed pressure field. Then,
the continuous equation is solved to derive the pressure correction value which is used to
correct the pressure equation. Secondly, the momentum equation is solved again with the
corrected pressure equation to obtain the second velocity correction value. Consequently,
the iterative equation satisfies both mass conservation and the implicit momentum con-
servation equation. The iterative calculation does not stop until the velocity field satisfies
the continuity equation. The amount of computation of each iteration increases due to
the repeated solving of the momentum equation. The PISO algorithm shows obvious
advantages in dealing with unsteady flow problems or high-distortion flow field grid
problems due to its effective and efficient convergence. Therefore, in the calculation of the
flow field characteristics of the rectangular cavity pipeline, the Semi-Implicit-Method for
Pressure Linked Equations Consistent (SIMPLEC) algorithm is used for the steady flow
field calculation, the second-order upwind style is used for field variable interpolation,
the Green–Gauss node-based calculation method is used for the gradient calculation, and
the second-order interpolation method is used for surface pressure calculation. The PISO
algorithm is taken for transient flow field calculations, the second-order upwind style is
taken for field variable interpolation, the gradient and surface pressure calculations are
also the same as the steady state calculations, and the transient equations are second-order
implicit. The initialization of the flow field is realized with 200 iterations in the steady
state calculation process. In the transient calculation, the transient calculation time step is
set to 0.000167 s to capture the sound source information for 0–3000 Hz. The number of
calculation time steps is set to 600 steps, and the iteration number of each time step is set to
20 steps. Total number of time steps is 600, with 20 iterations over one time step.

The computational model is constructed according to the geometry of rectangular
cavity 2 in Table 1. The middle rectangular cavity part of the model is the sound source
extraction region, and the two ends are the inlet and outlet flow development sections of the
cavity flow field, respectively. The length of the outlet domain is 1.5 times longer than the
inlet domain, which ensures that the inlet flow of the rectangular cavity is fully developed
and the outlet boundary conditions do not disturb the flow in the cavity. A structured grid
is selected as the flow field calculation grid with a maximum grid size of 2 mm and a grid
height of 1 mm. The wall of the rectangular pipeline is the no-slip boundary condition,
and the inlet and outlet boundary conditions are set to the velocity inlet and the pressure
outlet, respectively. The flow field calculation model is shown in Figure 11. During the
calculation of the sound field, the inlet and outlet domains are added to the sound field
calculation model. An unstructured grid is selected as the acoustic field calculation grid
with a maximum grid size of 3 mm and a grid height of 2 mm. Acoustic non-reflection
regions are added to the inlet and outlet domains, i.e., free propagation domain 1 and free
propagation domain 2, to simulate the free propagation of sound waves in the pipeline. All
other walls of the model are hard walls. Two hemispherical regions are added to the inlet
and outlet of the sound field calculation model to simulate reality in the actual process of
sound wave propagation. The surfaces of hemispherical regions are set to the boundary of
the infinite element, and the sound pressure of the sound field outside the infinite element
region is calculated by interpolation. The interpolation order can be set lower as the infinite
element boundary is far from the sound source and the finite element mesh number is
sufficient. Therefore, the interpolation order is set to 5 in the hemispherical regions, the
maximum grid size is set to 20 mm, and the grid height is set to 5 mm. The sound field
calculation model is shown in Figure 12. The flow chart of numerical simulation is shown
in Figure 13.
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4.3. Characteristic Analysis of Eddy Sounds

The flow characteristics of the rectangular cavity pipeline under different inlet veloci-
ties are calculated and analyzed. The distributions of the flow vortices in the rectangular
cavity at the flow velocities of 60 m/s and 83 m/s are shown in Figure 14.
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Figure 14. Distribution of flow vortices in rectangular cavity under different inlet velocities. (a) and
(b) represent the working condition with flow velocity of 60 m/s and 83 m/s respectively.

This shows that the intake air flow velocities are 60 m/s and 83 m/s, respectively. The
flow is separated at the leading edge of the rectangular cavity (near the wall in the direction
of flow), a large scale vortex is generated and developed in the cavity up to the rear edge of
the cavity (away from the wall in the direction of flow), and then this flows to the circular
pipe. The vortices are mainly concentrated in the rectangular cavity region. The above
results are in line with the flow laws of the rectangular cavity in the literature [34,35].

The sound source information is derived from the flow data using the Lighthill acous-
tic analogy method with the ICFD module in Actran VI software. The sound source
information directly extracted with Actran is the time domain sound source, which is
converted into a frequency domain sound source through Fourier transform in order to
analyze the sound response at different frequencies. The Hanning window is taken as the
signal truncation function to reduce the spectral energy leakage from signal truncation.
The frequency domain sound source obtained which is present on the flow field grid needs
to be mapped to the sound field grid by means of interpolation. The linear interpolation
may lead to information loss because of the differences in the acoustic grid and flow field
grid, while the integral interpolation method can retain all the information. Therefore, the
sound source information on the flow field grid is transferred to the acoustic mesh with
the method of integral interpolation in this paper. Figure 15 shows the acoustic modal
distribution in the rectangular cavity at the inlet velocity of 83 m/s, the experimental results
correspond to those present in the literature [32,33]. The sound information in the model is
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presented in Figure 16. Acoustic modal frequency calculation results and calculation errors
are shown in Table 2 and Figure 17.
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Table 2. Calculation results of acoustic modal frequency of the rectangular cavity at an inlet velocity
of 83 m/s.

Contents First
Mode

Second
Mode

Third
Mode

Fourth
Mode

Reference results 872 Hz 952 Hz 1104 Hz 1605 Hz
Present results 851 Hz 931 Hz 1081 Hz 1562 Hz

Error 2.4% 2.2% 2.1% 2.7%
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It is evident that the distribution of the first four-order acoustic modes in the rectangu-
lar cavity calculated with the method in the present paper are in line with the corresponding
results in the literature. The calculated results of the acoustic modal frequency values of
each order show better consistency with the experimental results, and the value of the
maximum calculation error is 2.7%. Therefore, it is feasible to use the calculation method in
the present paper to obtain the sound characteristics induced by the wake vortex of the
plate under different inlet velocities.

5. Investigation on High-Intensity Sound in a Simplified Compressor Model

The built-in plate pipeline model based on the Parker model is established to investi-
gate the characteristics and mechanisms of the noise of the simplified compressor model
with the method based on acoustic analogy. The special “frequency-locked phase-locked”
characteristic is captured and the mechanism of its onset is analyzed.

5.1. Computational Model and Parameter Settings

The study of the high-intensity noise phenomenon in the compressor through exper-
iments has significant cost, so it is necessary to develop suitable numerical calculation
models and methods. There are many influencing factors in the compressor, including the
changing pipe geometry, various loads, and so on, which leads to a significant difficulty
in building numerical compressor models to study the high-intensity noise phenomenon.
Therefore, a pipe model with a locked plate is established in which a single plate is taken as
a simplified blade in a compressor. The model of Welsh, which is used to study the sound
induced by the plate wake in rectangular pipes, is taken as a reference to investigate the
sound characteristics resulting from the wake vortex of the plate. Welsh conducted a sound
experiment in a low-speed wind tunnel. Additionally, the rectangular plate was locked
in the center of the wind tunnel. The cross-sectional dimension of the wind tunnel was
244 mm × 244 mm, the spanwise dimension and chord length of the plate were 244 mm
and 192 mm, respectively, and the thickness was 12 mm. The plate worked at an adjustable
velocity range of 0–40 m/s [10]. Flow display technology was adopted to monitor the
motion law of the plate wake vortex under different inlet velocities. The link between
frequency and SPL corresponding to the flow velocity was obtained, and the propagation of
the sound wave when high-intensity sound occurred was captured in the pipe. The above
test with sufficient and reliable results has been widely cited in research on such issues.
Therefore, this model is used as the research object in present paper, and the structure
diagram of the established computational model is shown in Figure 18.
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Figure 18. Dimension of numerical model.

The walls of the numerical model are all set to no-slip boundary conditions, the inlet
and outlet boundary conditions are in line with rectangular cavity model, and the entire
model is selected as the sound source extraction region. A structured grid is chosen for
the flow field calculation grid with a minimum grid size of 0.5 mm, a maximum grid size
of 2 mm, and the grid growth rate near the plate is set to 1.2 to resize the grid around
the plate. The other parts of the pipe are set to 3 mm. The calculation model of the plate
wake flow field is shown in Figure 19. The unstructured grid is chosen for the acoustic
field calculation grid with a maximum grid size of 8 mm. Acoustic non-reflection regions
are added outside the inlet and outlet of model, i.e., free propagation domain 1 and free
propagation domain 2. The other walls of the model are set to acoustic hard walls. The
sound field calculation model is shown in Figure 20.
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Figure 20. Plate model for sound field.

Initially, the steady flow field calculation is implemented and then the results are used
for the initialization of the transient flow. The RNG k − ε turbulence model is selected
for the steady flow field with 100 iterations, and the standard wall is selected to address
the flow around the wall. The LES turbulence model is selected for transient flow field
calculations, and the transient equations are second-order implicit. The transient calculation
time step is 0.00025 s to gain the sound source information of 0–2000 Hz. The number of
time steps is 400 with 20 iterations in each time step.
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5.2. Plate Wake Vortex Characteristics

The flow characteristics of the plate wake under different inlet velocities are obtained
and calculated, and the movement of the plate wake vortex at a flow velocity of 29 m/s is
shown in Figure 21. The motion law of the corresponding plate wake vortex is present in
reference [10].
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Figure 21. Movement of plate wake vortex at different times. (a–d) represent the movement of wake
vortex in the time of 0.1325 s, 0.0135 s, 0.014 s and 0.01425 s respectively.

It can be seen from Figure 21 that shedding vortex layers are generated on both side
surfaces of the plate for the function of the tangential flow in the rectangular pipe. Vortex
shedding layers with an asymmetrical form develop from the main flow to downstream and
gradually roll up larger scale vortices, presenting a typical Karman vortex street structure.
The motion characteristics of the plate wake vortex captured with the calculation method in
this paper agree excellently with the corresponding experimental results in reference [10].

5.3. Phenomenon of the Frequency-Locked Phase-Locked System

The experimental results given by Welsh show that wake vortex frequency of the
plate increases linearly with the velocity. The SPL in the pipe increases sharply over the
velocity range of 28–30 m/s, and the phenomenon of high-intensity sound occurs in the
pipe at this time. The frequency corresponding to high-intensity sound is 530 Hz, and SPL
corresponding to this frequency is 145 dB. Additionally, the frequency of high-intensity
sound stays constant at that velocity range, which is the phenomenon of the frequency-
locked characteristic. The internal sound pressure spectrum of the pipe in the velocity
range of 20–35 m/s is obtained by calculation, and the representative results of these are
shown in Figure 22 at the velocities of 20 m/s, 29 m/s, 32 m/s and 35 m/s. The position of
the sound pressure monitoring point is just above the middle of the plate and near the pipe
wall, which is the same location as the measurement point in the experiment by Welsh.
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fv , which is the frequency of the vortex, and fs , which is the frequency of the acoustic 
mode, presented in Figure 22, have pure tone and high amplitude. Additionally, fv  dom-
inates in the frequency spectrum as increasing velocities and harmonic components pre-
sent themselves. The acoustic modal frequencies, i.e., the pure tone component f 511s =  
Hz, which is 3.6% different from the pipeline acoustic modal frequency 530 Hz given by 
Welsh, can be excited under discrete velocities. The wake vortex frequency increases close 
to the acoustic modal frequency of the pipeline with increasing flow velocity, which is 
dominant in the sound pressure spectrum in the pipe, and the SPL increases sharply. The 
SPL reaches up to 145 dB at the inlet velocity of 32 m/s, and the high-intensity sound oc-
curs in the pipe at the same time. The vortex frequency grows sharply to beyond the 
acoustic mode frequency as flow velocity continues to increase and the SPL is greatly re-
duced. Figure 23 shows the evolution rhythm of character frequency and the SPL with 
increasing velocity, as well as the sound pressure distribution in the pipe with the fre-
quency corresponding to high-intensity sound.  

Figure 22. Sound pressure spectrum at discrete flow velocities.

fv, which is the frequency of the vortex, and fs, which is the frequency of the acoustic
mode, presented in Figure 22, have pure tone and high amplitude. Additionally, fv domi-
nates in the frequency spectrum as increasing velocities and harmonic components present
themselves. The acoustic modal frequencies, i.e., the pure tone component fs = 511 Hz,
which is 3.6% different from the pipeline acoustic modal frequency 530 Hz given by Welsh,
can be excited under discrete velocities. The wake vortex frequency increases close to the
acoustic modal frequency of the pipeline with increasing flow velocity, which is dominant
in the sound pressure spectrum in the pipe, and the SPL increases sharply. The SPL reaches
up to 145 dB at the inlet velocity of 32 m/s, and the high-intensity sound occurs in the
pipe at the same time. The vortex frequency grows sharply to beyond the acoustic mode
frequency as flow velocity continues to increase and the SPL is greatly reduced. Figure 23
shows the evolution rhythm of character frequency and the SPL with increasing velocity, as
well as the sound pressure distribution in the pipe with the frequency corresponding to
high-intensity sound.
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Figure 23 shows that the pure tone component fv, which is the frequency of the vortex,
increases linearly as flow velocity increases. The velocity range where high-intensity sound
occurs is 30–33 m/s, i.e., the frequency-locked area at character frequency 511 Hz. These
characteristics are in line with the typical features of the Karman vortex street, so the vortex
of plate is the source of the high SPL component. This also shows that the Strouhal number
(St = fvd/V, where fv is the frequency of vortex, d is the thickness of plate, and V is the
flow velocity upstream of the plate) of the model always keeps constant at this flow velocity
range, St = fvd/V = 0.212, which is approximately consistent with the corresponding
results in the literature [10]. The dark blue and dark red color of the sound pressure
distribution in Figure 21 are high sound pressure regions, and the sign before the sound
pressure value represents the phase. The sound pressure amplitudes on both sides of the
plate are equal with the opposite phase of 180◦. The sound pressure distribution, when
high-intensity sound appears in the model, presents the β mode form of the Parker model.

6. Conclusions

(1) An experiment in a multistage high-speed compressor was conducted to synchronously
investigate the phenomenon of high-level vibration on R1 with high noise. Different
testing positions of the casing were set to monitor the casing pressure and vibration
status of R1. The noise spectrum of R1 was characterized as discrete multi-tone at the
time that the occurrence of abnormal vibration appeared. Characteristic frequency
gradually increased with the increasing rotational speed, and there was a phenomenon
that characteristic frequency kept constant with discrete rotor speed. The evolution of
the displaced blade vibration and the sound pressure of the characteristic frequency
against the rotor speed showed synchronicity; several peak frequencies around char-
acter frequencies with an equal space of about 166 Hz matched with the rotating
speeds of the rotors, which shows that there was a certain relation between frequency
and the vibration of the rotor blades. The assumption that rotational noise sound is
the reason for the vibration of rotor blades was made, and its accuracy was verified
through theoretical calculation;

(2) The mechanisms and characteristics of sound induced by shedding vortices in the
pipeline based on acoustic analogy are proposed. A rectangular cavity pipeline model
was established to analysis the distribution characteristics of the vortex system and
the acoustic mode distribution in the pipeline under flow conditions. The flow was
separated at the leading edge of the rectangular cavity, a large-scale vortex was
generated and developed in the cavity until it reached the rear edge of the cavity,
and then this flowed to the circular pipe. The vortices were mainly concentrated in
the rectangular cavity region. The calculated results of the acoustic modal frequency
values of each order were in line with the experimental results, and the value of
the maximum calculation error was 2.7%, which verified the applicability of the
numerical method;

(3) A simplified compressor model based on a duct model with a locked plate was
established to study the characteristics and mechanisms of high-intensity sound with
the acoustic analogy method. The motion laws of the wake vortices of the plate were
obtained, presenting a typical Karman vortex street structure. The shedding vortex
frequency gradually increased with the flow velocity, and there was a frequency-
locked area at a special range of flow velocity which was similar to the features of the
experimental results in the compressor. The acoustic modal frequency, i.e., the pure
tone component fs = 511 Hz, was 3.6% different from the corresponding frequency
of 530 Hz given by Welsh. The maximum value of sound pressure level was up to
145 dB at the inlet velocity of 32 m/s, and the high-intensity sound appeared in the
pipe at the same time and remained in a limit velocity range of 30–33 m/s. The sound
pressure distribution, when high-intensity sound appears in this model, presents the
β mode form of the Parker model.
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