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Abstract: In this paper, a novel path-following and obstacle avoidance control method is given for
nonholonomic wheeled mobile robots (NWMRs), based on deep reinforcement learning. The model
for path-following is investigated first, and then applied to the proposed reinforcement learning
control strategy. The proposed control method can achieve path-following control through interacting
with the environment of the set path. The path-following control method is mainly based on the
design of the state and reward function in the training of the reinforcement learning. For extra
obstacle avoidance problems in following, the state and reward function is redesigned by utilizing
both distance and directional perspective aspects, and a minimum representative value is proposed
to deal with the occurrence of multiple obstacles in the path-following environment. Through
the reinforcement learning algorithm deep deterministic policy gradient (DDPG), the NWMR can
gradually achieve the path it is required to follow and avoid the obstacles in simulation experiments,
and the effectiveness of the proposed algorithm is verified.

Keywords: path-following; obstacle avoidance; NWMRs; reinforcement learning; DDPG

1. Introduction

Path-following has been considered as an alternative problem formulation for trajec-
tory tracking problems [1]. The main task of path-following is to develop control laws for
following a predefined path with minimum position error. In contrast to the trajectory
tracking problem, path-following research focuses on the fact that the path is specified by a
relatively independent timing control law, making it more flexible in terms of the control
of the tracked object. Therefore, the path-following problem has been extensively studied
in the field of control, for applications such as wheeled mobile robots [2,3], autonomous
underwater vehicles [4,5], and quadrotors [6,7].

Currently, numerous control methods have been referenced in the study of path-
following problems, such as guiding vector field (GVF) [2,8], model predictive control
(MPC) [7,9], sliding mode control (SMC) [2], etc. The GVF approach has been proposed to
achieve path-following for a nonholonomic mobile robot, and global convergence condi-
tions were established to demonstrate the proposed algorithm [8]. Linear constrained MPC
has been proposed to solve the path-following problem for quadrotor unmanned aerial
vehicles [7]. There are also studies on model predictive control methods using models for
other control strategies; for instance, the information-aware Lyapunov-based MPC strat-
egy was utilized to achieve classic robot control tasks in a feedback–feedforward control
scheme [9]. A nonsingular terminal sliding mode control scheme was constructed to solve
the problem of the omnidirectional mobile robot with mecanum wheels [2]. There are
also numerous intelligent computing methods that have been widely used in the research

Appl. Sci. 2022, 12, 6874. https://doi.org/10.3390/app12146874 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12146874
https://doi.org/10.3390/app12146874
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2643-4870
https://orcid.org/0000-0001-7925-5396
https://doi.org/10.3390/app12146874
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12146874?type=check_update&version=2


Appl. Sci. 2022, 12, 6874 2 of 14

field [10–12]. Moreover, with the boom in artificial intelligence technology in recent years,
investigations based on machine learning are emerging in the control field, especially for
path-following problems [13], etc.

Reinforcement learning (RL) is one of the classic types of machine learning. It is a
learning paradigm concerned with learning to control a system in order to maximize a
cumulative expected reward performance measure that expresses a long-term objective [14]
and can determine the optimal policy for decisions in a real environment. Recently, research
into RL methods has been extended into multiple control fields such as trajectory track-
ing [15–18], path-following [19,20], etc. [21]. It is noted that RL is capable of coping with a
control problem without knowing information about the objective dynamics and presents
control with good performance under the influence of external disturbances [15,16,20].
Reinforcement learning can be combined with other classical control methods to solve
tracking problems [17]. Considering the PID method, a Q-learning–PID control approach
has been proposed to solve the trajectory tracking control problem for mobile robots, with
better results than the single approach [18]. For path-following problems for unmanned
surface vessels, a smoothly convergent deep reinforcement learning (SCDRL) approach has
been investigated, utilizing a deep Q-network (DQN) structure and RL [22]. RL has also
been used in research into path-following control for quadrotor vehicles, and has obtained
outstanding results in the actual physical verification [20]. These studies demonstrate the
highly robust nature of RL control methods when handling dynamic model errors and
confronting environmental disturbances [23].

Various RL-based control algorithms have been studied in the context of path-following
control problems for mobile robots, such as the path-integral-based RL algorithm [24], the
adaptive hybrid approach [25], etc. Following up with further complex research, the obsta-
cle avoidance problem has been widely addressed in the study of the scalability problem of
path-following [26]. Considering both path-following and obstacle avoidance based on the
characteristics of reinforcement learning means specifically considering the environment
and the reward. It is noted that a compromise must be reached, ensuring a sufficiently
low-dimensional observation vector while still providing a sufficiently rich observation
of the current environment [27]. Furthermore, it is not limited to a single agent that can
be set up in a reinforcement learning environment, resulting in problem solutions with
different dimensions. Two independent agents have been considered to solve the tracking
and obstacle avoidance problems separately, and finally to realize the coordinated control
of both [28].

The focus of this paper is to further explore how recent advances in RL can be applied
to both the path-following and obstacle avoidance problems of nonholonomic wheeled
mobile robots (NWMRs). The main contributions of the proposed method are as follows:

• The path-following control method is designed and implemented by considering the
deep reinforcement learning algorithm DDPG, which reveals excellent performance
regarding the efficiency and accuracy of the following control.

• A new path-following and obstacle avoidance control strategy for NWMRs is proposed
based on the RL algorithm, specifically in the design of a new mechanism for the state
and reward for both in the environment, which simplifies the dimensionality of the
environment state, ensuring that the mobile robot can achieve the optimal solution
between path selection and obstacle avoidance actions. Moreover, the minimum
representative value approach for avoiding collisions is proposed to solve for multiple
obstacles, along with path-following control.

The rest of this paper is organized as follows. In Section 2, a kinematics model for the
NWMRs is established and the basics of the path-following problem are briefly introduced.
The basics of reinforcement learning are briefly introduced, and DDPG and the path-
following and obstacle avoidance control strategy incorporating RL developed in Section 3.
In Section 4, the simulation results are presented and the experiments are discussed. The
conclusion is presented in Section 5.
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2. Problem Formulations
2.1. Kinematics Model for NWMRs

The aim of this paper is to solve the path-following and obstacle avoidance problems
for NWMRs by utilizing the RL algorithm. The classical two-wheel differential driving
mobile robot is studied, as presented in Figure 1. When the robot moves, its state is given by
the three dimensions in set q = [ x̃ ỹ θ̃ ]T , as the current state in the two-dimensional
coordinate plane. The parameters associated with the motion of a mobile robot are the
linear and angular velocities v and ω, respectively, which are obtained from inputs as
u = [ v ω ]T . The kinematics model of the mobile robot can be described as [29]:

x̃ =

 ˙̃x
˙̃y
˙̃θ

 =

 cos θ̃ 0
sin θ̃ 0

0 1

[ v
ω

]
(1)

kp

e

Y

X

v

ex
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Figure 1. Mobile robot path-following schematic.

2.2. Path-Following

As distinguished from the trajectory tracking problem, the path-following problem
aims at moving the system along a geometric reference without any pre-specified timing
information. It is assumed that the parametrized regular curve in the two-coordinate
space [30] is as given in Equation (2).

Path =
{

y ∈ Rn|θp ∈ [θ0, θ1] 7→ y = p(θp)
}

(2)

Here, the scalar variable θp is called the path parameter, and Path: R 7→ Rn is a
parametrization of Path. The geometric curve p(θp) is satisfied with the characteristic of
local bijectivity. The map p: R 7→ Rn is assumed to be sufficiently often continuously
differentiable. As shown in Figure 1, the path with the coordinate points can be con-
sidered as pk(θp(t)), k ∈ N, where the time t of θp is set arbitrarily. The direction line
can be virtually set as the tangent line of the path at the point. In this paper, the dis-
crete coordinate point of the path is [ θp ρ(θp) ] and the mobile robot’s desired position
p = [ θp ρ(θp) θpath_r ]T can be considered as the path with a time law [1].

The position error of the mobile robot for path-following can be expressed by the
tracking error expression [29] in Equation (3).

q̃e =

 x̃e
ỹe
θ̃e

 =

 cos θ̃ sin θ̃ 0
− sin θ̃ cos θ̃ 0

0 0 1

 θp − x̃
ρ(θp)− ỹ
θpath_r − θ̃

 (3)
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The goal of path-following is to guarantee that the position error converges, i.e.,
lim
t→0

q̃e(t) = 0.

3. Path-Following and Obstacle Avoidance Control Strategy Incorporating
Reinforcement Learning

In this section a reinforcement learning method is used for the investigation of path-
following and obstacle avoidance for nonholonomic wheeled mobile robots, based on the
kinematic model and the path-following model in the above section.

3.1. Reinforcement Learning Control Method

RL can directly interact with the environment without having any information in ad-
vance [19]. Classical reinforcement learning approaches are based on the Markov decision
process (MDP), consisting of the set of states S, the set of actions A, the rewards R, and
the transition probabilities T that capture the dynamics of a system [31]. According to the
Markov property, the next state st+1 is obtained by the model from the state st and action at.
This is called transition probability model p(st+1|st, at), and a reward r(st, at) is obtained
after state transition evaluation. The whole process from st to st+1 can be considered as one
training step of the reinforcement learning, where the aim is to find the optimal strategy π∗,
i.e., the stochastic policy π(a|s) or the deterministic policy π(s) that can be evaluated by
using the value function Vπ(s) or the state value function Qπ(st, at), which is expressed as:

π∗ = arg max
π

Vπ(st)

= arg max
π

Qπ(st, at)
(4)

where both value functions are shown in Equations (5) and (6) separately, and the accumu-
lated discounted reward Rt is given in Equation (7).

Vπ(st) = Eπ [Rt|st] (5)

Qπ(st, at) = Eπ [Rt|st, at] (6)

Rt = rt + rt+1 + rt+2 + · · · =
∞

∑
k=0

γkrt+k+1 (7)

Recently, researchers have used the techniques of experience replay and a separate
target network to eliminate instability by establishing the large-scale neural network called
DQN in the RL problem. This has already shown excellent performance [32]. However,
the DQN is limited by the discrete nature of its action space, and is not capable of dealing
with continuous control problems [19]. To overcome the difficulty of accurate expressions
for actions, deterministic policy gradient (DPG) is proposed for handling the continuous
action space [33]. The deterministic policy a=µθ(s) : S 7→ A is considered instead of the
policy πθ(a|s) selected stochastically in state S, and the vector θ ∈ Rn is its parameter. If
the target policy is deterministic, then the value function Qπ(st, at) can be expressed as
Qµ(st, at), and the expectation can be avoided [33] in Equation (8):

Qµ(st, at) = rt ,st+1∼E[r(st, at) + γQµ(st+1, µ(st+1))] (8)

If there is an approximator parametrized by θQ, then it can be optimized by minimizing
the following loss:

L(θQ) = Est∼ρβ ,at∼β,rt∼E[(Q(st, at|θQ)− yt)
2] (9)

where yt is dependent on θQ:

yt = r(st, at) + γQ(st+1, µ(st+1)|θQ) (10)
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Q(s, a) can be considered as the critic, which is learned by Q-learning using the Bellman
equation and is updated by the expected return from the actor network using a DPG [33]:

∇θµ J ≈ Est∼ρβ [∇θµ Q(s, a|θQ)|s=st ,a=µ(st |θµ)]

= Est∼ρβ [∇aQ(s, a|θQ)|s=st ,a=µ(st)∇θµ µ(s|θµ)|s=st ]
(11)

Regarding the approach to handling large networks in DQN, the DDPG algorithm
uses experience replay and separate target network techniques to deal with large-scale
neural network approximators in deep reinforcement learning. The DDPG has two basic
networks called critic and actor, respectively. The whole process structure of the algorithm
is presented in Figure 2 and will be used in the following study of the control strategy.
The first step of the algorithm is that the actor network selects the action (control values),
the corresponding reward, and the next state through the actor network, according to the
training environment, and these are stored in the replay buffer with the action and state.
Then, selecting a set consisting of state, action, forward, and updated state from the replay
buffer, the target critic network selects the critic parameters according to the behavior
selected by the target actor network. The critic network also gives other critic parameters,
and then the network update of the critic network will be realized by the gradient of TD
(temporal difference) errors with those parameters. Finally, the critic network selects the
action and the current state according to the actor network, to realize the forward and
backward propagation of the network. This process achieves the updating of the actor
network by the policy gradient. For the updating of the networks, the critic network is
updated using the gradient of the loss function L(θQ) in (9), whereas the actor network
uses a deterministic policy gradient, which can be found in (11).

Critic Network

Actor Network

Critic Target  

Network

Actor Target 

Network

Environment

S

S

A A

S'

Critic Network

Actor Network

( , )Q s a

TD error

ˆtarget ( , )Q Q s' a'

A

Relay Buffer

A R S， ，

S'

S

Policy gradient

( , )Q s a

Figure 2. Actor–critic architecture of path-following and obstacle avoidance control.

3.2. Path-Following and Obstacle Avoidance Controller Based on DDPG

The algorithm performance and convergence speed of reinforcement learning are
highly dependent on the correctness of the state space, action space, and reward. In the
process of path-following and obstacle avoidance control, the solution of using two agents
to achieve control tasks is obviously complicated and inconvenient [19]. In order to solve
these issues, this paper unifies the two types of control by designing the state space and
reward based on the specific requirements of the two types of control. This can ensure
that the wheeled mobile robot achieves effective obstacle avoidance in the process of
path-following.
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In this paper, the primary goal is to minimize the errors expressed in the above goal of
path-following, and the state space S is expressed as:

Sp f= { x̃e ỹe θ̃e v w } (12)

Considering obstacle avoidance control, the state space S can be redesigned as:

S= { x̃e ỹe θ̃e dobs θobs_e } (13)

where dobs and θobs_e are the parameters of state for avoiding collisions, dobs represents
the distance between the obstacle center dobs and the center Ot of the robot, and t is the
current time step, as shown in Figure 3. When the robot is far from the obstacle during
path-following, the current control of the robot is considered to be relatively safe. The
parameter is only considered when the robot goes to the safe region setting for avoiding
obstacles. Therefore, this paper also divides the obstacle avoidance region for the obstacle,
as shown in Figures 3 and 4, and the parameters dobs and θobs_e are defined as follows:

dobs =

{
dobs i f dobs < re

0 i f dobs ≥ re
(14)

θobs_e =

{
|θobs_t − θ̃| i f dobs < θs

0 i f dobs ≥ θs
(15)

where re is the radius of the minimum obstacle avoidance control area.

Obstacle

Path


to

_obs t

s

obso

Figure 3. Obstacle avoidance illustration for a NWMR for path-following.

mightiest   

Punishment Zone

Rewards Zone

Obstacle

er
obsr

cr

Figure 4. Schematic diagram of the components of the obstacle avoidance region.
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The above is considered for the case of a single obstacle; it is not applicable to an
environment containing multiple obstacles. In the case of multiple obstacles, the minimum
representative value technique is proposed, considering several dobs and θobs_e, where the
minimum values for both parameters are chosen as the elements of state for avoiding more
collisions. The minimum representative value can be expressed as:

dobs = min(dobsi
), i ∈ [1, k] (16)

θobs_e = θobs_ei
, i ∈ [1, k] (17)

where k is the number of obstacles. Since there are multiple obstacles corresponding to
different states, for reward setting considering all obstacles, penalty rewards are considered
for them all. The minimum representative approach is then able to ensure that the agent
maintains the behavior of obstacle avoidance during training and that it is feasible to
achieve path-following and obstacle avoidance control for NWMRs.

In RL, the agent can learn to adjust its strategy according to the reward so that it can
avoid multiple obstacles in path-following. Compared with the environmental state set
according to the number of obstacles [28], this method can reduce the dimensionality of
the state, thus achieving the effect of obstacle avoidance while reducing the computational
burden and saving computing resources.

Considering the path-following issue only, based on the current evaluation of the
robot status, the basic reward function is designed as:

reb = −(|x̃e|+ |ỹe|+ |θ̃e|) (18)

When the robot moves into obstacle avoidance regions, the reward function is re-
designed by using extra punishments or rewards on the basis of the original reward for
tracking control, making the robot capable of bypassing the obstacle without collisions.
Based on the division into different regions, the reward function for obstacle avoidance
regions is expressed as:

ree =


reb + max(φrz, 1/ tanh( dobs−rc

re−rc
)) RewardsZone

reb −max(φpz, 1/ tanh( dobs−robs
rc−robs

)) PunishmentZone
reb − ψ Obstacle

(19)

where φrz and φpz are parameters that limit the reward and penalty, respectively. Both are
able to prevent large, abrupt changes in the single-step reward, which can cause instability
during training. More specifically, not only is the distance to the circle of the obstacle for
the reward function considered but the errors between the robot navigation angle and the
obstacle direction are also taken into account in this work when the NWMR moves into the
Punishment Zone. Based on this concept, the reward function is represented as:

ree =

{
reb −max(φpz, 1/ tanh( dobs−robs

rc−robs
)) i f θobs ≤ θs

reb −max(φpz, ξ/ tanh( dobs−robs
rc−robs

)) i f θobs > θs
(20)

where ξ is the parameter that moderates the penalty according to the errors θobs_e.
If the NWMR collides with an obstacle during movement, then the task is considered

a failure, a severe penalty ψ is imposed directly as the reward in this step, and the training
environment will convert to a new episode. Due to this severe negative reward, the robot is
able to follow the basic path-tracking control strategy in the learning of obstacle avoidance,
and eventually it is able to complete the motion control for the whole set path while
avoiding the obstacles.

According to the above path-following and obstacle avoidance control strategy, the
control process based on deep reinforcement learning is shown in Algorithm 1:
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Algorithm 1 Path-Following and Obstacle Avoidance Control Strategy for NWMRs
Require: robot random initial pose qo, path p, training Max_episode, time step ∆t, learning
rate α for actor network and β for critic network, parameter τ ∈ (0, 1) for stability of
training, discount factor γ, experience replay buffer size N, the number k of obstacles,
obstacle avoidance position oobsi

, i ∈ [1, k], parameters robs, re, rc, θs, and parameters related
to obstacle avoidance ψ, ξ, θs, φrz, φpz;
Intialize: critic network Q(s, a|θQ) and actor network µ(s|θµ) randomly, target network

Q
′
(s, a|θQ

′
) and µ

′
(s|θµ

′
);

1: for each episode ∈ [1, Max_episode] do
2: Obtain an observation of random initial pose to NWMR in environment, then output

position error qe(t) through path parameters, and finally obtain initial state s1 =
[ x̃e ỹe θ̃e dobs θobs_e ];

3: for all t ∈ [1, T] do
4: Initialize a random noise Nt for the deterministic strategy;
5: Randomly select an action as a control input based on the current environment

strategy and exploration noise ut = µ(st|θµ) +Nt;
6: Execute u, then obtain reward ret and new state st+1;
7: Put transition(st, ut, ret+1, st+1) into experience replay buffer D;
8: if number of transition > Memory then
9: Extract randomly a batch of transitions from D;

10: Update actor network and critic network, (9) (11);
11: Update target network for stable training as:

12: θQ
′
= τθQ + (1− τ)τθQ

′

13: θµ
′
= τθµ + (1− τ)τθµ

′

14: end if
15: end for
16: end for

4. Results and Discussions

In order to verify the path-following and obstacle avoidance control strategy proposed
in this paper, several sets of simulation experiments were conducted. Firstly, only the
path-following was investigated and compared with the model predictive control (MPC)
method. Secondly, path-following and obstacle avoidance simulation experiments were
conducted, and results were given for validating the effectiveness of the proposed controller
performance for multiple obstacle avoidance in training environments.

4.1. Training Setting

In the environment of the simulation, the initial position [x̃init ỹinit θ̃init] of the NWMR
was randomly selected around the end point of the path, where the initial position can be
expressed as:

x̃init = θp_end ± ∆e1
ỹinit = ρ(θp_end)± ∆e2
θ̃init = θpath_r_end ± ∆e3

(21)

where ∆e1, ∆e2, ∆e3 ∈ [−1, 1] were used to generate different initial values in each start
episode in the environment, and the maximum linear and angular velocities were set as
3 m/s and π/2 rad/s, respectively, in the training. In the training simulation, the time
step ∆t was set to 0.5 s (2 Hz) and the size of the mini-batch to 64. To establish the training
networks, the Adam optimizer was used to train both the actor and critic networks. The
hyperparameters are shown in Table 1, and the networks were built using the machine
learning library Pytorch. The learning rate α was set to 0.001 for the actor network, and
β was set to 0.01 for the critic network. The target network transition gain τ was selected
as 0.01, and the discount factor γ was selected as 0.9. For exploration of the training, the
Ornstein–Uhlenbeck exploration method discussed in [34] was used.
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Table 1. Hyperparameters of networks.

Layer Actor/Target Actor Critic/Target Critic Activation Function

Input layer 5 5 ReLU
1st hidden layer 400 400 ReLU
2nd hidden layer 300 300 ReLU
3rd hidden layer 300 300 ReLU

Output layer 2 1 Tanh

The sinusoidal path can be parametrized, as investigated in [22], as:

y = 30 sin(
π

20
x− π

2
) (22)

4.2. Comparison of Path-Following between the Proposed Method and MPC

In this experiment, the agent was trained for 400 episodes, with a total of 240,000 training
steps in the simulations. To validate the path-following capabilities of the proposed method,
the MPC algorithm [35] was introduced to present its performance for path-following, and
a comparison was made between the two methods. Moreover, the effectiveness of the
proposed algorithm is further illustrated by showing the following effects at different
training stages.

Figure 5a shows the path-following effect of the proposed algorithm and also adds
the MPC algorithm for a comparison of the results. As shown in Figure 5b, errors for each
waypoint of the path are presented, It is shown that the convergence performance of the
proposed algorithm is better than that of the MPC algorithm at the turn. It can also be
shown that the longitudinal error performance using the proposed algorithm is better than
that using the MPC and that the other errors show the same or better performance. The
comparison of inputs between the two algorithms is given in Figure 5c. Figure 5d presents
the reward changes in every step of the final episode in the training, and Figure 5e shows the
average score per 100 episodes in the whole training process. It can be shown that the trend
of the reward score is consistent with the path-following effect, by combining the results in
Table 2, which represents the four stages of the training process, chosen as 100, 200, 300,
and 400 episodes. It can be shown that the agent tended to show worse performance results
for following the path at the initial stage of the training, which is irrelevant to the initial
purpose of path-following. As the training continued, the path-following performance
tended to develop, resulting in a decrease in the cross-track error and the angular error,
with scores climbing steadily. Finally, the proposed algorithm results in better performance
than MPC considering the comparison of the longitudinal and cross errors.

Table 2. Path-following controller performance at different training stages.

Stage MSE for Longitudinal Errors MSE for Cross Errors

Stage 1 (proposed) 16.5702 2.111
Stage 2 (proposed) 0.6008 0.3512
Stage 3 (proposed) 0.0005 0.0705
Stage 4 (proposed) 0.0069 0.0031

MPC 1.5378 0.1930

According to the results of the path-following simulation experiments, the proposed
control strategy performs more robustly and has more accurate characteristics. It is capable
of moving close to the waypoints of the path with different starting points, whereas the
comparison algorithm needs to adjust its parameters to meet the requirements of the
initial point.
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Figure 5. Comparisons of proposed method and MPC for performance of path-following con-
trol. (a) Comparison of paths for following. (b) Errors in path-following. (c) Inputs for path-
following. (d) Scoring of each step with proposed method. (e) Average scoring for each episode with
proposed method.

4.3. The Performance of Path-Following with Collision Avoidance

In this experiment, the agent was trained for 1000 episodes, with a total of 600,000 training
steps in the simulations. Two obstacles were chosen in order to perform a validation study
of the proposed algorithm for path-following and obstacle avoidance. The learning rate β
was reduced to 0.002 for the critic network, and the discount factor γ was changed to 0.98.
The number of obstacles k was set at two, with centers at [10, 0] and [47, −10] around the
waypoints of the reference path, and the common parameters robs, rc, re were set to 3.5 m,
5.5 m, and 7.5 m, respectively. The parameters φrz and φpz were set to 100 and 10, as scores
for the reward and penalty, respectively. For each obstacle, the severe penalty ψ was 100 in
every episode, and the parameter θs was set at π/4.
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Figure 6a shows the results of the proposed algorithm when considering path-following
and obstacle avoidance control simultaneously. In Figure 6b, the errors at each waypoint
of the path are presented. The inputs of the proposed algorithms are given in Figure 6c.
Figure 6d presents the reward changes in every step in final episode of the training. It can
also be seen in Figure 6d that there is a certain penalty score when the robot moves to
the obstacle avoidance area, which shows that the robot is able to achieve the obstacle
avoidance operation from the divided area in the case of path-following. Figure 6e shows
the reward changes in the final episode and in all episodes in the training, and it can be seen
that the trend of the reward score is consistent with the path-following effect, by combining
the results in Table 3, which represents the four stages of the training process, chosen as
100, 200, 400, and 1000 episodes.

Table 3. Path-following and obstacle avoidance controller performance at different training stages.

Stage MSE for Longitudinal Errors MSE for Cross Errors

Stage 1 34.0757 37.7735
Stage 2 54.4655 16.6814
Stage 3 0.0647 2.1392
Stage 4 0.0127 1.5788
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Figure 6. Performances of the proposed method for path-following and obstacle avoidance con-
trol. (a) Comparison of paths for following. (b) Errors in path-following. (c) Inputs for path-
following. (d) Scoring for each step with proposed method. (e) Average scoring for each episode with
proposed method.

5. Conclusions

In this paper, a deep-reinforcement-learning-based controller was proposed for path-
following for nonholonomic wheeled mobile robots(NWMRs). The deep deterministic
policy gradient (DDPG) algorithm was utilized to establish a control law for linear and
steering velocities, and the learning-based control policy was trained using repeated path-
following simulations. The path-following results demonstrated the effectiveness of the
proposed method, and the comparisons showed that our method had better efficiency
and more robust performance than the MPC method for path-following control without
collisions. For research on path-following and obstacle avoidance control, a new approach
was proposed to deal with redesigning the state and reward in RL. Moreover, minimum
value techniques for the state were given for the path-following and obstacle avoidance con-
troller, and the results showed the feasibility of solving the multiple obstacles environment
problem during path-following for the control of NWMRs.
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