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Featured Application: The application provides a new tool for reducing the error in the simulated
runoff of a hydro-logical model by integrating time series models with hydrological models.

Abstract: Improving the accuracy of runoff simulations is a significant focus of hydrological science
for multiple purposes such as water resources management, flood and drought prediction, and water
environment protection. However, the simulated runoff has limitations that cannot be eliminated.
This paper proposes a method that integrates the hydrological and time series models to improve the
reliability and accuracy of simulated runoffs. Specifically, the block-wise use of TOPMODEL (BTOP)
is integrated with three time series models to improve the simulated runoff from a hydrological
model of the Zhou River Basin, China. Unlike most previous research that has not addressed the
influence of runoff patterns while correcting the runoff, this study manually adds the hydrologic cycle
to the machine learning-based time series model. This also incorporates scenario-specific knowledge
from the researcher’s area of expertise into the prediction model. The results show that the improved
Prophet model proposed in this study, that is, by adjusting its holiday function to a flow function,
significantly improved the Nash–Sutcliffe efficiency (NSE) of the simulated runoff by 53.47% (highest)
and 23.93% (average). The autoregressive integrated moving average (ARIMA) model and long
short-term memory (LSTM) improved the runoff but performed less well than the improved Prophet
model. This paper presents an effective method to improve the runoff simulation by integrating the
hydrological and time series models.

Keywords: runoff simulation correction; runoff pattern; BTOP model; improved Prophet model

1. Introduction

Runoff simulation is one of the most important topics in current surface hydrological
process research [1]. Runoff is an essential link in the process of the surface water cycle,
and is an important indicator that reflects the resource and environmental conditions of the
basin. Its changes objectively reflect the changes in regional hydrological processes and wa-
ter resources’ inventory [2,3]. The hydrological model is an excellent instrument for runoff
simulation, analysis, and calculation, and it is a crucial way to explore and understand the
water cycle and hydrological processes. The hydrological model also simulates the main
characteristics of the rainfall-runoff process by generalizing the complex water cycle pro-
cess, which is important for water resources development and utilization, flood prevention
and mitigation, urban planning, vegetation impacts and watershed response to human
activities, and many other aspects [4–7]. With the wide application of hydrological models,
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the issue of how to improve the accuracy of rainfall-runoff simulations has attracted more
and more attention from scholars and has increasingly become one of the critical topics in
hydrology research [4].

Modern time series analysis originated in 1927 with the autoregressive (AR) model
proposed by the British statistician Yule [8]. Together with the moving average (MA) model
and the ARMA model proposed by Walker in 1931, this model formed the basis of time
series analysis and is still heavily used today [9]. With the continuous development of the
theory and application of time series analysis, time series models are used in many fields
such as finance, e-commerce, information and data mining. The common time series models
include: (1) autoregressive (AR) models, moving average (MA) models, and autoregressive
integrated moving average (ARIMA) models based on traditional probabilistic statistical
methods [10]; (2) the BP neural network model and long and short-term memory (LSTM)
neural network models based on machine learning algorithms [11,12]; and (3) the Prophet
model based on time series decomposition and machine learning fitting.

The use of error correction models to improve the accuracy of hydrological model
forecasts is an effective tool [13], and time series models have also played a significant role
in this regard. Montanari et al. [14] used the meta-Gaussian model to predict the posterior
distribution of errors to obtain the predicted flow interval results with a certain confidence.
Cheng et al. [15] employed the ARMA-GARCH model with the heteroscedasticity of
the hydrological sequence to post-process the error series of runoff simulated by the
Xinanjiang model to obtain real-time flood prediction results, which significantly improved
the prediction accuracy. Zhang et al. [16] applied the Bayesian forecasting system (BFS)
and hydrologic uncertainty processor (HUP) to the Baishan Reservoir basin to obtain a
posterior distribution of predicted flow to reduce simulation uncertainty. Jiao et al. [17]
took the Shuibuya upstream watershed as the study area and established the regression
model of distributed hydrological model DEM-based distributed rainfall-runoff model
(DDRM) simulation results for the real-time correction of the runoff simulation. The results
show that the regression model, to a certain extent, makes up for the actual application
of distributed hydrological model due to lack of information and the decline in precision.
Qu et al. [13] used two real-time correction technologies, the autoregressive (AR) model
and the entire-process joint correction method (EPJC), to predict and correct the runoff
error of the Xinanjiang model in order to reduce the runoff prediction error in the Dadu
River Basin, thus improving the actual forecasting ability of the hydrological model.

Time series models are used to correct the results of hydrological model predictions or
simulations, and most of the existing methods are based on the principles of mathematical
statistics or machine learning for model correction. This study adds a manual operation
component to the time series prediction model based on the machine learning principle,
and it is combined with the runoff model scheme of the hydrological model. The correction
effect is significantly improved compared with the existing time series model correction
methods. This study employs the improved Prophet, a time series model established by
Facebook in 2017, combined with a distributed hydrological model, block-wise use of
TOPMODEL (BTOP), and takes the ARIMA model and LSTM model as comparison models
to demonstrate, in detail, the time series model’s prediction and analysis of error series of
the distributed hydrological model. This provides a valuable reference for applying the
time series model in hydrological model research.

2. Study Area and Data
2.1. Study Area

The study area comprises the Xuanhan section of the Zhou River, located in the
southwestern part of Xuanhan County, Sichuan Province, China. The Zhou River is a
first-class tributary of the Qu River, with the upper source divided into three branches: the
front, middle and back rivers. The front river is the mainstream, with all originating from
the southern foot of the Daba Mountains and flowing in a sinuous manner to the southwest
(Figure 1). The Qu River is an important tributary of the Jialing River, with sufficient water
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supply, large flood and dry variability, and a relatively obvious runoff pattern. Its runoff
series is suitable for use as the time series data for this study.
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Figure 1. Location, digital elevation model (DEM), and ground observations in the Zhou River Basin
(the Zhou River is a first-class tributary of the Jialing River).

The basin area of the study area is 3574 km2, the mainstream length is about 108 km,
the river bed width is about 60 m, the natural drop is 16.6–327 m, the average annual flow
is 160 m3/s, the annual average temperature is 16.7 ◦C, and the annual average rainfall is
1230 mm, with the majority of it falling between May and October, accounting for roughly
70% of the total. There are 6 soil types, and 106 variants in the study basin, and the main
soil types are purple soil, rice soil and loam. The study basin is influenced by the southwest
monsoon, with abundant precipitation and frequent floods, including the historical floods
in 1902, 1982 and 2004. Floods in this area are closely related to climatic precipitation, so it
is important to simulate rainfall-runoff in the study area.

2.2. Data

The years from 1982 to 1984 were selected as the training period and 1985 was chosen
as the testing period for the study. Twenty-one rainfall stations and four flow stations (in
the locations of Donglin, Tuhuang, Qingxi, and Maoba) were selected within the study
basin. The daily precipitation data and daily flow data were derived from the hydrology
Yearbook published by the Hydrology Bureau of the Ministry of Water Resources of China.
Terrain data were derived from digital elevation model (DEM) data with 30 m resolution
provided by a geospatial data cloud [18]. Land use/vegetation cover type data obtained
at 500 m grid scale were from USGS Land Cover Research Institute [19]. Soil data from
the Food and Agriculture Organization of the United Nations (FAO) provided a global
1:5 million proportion of raster data [20]. The potential interception of reservoir (PET0)
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evaporation data with a 0.25-degree resolution were obtained from the Global Terrestrial
Evaporation Amsterdam model (GLEAM) [21]. The potential evapotranspiration (EP) data
were obtained from the Climate Research Unit (CRU) with a resolution of 0.5 degrees [22].
Leaf area index (LAI) data with a resolution of 0.05 degrees were adopted from the National
Environmental Information Center (NCEI) [23]. All the above data sets were resampled to
1 km and input into the BTOP model for runoff simulation [24].

3. Methodology
3.1. Hydrological Model: The Block-Wise Use of TOPMODEL (BTOP Model)

The BTOP model is a distributed watershed hydrological model based on a physical
mechanism [25,26]. It was initially developed at Yamanashi University, Japan [27] for
distributed hydrological simulation of large basins [28].

Compared with the traditional TOPMODEL model, the BTOP model was developed
based on its in-depth analysis and improvement. It has made some progress in terms of
river network technology, natural sub-basin delineation, the method of giving the spatial
distribution of the catchment model parameters as grid cells, and confluence accuracy [29].
The BTOP model has been widely used in the hydrological simulation of various river basins
worldwide, such as the Fuji River Basin [29–31] (3500 km2) in Japan, the Mekong River
Basin [32,33] (811,000 km2), the Min River Basin in China [34], eight basins in Nepal [35]
and a dozen small- and medium-sized watersheds in the United States [36]. Effective
testing has been completed in all these river basins.

(1) Runoff generation process

The BTOP model uses TOPMODEL as the runoff generation sub-model, and the raster
cells are divided into four parts in the vertical direction: vegetation part, root part, unsatu-
rated part and saturated part. The vegetation part includes rainfall and evapotranspiration
processes, the unsaturated part is divided into active and inactive zones, and the lowermost
layer is the saturated zone. The main flow generation types of grid cells include super
permeability, full storage and base flow.

(2) Flow routing process

The BTOP model uses the Muskingum–Cunge method as a flow routing sub-model, as
a physically-based flow routing method rather than an empirical approach, this algorithm
is equivalent to the convection-diffusion model and it is more suitable for large river basins
than the kinematic wave model since the riverbed slopes are often mild.

(3) Model parameters

The five calibration parameters for saturated transmissivity of soil are the block-
average Manning coefficient (n0c), drying function parameter (α), discharge decay factor
(m), block-average saturation deficit (SDbar), and groundwater dischargeability (Do), which
are used as the initial values in the training period of the model. They are automatically
optimized by the SCE-UA [37] algorithm to obtain the parameters for the testing period,
which are then substituted in the model for runoff simulation. The BTOP model was chosen
because of its solid physical basis and few rate-determining parameters. Moreover, the
parameters of the model all have physical meaning or interpretation for characterizing soil
properties, land use and other features, which can effectively reduce the uncertainty of the
model. Moreover, the model has a good application background in the Yangtze River basin,
where the study area is located.

3.2. Autoregressive Integrated Moving Average Model (ARIMA Model)

The autoregressive integrated moving average (ARIMA) model is a time series fore-
casting analysis method [38]. ARIMA (p, d, q), in which AR is “autoregressive”, and p is the
number of autoregressive terms. MA is the “sliding average”, q is the number of sliding
average terms, and d is the number of differences to make it a stationary series [10]. In
practice, d is usually less than 2, and is the key step to make the series smooth.
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(1) Autoregressive (AR) model

Under the condition that the time series satisfies smoothness, the AR model describes
the treatment of the relationship between current and historical values, that is, to use the
historical time data of the variable itself to predict itself [39]. The formula defines the
P-order autoregressive process:

yt = µ + ΣP
i=1γiyt−1 + εt (1)

where yt is the simulation error at time t; µ is the constant term; P is the lag order of the
autoregressive process; γi is the autocorrelation coefficient; εt is the random perturba-
tion term.

(2) Moving average (MA) model

The MA model is concerned with the accumulation of the error term in the AR model,
that is, the error term εt in the AR model is viewed as a moving average term of order q [40].
The autoregressive process of order q is defined by the formula:

yt = µ + εt + Σq
i=1θiεt−1 (2)

where yt is the simulation error at time t; µ is the constant term; q is the lag order of the
moving average process; θi is the autocorrelation coefficient; εt is the random perturba-
tion term.

(3) Autoregressive integrated moving average (ARIMA) model

The autoregression is combined with the moving average to obtain the ARIMA (p, d,
q) model defined by the formula:

yt = µ + ΣP
i=1γiyt−1 + εt + Σq

i=1θiεt−1 (3)

From the formula, we know that we only need to specify three parameters (p, d, q) when
getting the ARIMA model, where d is the order and d = 1 is the first-order difference. p, q can
be determined according to the partial autocorrelation function (PACF) and autocorrelation
function (ACF) of sequences [41].

3.3. Long Short-Term Memory (LSTM)-Based Prediction

LSTM is a special type of recurrent neural network (RNN) first proposed by Hochreiter
and Schmidhuber (1997) [42], which is mainly used to solve the problems of gradient
disappearance and gradient explosion in the process of long sequence training [43]. To put
it simply, compared with ordinary RNN, LSTM can learn long-term rules and has better
learning ability in longer sequences.

The chain structure of the LSTM contains three main gates, which are shown in
Figure 2: (1) the forget gate ft, which determines how much of the cell state ct−1 from
the previous moment is retained in the current cell state ct; (2) the input gate it, which
determines how much of the input xt to the network is saved to the cell state ct at the
current moment; and (3) the output gate ot, which controls the unit state ct and how many
inputs it has to the current output value ht [44].

The forget gate determines what information is discarded from this node, and its main
function is the Sigmoid, denoted by σ; W f is the weight matrix; b f is the bias term. The
formula is as follows:

ft = σ
(

W f ·[ht−1, xt] + b f

)
(4)

The input gate selectively remembers the input information, and its primary function
is similar to the forget gate. After the input, the candidate cell state can be combined with
the forget gate and the input gate to c̃t to update the current moment cell state ct. The
equation is as follows:

it = σ(Wi·[ht−1, xt] + bi) (5)



Appl. Sci. 2022, 12, 6883 6 of 20

c̃t = tanh(Wc·[ht−1, xt] + bc) (6)

ct = ft·ct−1 + it·c̃t (7)

The output gate determines which will be retained as the current state output and
combined with the current cell state to obtain the final output ht of the LSTM, the formula
is as follows:

ot = σ(Wo·[ht−1, xt] + bo) (8)

ht = ot·tanh(ct) (9)
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3.4. Improved Prophet Model

The Prophet model is a decomposable time series forecasting model open-sourced by
Facebook [45,46]. The model is a whole-loop structure divided into a manual manipulation
part and an automated part, which integrates background knowledge of specific problems
and statistical analysis [46]. Analysts can check predictions and adjust models based on
feedback and realistic scenarios. This combination makes the Prophet model more accurate
and rapid, more automatic, and parameters are easier to adjust than the traditional time
series prediction model [47]. The principle of the model is shown in Figure 3.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 20 
 

 

Figure 3. The principle of the Prophet model for prediction. 

The algorithm of the model is formulated as follows: 

𝑌(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + 𝑓(𝑡) + 𝑒(𝑡) (10) 

which includes: 

(1) Trend function 𝑔(𝑡) 

This is the core part of the whole Prophet model, and is mainly used to represent the 

trend in the time series of the non-periodic changes. It reflects the overall trend in the 

fluctuation of the time series, while the future trend is predicted [48]. The trending term 

has two important functions: the segmented linear function based on linear regression, 

and the saturated growth function based on logistic regression. This simulation adopts a 

piecewise linear function [46]. 

(2) Periodic function 𝑠(𝑡) 

The time series contains seasonal trends in various types of cycles, such as days, 

weeks, months and years [49]. For these irregular periodic variations, fitting these varia-

tions effectively has a significant effect on the accuracy of the model predictions. There-

fore, the Prophet model approximates this cyclical property with a Fourier series [50]. 

(3) Flow function 𝑓(𝑡) 

In the original Prophet model, this item is the holiday function ℎ(𝑡). Prophet has 

built-in important holidays in each country, and in the prediction of the series affected by 

special time points such as sales volume or electricity consumption, the holiday term can 

effectively simulate the impact of special time points, such as a surge in orders on the 

National Day. As for the runoff error series in this study, it is not affected by holidays in 

the traditional sense. Through comparison and observation, it is found that the runoff 

error series is influenced by high-flow and low-flow periods, and the error in the BTOP 

simulation increases accordingly at the maximum point of runoff. 

Therefore, the improved Prophet model uses the flow function 𝑓(𝑡) to replace the 

original holiday function ℎ(𝑡). The maximum value point in the runoff series is used as a 

special “holiday” to effectively reduce the effect of the high-flow periods on the error se-

ries, and the equation is as follows: 

𝑓(𝑡) = 𝑍(𝑡)𝑘 = ∑ 𝑘𝑖 · 𝐿{𝑡∈𝐷𝑖}

𝐿

𝑖=1
 (11) 

where 𝑘𝑖 denotes the influence range of the high flow periods, k follows a normal distri-

bution, 𝑘~Normal(0, 𝑞2). The parameter flow_prior_scale influences the normal distribu-

tion, and the parameter value is specified according to the average flow rate of each sta-

tion. The larger the value, the greater the influence of the high-flow periods on the model; 

Figure 3. The principle of the Prophet model for prediction.



Appl. Sci. 2022, 12, 6883 7 of 20

The algorithm of the model is formulated as follows:

Y(t) = g(t) + s(t) + f(t) + e(t) (10)

which includes:

(1) Trend function g(t)
This is the core part of the whole Prophet model, and is mainly used to represent

the trend in the time series of the non-periodic changes. It reflects the overall trend in the
fluctuation of the time series, while the future trend is predicted [48]. The trending term
has two important functions: the segmented linear function based on linear regression,
and the saturated growth function based on logistic regression. This simulation adopts a
piecewise linear function [46].

(2) Periodic function s(t)
The time series contains seasonal trends in various types of cycles, such as days, weeks,

months and years [49]. For these irregular periodic variations, fitting these variations
effectively has a significant effect on the accuracy of the model predictions. Therefore, the
Prophet model approximates this cyclical property with a Fourier series [50].

(3) Flow function f(t)
In the original Prophet model, this item is the holiday function h(t). Prophet has

built-in important holidays in each country, and in the prediction of the series affected
by special time points such as sales volume or electricity consumption, the holiday term
can effectively simulate the impact of special time points, such as a surge in orders on the
National Day. As for the runoff error series in this study, it is not affected by holidays in
the traditional sense. Through comparison and observation, it is found that the runoff
error series is influenced by high-flow and low-flow periods, and the error in the BTOP
simulation increases accordingly at the maximum point of runoff.

Therefore, the improved Prophet model uses the flow function f(t) to replace the
original holiday function h(t). The maximum value point in the runoff series is used as a
special “holiday” to effectively reduce the effect of the high-flow periods on the error series,
and the equation is as follows:

f(t) = Z(t)k = ∑L
i=1 ki·L{t∈Di} (11)

where ki denotes the influence range of the high flow periods, k follows a normal distribu-
tion, k ∼ Normal

(
0, q2). The parameter flow_prior_scale influences the normal distribution,

and the parameter value is specified according to the average flow rate of each station.
The larger the value, the greater the influence of the high-flow periods on the model; L
is the number of extreme value points of the high-flow periods, and these points are lo-
cated on the rainfall-runoff map and entered into the model by manually creating a data
frame; Di indicates the date before and after the high-flow periods, and it is set using the
lower_window and upper_window parameters, respectively.

(4) White noise function e(t)
This function represents the residual fluctuation, and there is no specific formula for

calculation. The mcmc_samples parameter was used to select the probability estimation
mode. If the parameter is n (n > 0), the model will make a full Bayesian inference with n
Markov sampling samples. In this paper, maximum posterior probability estimation (MAP)
is directly adopted and the parameter is set to 0. This study uses the Python language
under the Windows system to run the Prophet model, so the stan_backend parameter was
set to cmdstanpy.

The debugging of the models is mostly automatic, which is an advantage that is
common to many time series models [50]. What makes the Prophet model even better is
that analysts can change the model in several places to apply their expertise and external
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knowledge [51], as in the case of this improved flow function f(t). For the different average
flow sizes of each hydrological station, the maximum value point in the f(t) during the high-
flow periods is manually adjusted. Taking NSE as the main indicator, a set of parameters
suitable for this analysis was finally obtained after several rounds of debugging and regular
error sequence training. The Prophet model then accumulates the results of four parts as
the predicted value of the time series.

Taking Donglin Station as an example, some parameters of the current Prophet model
are shown in Table 1 after debugging.

Table 1. Example of Prophet model parameter setting.

Parameter Nature Parameter Name Value

Trend parameters

growth linear
changepoints None

n_changepoints 25
changepoint_range 0.8

changepoint_prior_scale 0.5

Periodic parameters

yearly_seasonality 10
weekly_seasonality false
daily_seasonality false
seasonality_mode additive

seasonality_prior_scale 20

Flow parameters flow flow
flow_prior_scale 10

Other parameters

mcmc_samples 0
interval_width 0.8

uncertainty_samples 1000
stan_backend cmdstanpy

3.5. Evaluation Indicators

In order to measure and detect the correction effects of the three time series models,
the following five evaluation metrics are used in this study:

(1) Mean absolute error (MAE) is used to measure the average absolute error between
the predicted value and the real value on the experimental data set. The smaller the value of
MAE, the better the accuracy of the prediction model. For a test set containing n messages,
MAE is defined as:

MAE =
1
n ∑n

t=1|actual(t)− f orecast(t)| (12)

(2) The root means square error (RMSE) is used to measure the deviation between the
observed flow and the true value, which represents the expected value of the squared error
and should also be as small as possible. RMSE is defined as follows:

RMSE =

√
∑n

t=1|actual(t)− f orecast(t)|2

n
(13)

(3) Average absolute percentage error (MAPE) is used to measure the relative errors
between the average test value and the real value on the test set. The smaller the value of
MAPE, the better the accuracy of the prediction model. MAPE is defined as:

MAPE =
1
n ∑n

t=1

∣∣∣∣ actual(t)− f orecast(t)
actual(t)

∣∣∣∣× 100% (14)

(4) Pearson’s correlation coefficient R reflects the degree of linear correlation between
two random variables. The closer r is to 0, the more linearly irrelevant the predicted and



Appl. Sci. 2022, 12, 6883 9 of 20

true values. The closer r is to 1, the more positively correlated the predicted and true values.
With x, y representing actual(t) and f orecast(t), respectively, R is defined as:

R =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(15)

(5) The Nash–Sutcliffe efficiency coefficient (NSE) is generally used to verify the
simulation results of the hydrological model, and the value of NSE range is −∞ ∼ 1; the
closer to 1, the better the simulation effect. NSE is defined as:

NSE = 1− ∑T
t=1
(
Qt

0 −Qt
m
)2

∑T
t=1
(
Qt

0 −Q0
)2 (16)

3.6. Methodology Structure

Firstly, the BTOP model simulates runoff in the training period. The parameters are
automatically optimized and input into the BTOP model to simulate runoff during the
testing period. Then, the simulated runoff flow is compared with the observed flow to
obtain the error series of the training period, which is used as the input value of the time
series model. After normalized pre-processing of the error series, the Prophet, LSTM, and
ARIMA models are used to predict the time series of the training period error sequence,
and the predicted error series of the testing period is obtained. Finally, the predicted error
series is used to correct the simulated flow to obtain the corrected flow. Five indicators are
used to compare the corrected flow and the original simulated flow: the NSE index, Pearson
correlation coefficient R, mean absolute error (MAE), root mean square error (RMSE), and
mean absolute percentage error (MAPE) (Figure 4).
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4. Results and Discussion

The results are presented in two ways. On the one hand, a representative flow station
was selected to specifically analyze the correction principles of the three time series models;
this is presented in Section 4.1. The Donglin Station which had noticeable runoff pattern
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changes and good model modification results, was selected as an example to demonstrate
the Prophet model and the other two comparison models in detail. On the other hand, an
overall comparison of the correction effects of the three time series models at the four flow
stations using evaluation metrics is presented in Section 4.2.

4.1. Performance of Each Time Series Model
4.1.1. Performance of ARIMA Model

The error series of the Donglin station rate periodically was first tested by the aug-
mented Dickey–Fuller (ADF) test (ADF less than 0.05 is considered as stationary se-
ries) [51,52] and plotted with autocorrelation, see Figure 5a in which it can be seen that the
correlation coefficient of the original series is greater than zero for a long time, indicating a
strong long-term correlation between the series. However, the p value corresponding to the
ADF test statistic of the original sequence was 0.99, which was significantly greater than
0.05, indicating that the series is a non-stationary series (non-stationary series must not
be a white noise series). Next, the original error series were made a first-order difference,
followed by ADF detection and white noise detection. The results show that the autocor-
relation plot has a solid short-term correlation, and the p values of both ADF and white
noise test statistics are less than 0.05, so the error series after the first-order difference is a
stationary non-white noise series.

By observing the ACF (autocorrelation function) and PACF (partial autocorrelation
function) plots after differencing (Figure 5b,c), we can see that both ACF and PACF show
smearing, the PACF cut-off is at lag 6, and ACF decay tends to zero after lag 1, so it is
ARMA (6, 1) [53]. Finally, ARIMA (6, 1, 1) can be determined by combining first-order
differences. Next, the error series of the testing period was simulated, the predicted results
were fitted to the true values, and the residual series were analyzed (Figure 5d–f). The
residual series in the figure is within the confidence interval above and below the mean 0,
and the residual series passes the white noise test [54]. The result of the D-W test [55] on
the residuals is 2.002, which is close to 2, indicates that there is no autocorrelation in the
residuals predicted by the model, and the sample quantile distribution in the residual Q-Q
plot is similar to the theoretical quantile distribution. All of this shows that the fitted model
has good prediction.

Figure 6 is the runoff simulation diagram obtained using the ARIMA model to correct
the simulated runoff from the BTOP model. It can be seen that the modified curve of
the ARIMA model effectively reduces a certain amount of runoff in the low flow periods
to make it closer to the observed flow, which reduces the error to a certain extent and
improves the simulation accuracy of the model. However, the modification of the ARIMA
model in both the low-flow and high-flow periods is used to reduce runoff based on the
original BTOP simulation trend. This is because the ARIMA model is, after all, only a
model with statistical significance, the simulation of the hydrological process lacks physical
cause analysis, and the simulation of the error series is only based on the information input
before this period; thus, it may be difficult to deal with the turning point of the maximum
value in the period of high flow. Therefore, measures should be taken in the practical
application [56]. In general, the ARIMA model relies on the time-series dependence of
forecast errors so that the errors will accumulate rapidly in the extrapolation process, and it
is not suitable for larger basins or situations requiring longer forecasting periods [57].
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tion runoff.

4.1.2. Performance of LSTM Model

To improve the model accuracy, precipitation series were added for multivariate pre-
diction in addition to the error series. The training dataset uses the simulated BTOP values
from 1982 to 1984, and the 1985 data is the testing dataset. The input data are first normal-
ized to make each feature variable contribute equally to the results, speed up the model
iteration and improve the model accuracy. After many rounds of debugging, the model
training parameters are: leaning_rate = 0.001, units = 20, batch_size = 5, epochs = 100. Due to
the small amount of training data and the number of training sessions, overfitting occurs
in the parameter debugging, so the regularization method is introduced. Figure 7 shows
the loss of the training process. We can see that the MAE and loss decrease significantly in
both the training and testing sets, and level off after 80 iterations, indicating that the LSTM
model fits well.
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Figure 8 is the runoff simulation diagram obtained by using the LSTM model to correct
the BTOP model. It can be seen that the corrected green curve trend of the LSTM is more
consistent with the observed flow, and the error is reduced in most of the low-flow seasons.
However, runoff has reduced slightly at the same maximum point rather than increased,
mainly because the LSTM during practice is the trend of the error sequence in learning,
without considering the error that comes from different scenarios. That is, there is no differ-
ence when handling the high-flow and low-flow season of the error sequence. As a result,
the correction effect is not as good as the Prophet model [58,59]. In fact, different forecast
scenarios and their corresponding forecast error distributions are important information
for predicting the magnitude of forecast errors in future periods [60,61].
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Figure 8. Hydrographs from Donglin Station in 1985 with observed, simulated, and LSTM correc-
tion runoff.

4.1.3. Performance of Improved Prophet Model

Several parameter rates were determined, and Figure 9 shows the analysis results of
the error time series. This is an overall forecast result graph in which only the first 80%
of the time series infer the point of change so that there is enough runway to predict the
direction of the trend and avoid over-fitting the fluctuation at the end of the time series. In
the evaluation of the results, the blue curve is used as the basis for prediction. The light
blue confidence region is used for reference to improve the model. Looking at the trend
analysis in Figure 10, it can be seen that the variation trend of the error series starts to
decline in May, and then increases significantly from September to November, that is, the
error in high-flow periods is bigger than in low-flow periods, which is closely related to
the simulation of the BTOP model in-high flow and low-flow periods. The trend in the
predicted value dramatically correlates with the change in the historical value and the
current error situation [46].

Figure 11 is the runoff simulation diagram obtained using the Prophet model to correct
the BTOP model. From the curves of the observed and simulated values therein, it can be
seen from the observed and simulated curves that the BTOP model has achieved a good
daily runoff simulation effect in the study area, the base simulated flow is close to the
observed flow, and the flood peak simulation time is accurate [62]. Careful analysis of the
error sources shows that the simulated flow of BTOP is generally slightly higher than the
observed flow during the low-flow periods, while the simulated flood peak flow is much
smaller than the observed flow in high-flow periods, which is the result of the transmission
of BTOP model operation error from upstream to downstream [61]. Next, by looking at
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the Prophet correction curve, it can be found that the corrected runoff curve is closer to
the observed flow in the low-flow periods. It also has a good correction effect in high-flow
periods, but is not as significant as in low-flow periods. This indicates that the revision of
the Prophet model is mainly reflected in reducing runoff through g(t) and s(t) in low-flow
periods, and increasing runoff through f(t) in the maximum high-flow periods. However,
for the few events where the simulated BTOP values are too large during the high-flow
periods, the Prophet model only slightly reduces the runoff and is not effectively corrected
(20 August). This is also the focus of further improvement of the model.
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Figure 9. Error forecast of the Prophet model. The black dots represent the historical input data, the
blue line represents the predicted trend line after model fitting, the light blue area above and below
the blue curve represents the confidence interval, and the gray dotted-line reflects the position of the
trend mutation point of the sequence.
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Figure 11. Hydrographs from Donglin Station in 1985 with observed, simulated, and Prophet
correction runoff.

In general, the correction of runoff errors for BTOP using the Prophet model is effective.

4.2. Comprison between Three Time Series Models

This section analyzes the four hydrologic stations in the research area from the macro-
scopic perspective. Two types of indicators were used to evaluate the simulation effect of
hydrological models and the correction effect of three time series models. The first is the
hydrologic index NSE, R (the closer the NSE and R values are to 1, the better the simulation
is, and an NSE greater than 0.7 indicates that the hydrological model simulated well). The
other is the error index, that is, MAE, RMSE and MAPE (the error index of the time series
model and the error index of the original BTOP model are converted to get the reduction
rate, thus the larger the reduction rate, the better the model modification effect).

A comparison of the R and NSE of the three time series models and the original BTOP
model is shown in Figure 12. We can see that the R and NSE of the runoff series were
improved at all four stations, among which the Prophet model has the most significant
improvement effect (NSE increased by an average of 30% and R increased by an average of
10%). Although the improvement effect of the LSTM and ARIMA models is not particularly
obvious, mainly because they only predict the terminal error without considering the actual
situation and runoff pattern characteristics, it also proves that it is effective to use the time
series model to conduct runoff simulation correction for BTOP.

The error reduction rate of MAE, RMSE and MAPE were compared. As can be seen in
Figure 13, the corrections of the three models basically show positive effects in all three error
indexes compared to the original BTOP simulations. The larger the triangle is, the greater
the error reduction rate is, the better the model modification effect is. Finally, the correction
effects of the three time models are discussed separately for different hydrological model
simulation effects.

(1) At Donglin and Tuhuang stations, where BTOP simulations are better, MAE, RMSE
and MAPE decreased by 6.94%~21.06%, 19.75%~25.74%, and 16.41%~24.49%, re-
spectively, after Prophet modification. At this time, the Prophet model has a good
correction effect, but the LSTM and ARIMA models have a poor effect, and the reduc-
tion rate of the corresponding error index after correction is far less than that of the
Prophet model.
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(2) At Qinxi station, where the BTOP simulation is slightly less effective, MAE, RMSE,
and MAPE decreased by 34.91%, 19.29% and 20.3%, respectively, after Prophet modifi-
cation. At this time, the Prophet model is also well modified, and the effects of LSTM
and ARIMA models are improved, but the reduction rate of the corresponding error
index after modification is still less than half of that of the Prophet model.

(3) At Maoba station, where the BTOP simulation is the least effective, MAE, RMSE and
MAPE decreased by 5.15%, 2.61% and 7.05% after Prophet modification. At this time,
the modified effect of the Prophet model began to decline, and the error reduction rate
after the modification of LSTM and ARIMA models was close to that of the Prophet.
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In general, the error reduction rate after correction of the Prophet model is the largest,
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LSTM and ARIMA models, respectively. In addition, the better the simulation effect of
the hydrological model is, the more the advantages of the Prophet model effect can be
reflected. Therefore, combining the hydrological and error index, we can conclude that the
Prophet model has the best correction effect on BTOP, followed by the LSTM model, and
the ARIMA model has the worst correction effect.

5. Summary and Conclusions

This study used three time series models to correct the hydrological model BTOP
runoff simulation in the Xuanhan Section of the Zhou River, China. The error between the
simulated and observed flow of the BTOP was taken as a random variable, and the Prophet,
ARIMA, LSTM models were used to predict the error series. Finally, the predicted error was
used to correct the simulated flow to achieve the effect of correcting the runoff simulation
accuracy of the BTOP hydrological model. The corrected results were elaborated from the
perspective of the overall effect and the individual analysis of causes. The summary and
conclusions are as follows:

(1) The simulation of the BTOP model in the Zhou River basin is excellent. When the
BTOP hydrological model is used for simulation in the study area, the law of error can
be followed. We can see that the simulated flow of BTOP is generally slightly higher
than the observed flow during the low-flow periods, while the simulated flood peak
flow is smaller than the observed flow in high-flow periods.

(2) The integration of the BTOP model and three time series models, Prophet, LSTM, and
ARIMA, effectively improved the simulated runoff from the BTOP model. Among
them, the prophet model performed best.

(3) The LSTM model has a poor correction effect in high-flow periods due to its lack of
scenario prediction. The ARIMA model does not consider seasonal factors and outlier
processing and lacks physical analysis of the causes, leading to poor simulation results
in both high-flow and low-flow periods.

(4) In this study, the holiday function h(t) in the Prophet model is improved to the flow
function f(t), which makes the sequence more consistent with the runoff pattern and
makes up for the poor effect of the comparison models in the high-flow periods. The
improved model can better predict the hydrological time series and greatly improve
the runoff simulation accuracy of the hydrological model.

It can be concluded that the improved Prophet model proposed in this study can
effectively modify the runoff simulation of the BTOP hydrological model. However, some
shortcomings of the study can be considered, as the lack of hydrological stations in the
watershed, and the model training period can be extended appropriately. In the application
of the time series model, it is a trend in model development for analysts to integrate their
domain expertise. More effective correction of the high-flow periods of the hydrological
model should be considered in the future, and attention should also be paid to the pre-
processing of data and scenario prediction.
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