
Citation: Hatfaludi, C.-A.; Tache,

I.-A.; Cius, del, C.F.; Puiu, A.; Stoian,

D.; Itu, L.M.; Calmac, L.; Popa-Fotea,

N.-M.; Bataila, V.; Scafa-Udriste, A.

Towards a Deep-Learning Approach

for Prediction of Fractional Flow

Reserve from Optical Coherence

Tomography. Appl. Sci. 2022, 12, 6964.

https://doi.org/10.3390/

app12146964

Academic Editor: Jan Egger

Received: 13 April 2022

Accepted: 8 July 2022

Published: 9 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Towards a Deep-Learning Approach for Prediction of Fractional
Flow Reserve from Optical Coherence Tomography
Cosmin-Andrei Hatfaludi 1,2,*, Irina-Andra Tache 1,3, Costin Florian Cius, del 1,2 , Andrei Puiu 1,2, Diana Stoian 1,2,
Lucian Mihai Itu 1,2, Lucian Calmac 4,5, Nicoleta-Monica Popa-Fotea 4,5 , Vlad Bataila 4

and Alexandru Scafa-Udriste 4,5

1 Advanta, Siemens SRL, 15 Noiembrie Bvd, 500097 Brasov, Romania; irina.tache@upb.ro (I.-A.T.);
costin.ciusdel@siemens.com (C.F.C.); andrei.puiu@siemens.com (A.P.); diana.stoian@siemens.com (D.S.);
lucian.itu@siemens.com (L.M.I.)

2 Automation and Information Technology, Transilvania University of Brasov, Mihai Viteazu nr. 5,
5000174 Brasov, Romania

3 Department of Automatic Control and Systems Engineering, University Politehnica of Bucharest,
014461 Bucharest, Romania

4 Department of Cardiology, Emergency Clinical Hospital, 8 Calea Floreasca, 014461 Bucharest, Romania;
lcalmac@gmail.com (L.C.); fotea.nicoleta@yahoo.com (N.-M.P.-F.); vladbataila@yahoo.co.uk (V.B.);
alexscafa@yahoo.com (A.S.-U.)

5 Department Cardio-Thoracic, University of Medicine and Pharmacy “Carol Davila”, 8 Eroii Sanitari,
050474 Bucharest, Romania

* Correspondence: cosmin.hatfaludi@unitbv.ro

Abstract: Cardiovascular disease (CVD) is the number one cause of death worldwide, and coronary
artery disease (CAD) is the most prevalent CVD, accounting for 42% of these deaths. In view of the
limitations of the anatomical evaluation of CAD, Fractional Flow Reserve (FFR) has been introduced
as a functional diagnostic index. Herein, we evaluate the feasibility of using deep neural networks
(DNN) in an ensemble approach to predict the invasively measured FFR from raw anatomical
information that is extracted from optical coherence tomography (OCT). We evaluate the performance
of various DNN architectures under different formulations: regression, classification—standard,
and few-shot learning (FSL) on a dataset containing 102 intermediate lesions from 80 patients.
The FSL approach that is based on a convolutional neural network leads to slightly better results
compared to the standard classification: the per-lesion accuracy, sensitivity, and specificity were 77.5%,
72.9%, and 81.5%, respectively. However, since the 95% confidence intervals overlap, the differences
are statistically not significant. The main findings of this study can be summarized as follows:
(1) Deep-learning (DL)-based FFR prediction from reduced-order raw anatomical data is feasible
in intermediate coronary artery lesions; (2) DL-based FFR prediction provides superior diagnostic
performance compared to baseline approaches that are based on minimal lumen diameter and
percentage diameter stenosis; and (3) the FFR prediction performance increases quasi-linearly with the
dataset size, indicating that a larger train dataset will likely lead to superior diagnostic performance.

Keywords: deep-learning; few-shot learning; ensemble models; coronary artery disease; optical
coherence tomography; fractional flow reserve

1. Introduction

Cardiovascular disease (CVD) is the number one cause of death worldwide, and
coronary artery disease (CAD) is the most prevalent CVD, accounting for 42% of these
deaths. In CAD patients, plaque builds up in the coronary arteries and limits the blood
flow to the myocardium, especially when the demand is increased (exercise, stress). In
severe cases, this can lead to myocardial infarction, or even death.

X-ray coronary angiography (XA) represents the gold standard in CAD imaging [1].
Optical coherence tomography (OCT) is used in certain scenarios in conjunction with XA.
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OCT has the highest resolution among all invasive imaging modalities, allowing for a pre-
cise intra-vascular evaluation of stent apposition and expansion [2–4], thus, representing a
paramount tool for PCI (percutaneous coronary intervention) optimization [5]. Nonetheless,
its ability to assess the functional significance of a stenosis is not negligible [6].

The purely anatomical assessment of CAD, independent from the medical imaging
modality, does not fully capture the functional significance of coronary stenoses. In view of
the limitations of the anatomical evaluation of CAD, Fractional Flow Reserve (FFR) has
been introduced as a functional index. FFR is defined as the ratio of flow in the stenosed
branch at hyperemia—a condition of stress, with maximum coronary blood flow—to the
hypothetical hyperemic flow in the same branch under healthy conditions. This can be
shown to be closely approximated by the ratio of hyperemic cycle-averaged pressure distal
to the stenosis to the cycle-averaged aortic pressure [7]. An FFR value ≤ 0.8 is considered
to be positive, i.e., the patient requires invasive treatment, such as percutaneous coronary
intervention (PCI-stenting) or coronary artery bypass graft (CABG). An FFR value > 0.8 is
considered to be negative, i.e., typically only optimal medical therapy is prescribed. Several
clinical trials have demonstrated the superiority of FFR-guided decision-making [8], which
represents the current gold standard. However, although providing obvious advantages,
studies indicate that the use of FFR is still relatively low due to the need to administer
hyperemia-inducing drugs, additional costs, and the extended duration and invasive
nature of the procedure [9]. Hence, computational approaches for FFR prediction have
been introduced, relying either on computational fluid dynamics (CFD) or on artificial
intelligence (AI).

Blood-flow computations, performed using CFD, when used in conjunction with
patient-specific anatomical models that are extracted from medical images, have been pro-
posed for diagnosis, risk stratification, and surgical planning [4]. Model-based assessment
of coronary stenoses has been previously performed using such techniques in several clini-
cal studies, based on anatomical models that are reconstructed from coronary computed
tomography angiography (CCTA) [10–13], XA [14–18], or OCT [19–22]. Computed FFR
has been the main quantity of interest in these studies, all of which showed that computed
FFR has good diagnostic accuracy compared to invasively measured FFR. The CFD models
consist of partial differential equations, which can be only numerically solved, leading to a
large number of algebraic equations. Due to the time-consuming process that is employed
for reconstructing the anatomical model, and the computationally intensive aspect of the
CFD models [23,24], they are not used for intra-operative assessment and planning, where
near real-time performance is required.

Alternatively, artificial intelligence-based solutions may be employed that are capable
of providing results in real-time. To develop such solutions, a large database is required for
the training phase, containing pairs of input-output data. The input data are represented by
the anatomical information, while the output are invasive FFR [25]. Once the training phase
has been finalized, the online usage provides results instantaneously. Such supervised
machine learning (ML) algorithms are routinely employed in medical imaging applications,
e.g., organ segmentation [26]. Moreover, machine learning models can also be employed to
reproduce the behavior of non-linear computational models [27,28].

Recently, machine learning models for the prediction of FFR based on CCTA [29],
XA [30], OCT [31], and intravascular ultrasound (IVUS) [32] have been introduced. All these
approaches rely on the extraction of features describing the vascular geometry, specifically
the arterial lumen, and, in some studies, also on patient features.

The goal of the present study is to evaluate the feasibility of using deep neural net-
works (DNN) to predict the invasively measured FFR from the radius of the coronary lumen
that is extracted along the centerline of the coronary artery of interest. The starting point is
represented by OCT images, the coronary lumen is then automatically extracted for each
cross-section and subsequently processed to determine an equivalent radius value. The
radius values are then arranged in a one-dimensional (1D) sequence, to be fed as input to
the DNN. Our approach is in contrast to previous ML-based approaches for FFR prediction,
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since we use as input raw, reduced-order anatomical data instead of hand-crafted features.
The second important aspect of the study is that we focus on intermediate lesions, for
which the visual anatomical assessment of CAD based on XA does not allow for a clear
clinical decision. As a result, the dataset contains a large number of lesions having an FFR
value that is close to the cut-off of 0.8, making the prediction task more challenging.

Deep-learning (DL) is a class of machine learning algorithms that uses multiple layers
to extract higher level features from the raw input [33]. The FFR prediction task can
be formulated either as a regression problem (predict the exact value of FFR) or as a
classification problem (predict the FFR class, e.g., binary classification: ≤0.8 or >0.8). There
are several types of neural networks that are suitable for the FFR prediction, amongst others:

- fully connected neural network, commonly referred to as artificial neural networks
(ANNs). Potential disadvantages of ANNs are the large number of trainable parame-
ters, which leads to the requirement of large training datasets, and the difficulty in
capturing the inherent properties in 1D/2D/3D data structures

- convolutional neural networks (CNNs). Compared to ANNs, CNNs can capture the
inherent properties in 1D/2D/3D data structures, but still require relatively large training
sets. Also, fixed size input data are required if the network is not fully convolutional.

- recurrent neural networks (RNNs) [34]. RNNs have the advantage that a variable
length input sequence can be processed, but they may be affected by vanishing and
exploding gradient issues.

Few-shot learning (FSL) is a type of learning where the prediction is performed based
on a limited number of samples [35]. In a study that was published by Yang et al., the
models that were used for FSL were classified into four categories: multitask learning,
embedding learning, learning with external memory, and generative modeling.

OCT images were previously used in a variety of DL-based applications: stent strut de-
tection [36,37], stent strut segmentation [38–40], coronary calcification segmentation [41,42],
atherosclerotic plaque characterization [43], and lumen segmentation [44]. Furthermore,
DL-based approaches were employed also in studies addressing other types of optical
signals [45,46].

Herein, we evaluate the performance of ANNs, CNNs, and RNNs in both regression
and classification formulations. Additionally, we also consider the use of FSL, focusing
specifically on prototypical networks [47], a subcategory of the embedding learning models,
considered the state of the art for classification tasks. More details that are related to
prototypical networks are included in Appendix A.1.

2. Materials and Methods
2.1. Data Set
2.1.1. Study Design

This was a single-center, retrospective study that was carried out at the Clinical
Emergency Hospital, Bucharest, Romania. The study complied with the Declaration of
Helsinki for investigation in human beings. The study protocol was approved by the local
ethics committee and each patient signed an informed consent form before the enrolment
in the study.

2.1.2. Study Population

Patients at least 18 years old, with stable angina, and an indication for diagnostic
XA due to intermediate or high likelihood of obstructive coronary artery disease, were
considered. Further inclusion criteria were: at least one lesion with 40% to 80% diameter
stenosis by visual assessment, and invasive FFR measurement considered required by
the operator for clinical decision-making. Patients were excluded if they were unable to
provide informed consent, had significant arrhythmia (heart rate over 120 bpm), suspected
acute coronary syndrome, atrial fibrillation, low systolic pressure (below 90 mmHg), con-
traindication to beta blockers, nitroglycerin or adenosine, a non-cardiac illness with a life
expectancy of less than 2 years, pathological aortic valve, rest state angina, or myocardial
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infarct during the last 6 months. Additionally, aorto-ostial lesions were excluded from the
study. A total of 80 patients were included in the study.

2.1.3. Procedure Protocol

Coronary angiography (Siemens Artis Zee, Forchheim, Germany) was performed after
iso-centering in posterior-anterior and lateral planes, via a transradial (preferred) or trans-
femoral approach. In all cases, a 6 French diagnostic catheter was used after intracoronary
injection of glyceryl trinitrate according to routine practice in the hospital, with manual
contrast injection and cine acquisition at a frame rate of 15 frames/second. OCT imaging
was performed using a frequency-domain OCT systems (St. Jude Medical/Abbott, St. Paul,
MN, USA). The fiber probe was pulled back at a constant speed and cross-sectional images
were generated with a spacing of 0.2 mm.

The acquisition of physiological data for FFR calculation was performed according
to conventional practice [48] with a commercially available FFR measurement system
(PressureWire Aeris; St. Jude Medical, Minneapolis, MN, USA). The 0.014 coronary wire
with a pressure tip was advanced until the pressure sensor passed the orifice of the guid-
ing catheter. Transcatheter aortic and intracoronary pressure tracings were equalized.
Subsequently, the guidewire was advanced into the respective coronary artery until the
pressure sensor passed the index lesion. Hyperemia was induced by the administration of
adenosine either intravenously at a constant rate of 140 µg/kg/min, or as an intracoronary
bolus (100 µg for the right and 200 µg for the left coronary artery); the pressure recording
was started, and the FFR was determined. A total of 102 coronary lesions in 80 patients
underwent FFR analysis. This invasively measured FFR represents the ground truth that is
used during the training of the deep neural networks, as described in the following.

2.2. Data Pre-Processing

The OCT data were exported from the OCT workstation available onsite. All OCT
slices are RGB images, and the exported data contains the automatically detected coronary
lumen, which is overlaid on the image and depicted in green. The spacing between the
slices is 0.2 mm, and the number of slices per acquisition is constant at 376. Figure 1
displays the data pre-processing workflow starting from the exported OCT images with
automatically detected lumen contour. First, the contours are automatically extracted by
processing the green channel as follows: a threshold representing 90% of the maximum
intensity value is used to create a binary image, and all the contours are extracted [49].
We then retain the contour which surrounds the center of the image: if there are multiple
such contours, we pick the one with the largest area. Next, we use an in-house developed
application to collect manual input that is provided by the clinical expert:

- selection of the proximal start and distal end slice, which define the coronary artery
region of interest. Slices representing the catheter are excluded, alongside other slices
with sub-optimal image quality (e.g., blood artifacts);

- rejecting/correcting erroneous contours within the selected slice-range: the automat-
ically detected contours may be incorrect on certain slices, typically in bifurcation
regions and/or if the lumen has a profoundly non-circular shape (e.g., concave shape).
Erroneous bifurcation contours are rejected, while erroneous contours in the stenosis
region are corrected (required in less than 10% of the OCT acquisitions).



Appl. Sci. 2022, 12, 6964 5 of 23Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 24 
 

 
Figure 1. OCT data processing workflow, including FFR prediction using a deep neural network. 

Next, the data are pre-processed: the inside area of each non-rejected lumen contour 
in the selected slice-range is computed and the effective radius is determined (considering 
an equivalent circular contour with identical area). The radius of rejected contours is set 
using linear interpolation that is applied on the radiuses of the closest neighboring con-
tours that have not been rejected. The radiuses are then arranged in a 1D sequence, start-
ing with the proximal slice of the selected slice-range. Since the OCT slices are equidistant, 
only the radius values are used as input. For the further processing using deep neural 
networks, the 1D radius sequence is padded to a size of 376 (maximum length of an OCT 
sequence), and z-score normalization is performed [50]. The mean and standard deviation 
of each acquisition are computed, and then a global mean and global standard deviation 
are computed for the training set by averaging the mean and standard deviation values 
of the acquisitions that are included in the training set. The acquisitions in the valida-
tion/test split are normalized using the values that are employed for the training set. The 
1D sequence of normalized radius values is used as input for the deep neural network 
predicting FFR. 

2.3. Deep Neural Network Based FFR Prediction 
Different types of neural network models are considered for the prediction of the 

invasively measured FFR, ANNs, CNNs, and RNNs, applied with different approaches: 
- a regression approach: models predict a rational number representing invasive FFR 
- a classification approach: models predict the class of the FFR value (positive, i.e., FFR 

≤ 0.8, or negative, i.e., FFR > 0.8) 
- a FSL approach: similar to the classification approach. 

As ANN, we used a fully connected neural network with 4 hidden layers, and the 
rectified linear unit (ReLU) [51] as the activation function for the hidden layers. The details 
of the ANN architecture are included in Appendix A (Table A1). 

As CNN, we used a fully convolutional neural network (1D convolutions) with eight 
layers. For the hidden layers we used ReLU as activation function, and batch normaliza-
tion was employed [52]. For the regression and the classification approach we added a 
final fully connected layer to perform the prediction. For the FSL approach, this layer is 
not required. The details of the CNN architectures are included in Appendix A (Tables A2 
and A3). 

As RNN, we included a bidirectional gated recurrent unit (GRU) [53] layer on top of 
the previously described fully convolutional neural network (referred to as CNN + RNN 
in the appendix). This avoids the padding requirement. The CNN layers learn the relevant 
features from the input, and then the RNN performs the final prediction based on those 
features. Training a fully RNN network was not possible considering the small size of the 
available dataset. For the regression and the classification approach we added a fully con-
nected layer after the bidirectional GRU to perform the prediction. For the bidirectional 

Figure 1. OCT data processing workflow, including FFR prediction using a deep neural network.

Next, the data are pre-processed: the inside area of each non-rejected lumen contour
in the selected slice-range is computed and the effective radius is determined (considering
an equivalent circular contour with identical area). The radius of rejected contours is set
using linear interpolation that is applied on the radiuses of the closest neighboring contours
that have not been rejected. The radiuses are then arranged in a 1D sequence, starting
with the proximal slice of the selected slice-range. Since the OCT slices are equidistant,
only the radius values are used as input. For the further processing using deep neural
networks, the 1D radius sequence is padded to a size of 376 (maximum length of an OCT
sequence), and z-score normalization is performed [50]. The mean and standard deviation
of each acquisition are computed, and then a global mean and global standard deviation are
computed for the training set by averaging the mean and standard deviation values of the
acquisitions that are included in the training set. The acquisitions in the validation/test split
are normalized using the values that are employed for the training set. The 1D sequence of
normalized radius values is used as input for the deep neural network predicting FFR.

2.3. Deep Neural Network Based FFR Prediction

Different types of neural network models are considered for the prediction of the
invasively measured FFR, ANNs, CNNs, and RNNs, applied with different approaches:

- a regression approach: models predict a rational number representing invasive FFR
- a classification approach: models predict the class of the FFR value (positive, i.e.,

FFR ≤ 0.8, or negative, i.e., FFR > 0.8)
- a FSL approach: similar to the classification approach.

As ANN, we used a fully connected neural network with 4 hidden layers, and the
rectified linear unit (ReLU) [51] as the activation function for the hidden layers. The details
of the ANN architecture are included in Appendix A (Table A1).

As CNN, we used a fully convolutional neural network (1D convolutions) with eight
layers. For the hidden layers we used ReLU as activation function, and batch normalization
was employed [52]. For the regression and the classification approach we added a final fully
connected layer to perform the prediction. For the FSL approach, this layer is not required.
The details of the CNN architectures are included in Appendix A (Tables A2 and A3).

As RNN, we included a bidirectional gated recurrent unit (GRU) [53] layer on top of
the previously described fully convolutional neural network (referred to as CNN + RNN in
the Appendix A). This avoids the padding requirement. The CNN layers learn the relevant
features from the input, and then the RNN performs the final prediction based on those
features. Training a fully RNN network was not possible considering the small size of
the available dataset. For the regression and the classification approach we added a fully
connected layer after the bidirectional GRU to perform the prediction. For the bidirectional
GRU, we used ReLU as the activation function. The details of the RNN architecture are
included in Appendix A (Table A4).
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No activation function was used on the last layer for the regression approach, and the
sigmoid function [54] was chosen for the classification approach. For the FSL approach, the
output of the network is represented by the features from the last hidden layer. The class is
then determined by the smallest Euclidean distance between the output of the network and
the two class clusters. These are defined by the mean features of the training set samples of
each class.

For the classification and FSL approaches, all the samples with invasive FFR ≤ 0.8
represent the positive class and all the samples with invasive FFR > 0.8 represent the
negative class. Since the dataset consists of only 102 invasive values, the models are
evaluated using the leave-one-out cross validation strategy that is applied at the patient
level [55]. For each fold, the samples of one patient are moved to a validation set, while
the model is trained for a fixed number of epochs (300) on the samples of the remaining
patients. The classification accuracy is computed for each epoch, and the epoch leading
to the highest accuracy on the entire dataset, i.e., all folds, is chosen for reporting the
statistics. Additionally, only during training of the classification-based approaches, we
also ignored the samples with invasive FFR values in the range 0.79–0.81 (six samples). By
removing these samples that are close to the cut-off point, the model is able to learn to better
discriminate between the classes. For all the models we used the Adam optimizer [56],
mean squared error as a loss function for the regression approach, and cross entropy [57] for
the classification and the FSL approach (more details are included in Appendix A.2). All the
architectures were optimized using grid search [58], applied for: number of layers, number
of neurons per layer, dropout percentage, and the learning rate. The implementation is
based on Python, and the PyTorch [59] library for DL model training and inference.

To allow for a fair assessment of the performance, an ensemble approach is considered
for each configuration: each of the proposed models is trained 20 times using different
random seeds. For each configuration, the 20 models are then combined into one ensemble
model. For regression approaches, the ensemble prediction for one sample is the mean
value of the predictions of all 20 models. For classification and FSL approaches, the
ensemble prediction for one sample is the mean value of the probabilities of all 20 models.
This allows for a more robust assessment of the model performance, which is independent
from the random seed that is used during training. The value 20 was chosen following
experiments which indicated that the ensemble model performance did not change when
using larger values.

For all the ensemble models, we performed the receiver operating characteristic (ROC)
analysis [60] and we computed the area under the curve (AUC) score [61]. Based on the
ROC curves, we selected for each ensemble model the optimal cut-off point as being the
point closest to the point (0, 1) [62]. The reported model performance metrics are based on
the optimal cut-off point. The formula that is used to determine the point closest to (0, 1)
is [63]:

ER(c) =
√
(1− Se(c))2 + (1− Sp(c))2 (1)

where ER is the closest point to (0, 1), c is a cut-point, Se is sensitivity, and Sp is specificity.
Similar to other studies, we further consider the minimum lumen diameter (MLD) and

percentage diameter stenosis (%DS) as simple baseline references to assess the performance
of the DL models. The %DS is computed as follow:

DS = (1 − rmin/ravg) × 100 (2)

where rmin is the minimum radius of the sequence, ravg is the average of the proximal and
distal reference radius values of the lesion, as extracted from the OCT data.

For both MLD and %DS, we also apply the leave-one-out cross validation strategy
at the patient level, as follows: for each fold, a threshold value is chosen which balances
sensitivity and specificity on the respective training set, and then this threshold is applied
to classify the test sample(s).
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To evaluate the results, we computed the diagnostic statistics (accuracy, sensitivity,
specificity, negative predictive value (NPV), and positive predictive value (PPV) [64]) for
all approaches, and additionally the mean absolute error (MAE), mean error (ME), and
the mean squared error (MSE) for the regression approach. For the diagnostic statistics we
additionally computed the 95% confidence intervals.

3. Results
3.1. Population Characteristics

Baseline patient and lesion characteristics are summarized in Tables 1 and 2: 80 patients
(66 male, 14 female) with 102 lesions were included in this study. The mean patient
age was 60.5 ± 11.2 years. The mean FFR was 0.80 ± 0.08, and 48 of the lesions were
hemodynamically significant according to the criterion FFR ≤ 0.80.

Table 1. Baseline patient characteristics and risk factors (n = 80).

Male 66 (82%)

Female 14 (18%)

Age (years) 60.5 ± 11.2 years

Race All Caucasian

Weight 81.93 ± 16.15 kg

Height 172.13 ± 8.05 cm

Diabetes 27 (33.75%)

Hypertension 60 (75%)

Hypercholesterolemia 62 (77.5%)

Smoking history 42 (52.5%)

Family history of CAD 3 (2.9%)

Previous myocardial infarction 46 (45%)

Previous Angina 64 (80%)

Ejection fraction 48.28 ± 6.31%

Table 2. Baseline lesion characteristics (n = 102).

Index Artery

Left Anterior Descending artery (LAD) 57

Left Circumflex artery (LCx) 20

Right Coronary Artery (RCA) 25

Fractional Flow Reserve

Mean ± SD 0.80 ± 0.08

Median (IQR) 0.83 (0.75−0.86)

FFR ≤ 0.80 48

FFR < 0.75 25

0.75 ≤ FFR ≤ 0.85 47

FFR > 0.85 30

3.2. Invasive FFR Prediction Performance

Figure 2 displays the ROC curve, the AUC scores including their 95% confidence
intervals (CI), and the closest point to (0, 1) for all the approaches. The best three approaches
based on AUC score are regression CNN, FSL RNN, and FSL CNN. Interestingly, the AUC
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score is superior for the regression CNN approach, but the FSL CNN approach has the
closest point to (0, 1), i.e., the best diagnostic performance statistics, as shown below.
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Figure 2. The ROC curve, AUC score, and the closest point to (0, 1) for all approaches. Values in the
parentheses represent the 95% confidence intervals computed as in [65].

The performance and statistics of the various ensemble DL models and approaches
considered herein are displayed in Table 3.

Table 3. Diagnostics and performance statistics of the considered ensemble DL models and ap-
proaches. Values in the parentheses represent the 95% confidence intervals.

Validation

Approach Ensemble
Arch.

Train_Accuracy
[%]

Accuracy
[%]

Sensitivity
[%]

Specificity
[%]

NPV
[%]

PPV
[%]

AUC
[%] MAE ME MSE Corr.

Regression

ANN 73.7 64.7 (55.1–73.3) 61.1 (47.8–80.1) 68.8 (54.7–80.1) 61.1 (47.8–73.0) 68.8 (54.7–80.1) 66.2 (55.8–76.7) 0.062 0.007 0.105 0.273

CNN 85.9 75.5 (66.3–82.8) 74.1 (61.1–86.7) 77.1 (63.5–86.7) 72.5 (59.1–82.9) 78.4 (65.4–87.5) 82.1 (73.9–90.2) 0.082 −0.008 0.015 0.342

RNN 69.7 68.6 (59.1–76.8) 77.8 (65.1–71.2) 58.3 (44.3–71.2) 70.0 (54.6–81.9) 67.7 (55.4–78.0) 70.1 (60–80.1) 0.072 0.022 0.011 0.261

Classification

ANN 78.4 70.6 (61.1–78.6) 70.4 (57.2–81.8) 70.8 (56.8–81.8) 68.0 (54.2–79.2) 73.1 (59.7–83.2) 68.6 (58.4–78.9) - - - -

CNN 98.7 72.5 (63.2–80.3) 75.9 (63.1–80.1) 68.8 (54.7–80.1) 71.7 (57.5–82.7) 73.2 (60.4–83.0) 75.5 (66.2–84.8) - - - -

RNN 73.8 69.6 (60.1–77.7) 64.8 (51.5–85.1) 75.0 (61.2–85.1) 65.5 (52.3–76.6) 74.5 (60.5–84.7) 75.1 (65.7–74.5) - - - -

FSL

ANN 78.9 72.5 (63.2–80.3) 79.2 (65.7–77.8) 66.7 (53.4–77.8) 78.3 (64.4–87.7) 67.9 (54.8–78.6) 70.2 (60–80.4) - - - -

CNN 78.6 77.5 (68.4–84.5) 72.9 (59.0–89.6) 81.5 (69.2–89.6) 77.2 (64.8–86.2) 77.8 (63.7–87.5) 76.3 (66.9–85.7) - - - -

RNN 75.6 75.5 (66.3–82.8) 72.9 (59.0–86.8) 77.8 (65.1–86.8) 76.4 (63.7–85.6) 74.5 (60.5–84.7) 77.2 (60–80.1) - - - -

In terms of diagnostic performance, the FSL approach is performing better than
classical regression and classification, while in terms of AUC, the CNN regression is
superior to other methods. Since the 95% confidence intervals overlap, the differences are
statistically not significant. FSL algorithms have been designed for optimal performance on
small datasets where they tend to perform better than classic models. The best performing
architecture is the one that is based on CNN. Furthermore, the training accuracy suggests
that overfitting is not present for eight of the nine approaches. For the classic CNN-based
classification, the model seems to overfit, even though different attempts were made to
address this: L2 regularization and dropout. The confusion matrix for the best approach is
depicted in Table 4.

Table 4. The confusion matrix for the FSL-CNN approach.

Predicted Values

Actual Values

Positive (1) Negative (0)
Positive (1) 35 13

Negative (0) 11 44
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For comparison, MLD has an accuracy of 67.64%, a sensitivity of 64.81%, and a
specificity of 70.83%. The %DS has an accuracy of 63.72%, a sensitivity of 62.96%, and a
specificity of 64.58%.

Each ensemble model consists of 20 models that were trained with different seed
values. Table 5 displays the mean accuracy, the standard deviation (std) of the accuracy,
the minimum accuracy (min), and the maximum accuracy (max) for the validation dataset
when employing the default operating points/thresholds of 0.8 for regression and 0.5 for
classification. While all variations are quite small, the smallest std is obtained for the
models that are based on FSL, which further underlines the robustness of this approach.
Additionally, we computed the ensemble model mean uncertainty by averaging the uncer-
tainty of the ensemble model for each examination [66]. The ensemble model uncertainty
for regression approaches is the standard deviation of the predictions of all models for one
sample. An intuitive approximation for the ensemble model’s uncertainty for classification
and FSL approaches was chosen as:

Mean ensamble uncertainty = ∑N
i

abs(round(y(i))− y(i))
N

, (3)

where y(i) is the ensemble model prediction for each sample and N is the number of samples;
this uncertainty measure is the distance between the output probability and the predicted
class label (0 or 1), therefore, predictions such as 0.1 or 0.9 are considered “confident”
while others such as 0.4 or 0.6 are considered more “uncertain”. This approximation is
feasible since ensemble models usually have well-calibrated outputs [66]. The ensemble
uncertainty results of the regression approaches are not directly comparable to the ensemble
uncertainty results for the classification and FSL approaches, and it has been also shown [66]
that regression-based uncertainty that is computed as the ensemble predictions’ standard
deviation is not well-calibrated as the MSE training loss “is not a scoring rule that captures
predictive uncertainty” [66]. For the regression approaches, RNNs tend to have the smallest
uncertainty. For classification and FSL approaches the uncertainty is similar for five of the
approaches, while FSL CNN has a much smaller uncertainty.

Table 5. Diagnostic performance statistics of the considered ensemble DL models and approaches.

Accuracy

Approach Ensemble Arch. Mean
[%]

Std
[%]

Min
[%]

Max
[%]

Uncertainty
[%]

Regression

ANN 61.57 4.55 53.92 70.59 4.48

CNN 61.76 2.65 55.88 65.69 12.91

RNN 63.19 3.82 54.9 71.57 2.25

Classification

ANN 68.43 1.69 65.69 72.55 32.55

CNN 67.75 3.1 63.73 73.53 32.9

RNN 68.04 1.71 64.71 71.57 31.69

FSL

ANN 66.67 3.34 59.8 72.55 30.9

CNN 75.59 1.2 72.55 76.47 2.77

RNN 74.46 1.37 71.57 76.47 34.71

The reason the default thresholds were employed in Table 5 is that selecting a best-
operating-point with respect to some metrics and some held-out test-set is part of a post-
processing stage; uncertainty estimates, however, depend solely on two factors: the input
samples (i.e., input noise, out-of-distribution, etc.) and the learned model (here, the training
procedure, the network architecture, and especially the training set have a large influence);
the ground-truth label of a test input sample has no influence on the prediction uncertainty.
Therefore, for an unbiased assessment, uncertainty measures of all the approaches were
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computed from the raw ensemble predictions and compared with the mean accuracy that
was obtained from using the default thresholds.

Figure 3 displays four sample cases: one for each of the categories true positive
(TP), true negative (TN), false positive (FP), and false negative (FN). A representative
angiographic frame is displayed, indicating the invasive FFR value and the coronary vessel
and region of interest that is visualized using OCT. Further, the longitudinal OCT view and
the radius profile that were used as input to the DNNs are displayed.
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3.3. Subgroup Analyses

In the following, we use the best performing model according to the results in Table 3
(FSL-CNN) to perform a series of subgroup analyses.

As detailed in Section 2.1, the dataset contains a large number of samples in the
interval 0.75–0.85 (46%). Hence, we have computed the statistics separately for lesions
with FFR < 0.75, lesions with FFR > 0.85, and for the lesions with intermediate values. The
results are displayed in Table 6. As expected, the accuracy of the model increases in the
two bins at the extremes.

Table 6. Diagnostic performance and 95% CI of the model for lesions with FFR < 0.75, lesions with
FFR > 0.85, and for the lesions with intermediate values.

FFR Interval Accuracy [%] Sensitivity [%] Specificity [%]

FFR > 0.85 86.6 (70.3–94.6) N/A 86.6 (70.3–94.6)

0.75–0.85 68.0 (53.8–79.6) 60.8 (40.7–77.8) 75.0 (55.1–88.0)

FFR < 0.75 84.0 (65.3–93.6) 84.0 (65.3–93.6) N/A

In another analysis, we assessed the performance as a function of the vessel on
which the measurement was performed. The results are displayed in Table 7 and indicate
a higher accuracy on the LCx, compared to the other two main coronary arteries. The
literature suggests that the LCx has typically a smaller baseline and hyperemic flow velocity
compared to the LAD and RCA, which impacts the FFR measurements [67]. In other words,
the same radius profile will lead to different invasive FFR values on different arteries. Since
the type of artery is not used as an input to the DNN, a performance difference is expected.

Table 7. Diagnostic performance and 95% CI of the model for the three main coronary arteries.

Coronary Artery Accuracy [%] Sensitivity [%] Specificity [%]

LAD 75.4 (62.8–84.7) 76.4 (60.0–87.5) 73.9 (53.5–87.4)

LCX 85.0 (58.3–91.9) 80.0 (37.5–96.3) 86.6 (54.8–92.9)

RCA 76.0 (56.5–88.5) 55.5 (26.6–81.1) 87.5 (63.9–96.5)

Most of the measurements in the study were performed in the LAD. The clinical
literature suggests that proximal LAD lesions are of particular interest for long-term patient
outcome [68]. Hence, we have divided LAD lesions into proximal lesions and others (mid
or distal lesion). The results are displayed in Table 8 and indicate a similar performance
in terms of accuracy, but the sensitivity is slightly lower for proximal lesions. This is an
expected outcome since literature indicates that a lesion with a certain severity will lead to
smaller FFR values when it is located in the proximal LAD, compared to the mid and distal
LAD. Hence, the model slightly underestimates the severity of proximal LAD lesions.

Table 8. Diagnostic performance and 95% CI of the model for different lesion locations on the LAD.

LAD Lesions Location Accuracy [%] Sensitivity [%] Specificity [%]

proximal LAD 74.1 (56.7–86.2) 70.5 (46.8–86.7) 78.5 (52.4–92.4)

mid/distal LAD 76.9 (57.9−88.9) 82.3 (58.9–93.8) 66.6 (35.4–87.9)

In another analysis, we assessed the prediction performance for male and female
patients. The results in Table 9 indicate that the model performs slightly better for male
patients. This is an expected outcome since the vast majority of lesions are from male
patients (82%).
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Table 9. Diagnostic performance and 95% CI of the model as a function of patient sex.

Gender Accuracy [%] Sensitivity [%] Specificity [%]

Male 78.8 (67.7–85.1) 73.8 (58.9–84.6) 83.7 (67.3–90.2)

Female 70.5 (46.8–86.7) 66.6 (29.9–90.3) 72.7 (43.4–90.2)

The age of the patient can be another important factor in the clinical decision-making.
We have divided the data at the patient level into three equally large bins. The results in
Table 10 indicate a marked difference between the three subgroups. The intermediate bin
has a slightly larger number of intermediate lesions (18 vs. 15/14), partially explaining the
difference in diagnostic performance.

Table 10. Diagnostic performance and 95% CI of the model as a function of age.

Age Interval Accuracy [%] Sensitivity [%] Specificity [%]

<58 81.2 (64.6–91.1) 75.0 (53.2–88.8) 91.6 (64.6–98.5)

58–66 69.2 (50.9–79.3) 60.0 (35.7–80.1) 75.0 (50.8–85.0)

>66 83.8 (67.3–92.9) 84.6 (57.7–95.6) 83.3 (60.7–94.1)

Finally, in another subgroup analysis we have considered the centerline length of
the input data and have divided the samples into three equally sized bins. The results in
Table 11 display a balanced performance, i.e., the considered length has no major influence
on the model performance.

Table 11. Diagnostic performance and 95% CI of the model as a function of the OCT sequence length.

Vessel Length [cm] Accuracy [%] Sensitivity [%] Specificity [%]

<4.74 77.1 (57.9–85.8) 53.8 (29.1–76.7) 90.9 (66.6–92.5)

4.74–5.74 75.0 (57.8–86.7) 78.5 (52.4–92.4) 72.2 (49.1–87.5)

>5.74 79.4 (63.2–89.6) 80.9 (59.9–92.3) 76.9 (49.7–91.8)

3.4. Effect of Dataset Size

To assess the impact of the number of samples on the performance, we trained the best
performing approach (CNN architecture with FSL) on datasets containing only a part of the
original dataset. We started with 30% of the original dataset, and then increased the size in
increments of 10%, until reaching 100%, i.e., the original dataset. The smaller datasets were
set up by random sampling from the original dataset. To limit the selection bias, for each
percentage we ran 20 experiments, where for each experiment a new random sampling
was performed, and the CNN was initialized with a new random seed. The accuracy and
the standard deviation for all the considered experiments is displayed in Figure 4.

As expected, the dataset size has an important impact on the accuracy. Encouragingly,
a relatively linear increase in performance can be observed, indicating that with larger
datasets, the performance should further increase. Moreover, the variation, i.e., standard
deviation, decreases as the dataset size increases. This is motivated by two aspects. First,
the smaller the percentage of data are, the larger is the variability of the actual dataset that
is employed for the leave-one-out cross-validation. When 100% of the data are employed,
the variability stems only from the random seed that is used for the initialization. Secondly,
the larger the dataset, the more robust the prediction will be, i.e., with a smaller variability.
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3.5. Saliency Maps and Runtime

To analyze the features that the model is focusing on, we computed the saliency
maps [69] for the best ensemble model (CNN-FSL). To obtain the saliency map for the
ensemble model, we computed the derivative of the output with respect to the input for
each individual model and then we averaged all saliency maps (see Figure 5). As expected,
the output of the ensemble CNN-FSL model is influenced by all coronary diameters, but
the gradient is larger in the stenosis area, which is known as the main determinant for the
measured FFR values.
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The training time for one-fold and one epoch is approximately 1050 ms for all the
described approaches, the inference time for regression and classification approaches for
one sample is approximately 2 ms, and the inference time for FSL approaches for one
sample is approximately 25 ms. This difference of one order of magnitude is determined
by the necessity of determining the classification clusters. All experiments were run on a
desktop computer with AMD Ryzen 9 5900X CPU, 128 GB of RAM, and an NVIDIA RTX
3060 graphics card.

4. Discussion and Conclusions
4.1. Deep Learning-Based Prediction of FFR

As more data are emerging from studies that are based on artificial intelligence and
computational modelling, the incremental diagnostic value of predicted coronary functional
diagnostic indices over the traditional XA-based visual or quantitative lesion grading is
becoming more evident.

We have introduced a method for the deep-learning-based prediction of FFR from
routine optical coherence tomography. No specific requirements were formulated for the
OCT acquisition. We demonstrated that this approach has a high potential in assessing
functionally significant stenoses. Different models and approaches were proposed and
evaluated. The experiments indicated the superiority of the FSL-based approach, a type
of DL formulation that is specialized for small datasets. However, given the large overlap
in the 95% confidence intervals, the differences between the methods are statistically
not significant.

Thus, the main findings of this study can be summarized as follows: (1) DL-based FFR
prediction from reduced-order raw anatomical data is feasible in a dataset that is focused
on intermediate lesions for which the visual anatomical assessment of CAD based on XA
does not allow for a clear clinical decision, and with no restriction on the type of lesions
that were included in the study, and on the OCT acquisition; (2) DL-based FFR prediction
provides superior diagnostic performance compared to baseline approaches based on MLD
or %DS; (3) the FFR prediction performance increases quasi-linearly with the dataset size,
indicating that a larger training dataset will likely lead to superior diagnostic performance.

The diagnostic accuracy of 77.5% achieved herein is lower compared to that of other
studies focusing on FFR prediction from OCT, which reported an accuracy ranging between
88% and 95% [21,22,31,70,71]. There are two main aspects that are responsible for this
difference. First, the complexity of the dataset that is processed herein is higher than that of
other studies: 46% of the samples have an invasive FFR value ranging between 0.75 and
0.85, while in other studies these grey zone lesions represented between 20% and 44% of
the entire dataset [21,22,31,70,71].

Secondly, past studies focusing on FFR prediction from OCT either rely on compu-
tational fluid dynamics (CFD) [21,22,70,71], or on ML-based approaches including hand-
crafted features [31]. By applying a deep neural network directly on the raw data that are
represented by the effective radius along the centerline of the vessel of interest, we allow
the model to automatically learn powerful features for FFR prediction. The results that
were obtained in other application areas (healthcare or others) demonstrate that classic
machine learning (ML) techniques and hand-crafted features typically outperform DL-
based approaches when the training set is small, but, conversely, the DL-based approaches
outperform classic ML-based approaches when the size of the trainset increases signifi-
cantly [70]. The results in Figure 4, depicting the accuracy as a function of the dataset
size, confirm that a larger dataset will enable a better performance: the performance of
the DL model increases quasi-linearly with the dataset size. As shown in Table 3, the
diagnostic performance of the proposed model is already considerably higher outside of
the 0.75–0.85 FFR value interval.

To increase the prediction performance of DL models, different types of regularization
are employed in the literature: mathematical expressions added to the loss function (L1,
L2 regularization) [71], dropout (used to randomly drop out neurons during training) [72],
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and data augmentation [73]. Herein, we have used L2 regularizations and dropout. Data
augmentation, i.e., generating new samples by perturbing the input data, is difficult to
perform when training against invasively measured FFR, since the approximation of the
ground truth values is not straightforward. We have considered data augmentation by
adding a small amount of noise to the 1D radius sequence used as input, but the results
have not improved.

A DL- or ML-based prediction of FFR was considered also in studies relying on other
types of medical images (CCTA, XA). Kumamaru et al. [74] proposed a DL model to
estimate invasive FFR from CCTA. They had a dataset containing 207 measurements from
131 patients and have obtained an accuracy of 75.9% in predicting an abnormal invasive
FFR (≤0.8). Another interesting approach was proposed by Zreik et al. [75], they used DL
in an unsupervised manner and obtained an overall accuracy of 78% on CCTA data. They
obtained an accuracy of 66% for FFR < 0.7, 75% for an FFR between 0.7 and 0.8, 79% for an
FFR between 0.8 and 0.9, and 73% for an FFR > 0.9. Itu et al. [29] proposed a DL model that
was trained on ground truth values computed with a CFD-based approach on a database
of synthetically-generated coronary anatomies. They achieved an accuracy of 83.2% on
CCTA data.

4.2. Clinical Impact

Despite the overwhelming clinical evidence that an FFR-guided revascularization
strategy improves patient outcome, still the number of coronary interventions preceded by
FFR measurements is relatively low due to the limitations of invasive pressure measure-
ments [76]. Hence, a virtual functional index would increase the adoption of physiology-
guided coronary interventions, while drastically reducing the requirement for invasive
pressure measurements.

The proposed method is potentially well suited for a clinical setting, given the real-
time prediction performance of the DL model. Certain manual steps are required in the
current pipeline, but these can be automated using algorithms for image quality assessment,
e.g., to exclude slices with blood artifacts, and more accurate lumen contour detection [77].
The approach only requires knowledge of the coronary luminal geometry, which can be
extracted directly from OCT.

4.3. Limitations

The motivation to perform invasive FFR was clinical, which resulted in a large pro-
portion of anatomically borderline lesions in a population with extensive atherosclerotic
disease. No cases were excluded, and the results should be interpreted with the considera-
tion that this was a retrospective single-center study.

The anatomical data that was used as input to the DL model may not always accurately
reflect the true luminal geometry due to limitations of the OCT acquisition itself (heart
motion during automatic pullback, sub-optimal calibration), and small errors that are intro-
duced by the linear interpolation of radius values for the rejected contours. Furthermore,
by using the effective radius information as input, we neglect the actual three-dimensional
shape of the coronary lumen. The literature suggests that this has a small impact [78], but
in certain samples, with non-circular lumen geometry, e.g., concave shape, the impact may
not be negligible.

Moreover, the manual editing steps limit the real-time capabilities of the algorithm
and introduce intra- and inter-observer variability.

While the subgroup analyses indicate that the length of the considered segment does
not influence the results, the maximal length of 7.5 cm may represent a limitation in the case
of serial stenoses. For example, if lesions are present in the proximal and distal segment of
a vessel, a processed vessel length that is larger than the limit of 7.5 cm would be required
to accurately predict FFR.
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Finally, to validate our findings and to provide more representative results, the pro-
posed method requires further validation in larger, prospective studies, that are conducted
at multiple clinical sites.

4.4. Future Work

Multiple future directions can be defined, given also the current limitations that are
listed above. First, the size of the training set should be increased to exploit the capabilities
of a deep neural network-based approach. To limit the complexity of the input data, we
currently use the effective radius, however, we envision the use of the coronary lumen
mask as input, which may then allow the model to consider lumen non-circularities for
the prediction. The dimensionality of the input data would increase from 1D to 3D, which
would require a larger training set for enabling an accurate prediction. Furthermore, with
the increase in the dataset size, other deep-learning approaches (evaluated herein or others)
might lead to the best FFR prediction performance.

When employing a classification-based approach, another possible future direction
is to increase the number of output classes. For example, a three-class approach would
predict lesions as being functionally significant, functionally non-significant, or interme-
diate/uncertain. This would allow for the definition of hybrid decision-making strategy,
where lesions which are not in the intermediate, i.e., uncertain class, can be confidently
diagnosed, while for the ones in the intermediate class further aspects may be considered
for the final decision, potentially even performing the invasive FFR measurement. The
invasive FFR cut-off values for distinguishing the three classes may be chosen based on the
performance of the model, e.g., to ensure a sensitivity/specificity of at least 95% for the
lesions which are not in the intermediate class. The better the performance of the model,
the closer the cut-off values may be to 0.8, i.e., the fewer lesions would be predicted as
being uncertain.

Herein, we have considered only the coronary lumen information as input. Previous
studies have demonstrated that FFR is influenced also by other patient characteristics
(demographics, other pathologies, etc.) [31]. The results of the sub-group analyses have
shown the patient sex and age and the vessel of interest may influence the prediction.
Additional features may be considered directly as input into the deep neural network, or a
cascaded modeling approach may be designed: the first model processes only the coronary
lumen information, while the second model, which takes as input the output of the first
model, processes all additional features to perform a final and more accurate prediction.

Standard OCT acquisitions have been used for obtaining the input data for the FFR
prediction. OCT acquisition guidelines containing specific requirements (e.g., include the
entire stenosis in the OCT sequence) may likely improve the prediction accuracy. Such an
approach was successfully applied in a previous study [79].

The method that is described herein may be applied similarly on coronary lumen
information that is extracted from other imaging modalities (XA, CCTA, IVUS). Since the
image resolution, especially on XA and CCTA, is lower than on intra-vascular images, the
coronary lumen information may be less accurate. However, XA and CCTA allow for a
more complete evaluation of the coronary tree since the vessel of interest can be assessed in
all its segments, alongside large side branches. A different methodology might lead to the
optimal performance in that case, e.g., based on graph neural networks [80].

Finally, the approach can also be extended to predict other hemodynamic quantities,
such as coronary flow reserve (CFR), rest Pd/Pa [81], the instantaneous wave-free ratio
(iFR) [82], or hyperemic/basal stenosis resistance (HSR/BSR) [83,84], each of which can be
used as a ground-truth during training.
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The following abbreviations are used in the manuscript:
CVD Cardiovascular disease
CAD Coronary artery disease
XA X-ray coronary Angiography
OCT Optical coherence tomography
PCI Percutaneous coronary intervention
FFR Fractional flow reserve
CABG Coronary artery bypass graft
CFG Computational fluid dynamics
CCTA Coronary computed tomography angiography
ML Machine Learning
IVUS Intravascular ultrasound
DNN Deep neural network
DL Deep learning
ANN Artificial neural network
CNN Convolutional neural network
RNN Recurrent neural network
FSL Few-shot learning
ReLU Rectified linear unit
GRU Gated recurrent unit
MLD Minimum lumen diameter
%DS Percentage diameter stenosis
NPV Negative predictive value
PPV Positive predictive value
MAE Mean absolute error
ME Mean error
MSE Mean squared error
LAD Left Anterior Descending artery
LCx Left Circumflex artery
RCA Right Coronary Artery
Arch. Architecture
Corr. Correlation
TP True positive
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TN True negative
FP False positive
FN False negative
CFR Coronary flow reserve
iFR Instantaneous wave-free ratio
HSR Hyperemic stenosis resistance
BSR Basal stenosis resistance
FC Fully connected
BCE Binary cross entropy
FoV Field of view

Appendix A.

Table A1. ANN architecture. The layer that is highlighted in purple is used only for the regression
and the classification approaches (not for the FSL approach). For the regression approach, we used no
activation function and the activation function that is highlighted in green is used for the classification
approach (not for the FSL approach).

Layer Index Layer Input Features Output Features Activation Function Regularization

1 FC 376 32 ReLU -
2 FC 32 64 ReLU -
3 FC 64 128 ReLU -
4 FC 128 256 ReLU Dropout
5 FC 256 1 Sigmoid -

Table A2. CNN architecture that is used for the FSL approach.

Layer Index Layer Kernel Size Input
Channels

Output
Channels Stride Activation

Function Regularization Normalization Receptive FoV

1 Conv1D 3 1 64 2 ReLU - Batch norm 3
2 Conv1D 3 64 128 2 ReLU - Batch norm 7
3 Conv1D 3 128 256 2 ReLU - Batch norm 15
4 Conv1D 3 256 512 2 ReLU - Batch norm 31
5 Conv1D 3 512 512 2 ReLU - Batch norm 63
6 Conv1D 3 512 512 1 ReLU - Batch norm 127
7 Conv1D 3 512 512 1 ReLU - Batch norm 191
8 Conv1D 3 512 512 1 ReLU - Batch norm 255

Table A3. The fully connected layers that were added on top of the architecture that is presented in
Table A2, for the CNN-based regression and classification. For the regression approach, we used no
activation function and the activation function that is highlighted in green is used for the classification
approach (not for the FSL approach).

Layer Input Features Output Features Activation Regularization

FC 2048 1024 ReLU Dropout
FC 1024 1 Sigmoid -

Table A4. The bidirectional GRU that was added on top of the architecture that is presented in
Table A2, used for CNN + RNN approach. The layer that is highlighted in purple is only used for the
regression and the classification approach (not for the FSL approach). For the regression approach,
we used no activation function and the activation function that is highlighted in green is used for the
classification approach (not for the FSL approach).

Layer Input Features Hidden Size Output Features Activation Regularization

Bidirectional GRU 512 512 1024 - Dropout
FC 1024 - 1 Sigmoid -
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Appendix A.1. Prototypical Networks

Prototypical networks [37] are a subcategory of the embedding learning models.
Prototypical networks are used mainly for classification tasks, in both few-shot learning
and zero-shot learning scenarios. These neural networks learn a metric space from the
data, and then the classification is performed by computing distances to the prototype
representations of each class, which are M-dimensional representations of each class cluster,
based on an embedding function. They are computed by averaging the embedding vectors
of all the training samples of a class (i.e., the neural network features predicted for the
input data):

vk =
1

Ns
∑Ns

i=1 fφ(xi), (A1)

where vk is the prototype of each class, fφ is the embedding function, and xi are the support
images. The next step consists of classifying the query images. This is performed by
computing the distance between each image and the prototypes:

pφ(y = k|x) =
exp
(
−d
(

fφ(x), vk
))

∑k′ exp(−d
(

fφ(x), vk′
)
)

(A2)

During training, the loss is computed using:

J(φ) = −log
(

pφ(y = k|x)
)

(A3)

where k is the true class.

Appendix A.2. Loss Functions

The loss function used for the regression approaches [46] is:

MSE =
1
n ∑n

i=1

(
Yi −Y′ i

)2, (A4)

where Yi is the ground truth value and Y′ i is the predicted value.
The loss function used for the classification approach [46] (not for FSL the approach):

BCE = − 1
n ∑n

i=1

(
Yi· ln Y′ i + (1−Yi)· ln

(
1−Y′ i

))
, (A5)

where Yi is the ground truth value and Y′ i is the predicted value.
The loss function used for the FSL approaches is described in Equation (A1).
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