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Abstract: The concept of deep transfer learning has spawned broad research into fault diagnosis
with small samples. A considerable covariate shift between the source and target domains, however,
could result in negative transfer and lower fault diagnosis task accuracy. To alleviate the adverse
impacts of negative transfer, this research proposes an intra-domain transfer learning strategy that
makes use of knowledge from a data-abundant source domain that is akin to the target domain.
Concretely, a pre-trained model in the source domain is built via a vanilla transfer from an off-
the-shelf inter-domain deep neural network. The model is then transferred to the target domain
using shallow-layer freezing and finetuning with those small samples. In a case study involving
rotating machinery, where we tested the proposed strategy, we saw improved performance in both
training efficiency and prediction accuracy. To demystify the learned neural network, we propose a
heat map visualization method using a channel-wise average over the final convolutional layer and
up-sampling with interpolation. The findings revealed that the most active neurons coincide with the
corresponding fault characteristics.

Keywords: fault diagnosis; transfer learning; time-frequency spectrum; small samples; heat map

1. Introduction

Fault diagnosis is a crucial aspect of system safety and dependability [1], as it can
pinpoint fault locations, identify fault types, and even gauge the severity of certain faults [2].
Existing approaches to fault diagnosis can generally be categorized as either model-based
or data-driven [3]. The former approach necessitates a deep understanding of the subject
matter since it builds a mathematical model of the subject of interest based on its first
principles. The latter employs machine learning, statistics, signal processing, and other
techniques to perform pattern recognition on monitoring data. Data-driven approaches are
becoming more popular since they have a lower barrier to entry [4,5].

Data-driven approaches typically rely on a large amount of training samples to learn
patterns that can be generalized to testing instances [6,7]. However, samples of faulty types
are insufficient in many real-world applications, leading to an imbalanced classification
problem [8]. Oversampling and down-sampling techniques may be used to create a more
balanced dataset [9], but this introduces a bias, wherein more samples are selected from one
class than another. Another workaround is data augmentation by learning the underlying
generating mechanisms of scarce classes using generative models, such as a Variational
Auto-Encoder (VAE) [10] or a Generative Adversarial Network (GAN) [11,12]. Though
some success has been reported, it is a paradox to learn from data that are rare to synthesize
more data.

Deep transfer learning has been adopted to address the issue of small samples in fault
diagnosis, with the hope of reutilizing the knowledge learned from a source task in a target

Appl. Sci. 2022, 12, 7032. https://doi.org/10.3390/app12147032 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12147032
https://doi.org/10.3390/app12147032
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7310-5717
https://orcid.org/0000-0002-7458-6820
https://doi.org/10.3390/app12147032
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12147032?type=check_update&version=2


Appl. Sci. 2022, 12, 7032 2 of 16

task [13]. Importantly, the number of samples required for training in the target task can
be greatly reduced. In one study, an enhanced deep auto-encoder model was proposed
to transfer the knowledge learned from a data-abundant source domain to a data-scarce
target domain for the purpose of fault diagnosis [14]. Elsewhere, deep transfer learning
was applied to transfer knowledge among various operating modes of rotating machinery,
including rotational speed [15] and working load [16,17].

However, negative transfer may occur if source and target domains have significant
differences; i.e., if domain-specific samples have large discrepancies in their probability
distributions [18]. In other words, bringing source domain knowledge into the target task
does not help, but rather hinders performance. The effect of negative transfer has been
noted in several transfer-learning-enabled fault diagnosis applications [15,18,19], inspiring
researchers to examine the causes of negative transfer. A review can be found in [20,21].

Although the factors contributing to negative transfer are multifaceted, the primary
cause is rooted in a covariate shift between source and target domains [21,22]. Therefore,
domain adaptation measures have been proposed to prevent negative transfer or mitigate
its adverse impact, including source data filtering using an adversarial approach [22], new
architectural design [23–25], the use of transitive transfer strategy [26], etc. Although many
negative transfer countermeasures have been developed, transferring a pretrained model
directly from a distant inter-domain to the target domain still poses problems [27,28]. More
specifically, there is a knowledge gap on how to mitigate negative transfer in transfer learn-
ing with small samples in fault diagnosis tasks. This gap constitutes the major motivation
of this study.

Inspired by the work in [26], where intermediate domains were implanted to bridge
the gap between distant source and target domains, we propose an intra-domain learning
strategy to explicitly utilize the knowledge of a distribution-alike source domain for the
purpose of fault diagnosis with small samples. Concretely, we conduct a vanilla transfer
from an off-the-shelf inter-domain deep learning model to a data-abundant source domain.
The model is then transferred to the target task via shallow-layer freezing and finetuning.
The intra-domain transfer learning strategy is the primary novelty of this research. We
validate the proposed strategy in a case study with varying levels of small sample ratios
and observe its efficacy over alternatives in terms of convergence speed and diagnostic
accuracy. This study empirically proves the soundness and merit of transferring among
distribution-alike domains in the field of fault diagnosis. We argue cautions against a
direct transfer among inter-domains should be issued to reduce the risk of committing
negative transfer.

To have an intuitive understanding of the learned model, we produce heat maps
to visualize the learned high-level features of the input data. Unlike traditional Class
Activation Mapping methods, our novel method uses a channel-wise average over the final
convolutional layer and up-sampling with interpolation. Heat map visualization verifies
the proposed strategy can extract fault-related characteristics.

The contributions of this research are twofold: (1) we propose an intra-domain transfer
learning strategy and a fault diagnosis model for rotating equipment under the scenario
of small samples; (2) we propose a novel heat map visualization method to demystify the
transferred deep learning model.

The remaining sections are organized as follows. Section 2 explains the intra-domain
transfer learning strategy and introduces a rotating equipment fault diagnosis model based
on vibration data. Section 3 validates the proposed strategy and model in a case study
of a gearbox dataset. Section 4 demonstrates the heat map method and provides a visual
portrayal of the features extracted by the transferred deep learning model. Section 5
concludes the work.
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2. Methodology

This section introduces the intra-domain transfer learning strategy and elucidates a
fault diagnosis model using the proposed strategy.

2.1. Intra-Domain Transfer Learning Strategy

Transfer learning refers to the application of experiences gained in solving one task
to a different but similar task. Experiences learned from the source domain are used as
prior knowledge to solve target problems. Put formally, given a source domain DS and
a target domain DT , transfer learning reuses the information embedded in DS for better
problem-solving in DT . Through knowledge sharing, the requirements for supervisory
instances in DT can be greatly reduced, thus making it possible to learn even when samples
are small.

The above statement holds true in general when the source and target domains are
closely related. However, if there is a significant covariate shift between DS and DT ,
transfer learning might inversely hurt the target performance, i.e., negative transfer [22,26];
see Figure 1. In other words, inter-domain transfer may take the learning in the wrong
direction in the target domain. To mitigate the impact of negative transfer, researchers have
proposed many workarounds, including instance weighting [29], feature matching [30],
and transitive transfer [31]. Inspired by the Distant Domain Transfer Learning (DDTL)
approach in [26] where domain discrepancies are substantial, we propose an intra-domain
transfer learning strategy.

Figure 1. Illustration of negative transfer. The two oval dashed lines represent the distribution shape
in the source and target domains. Transfer learning facilitates the training of a finetuned classifier in
the target domain even with small samples, but distribution discrepancy may cause negative transfer,
leading to poor generalization in target tasks.

The intra-domain transfer learning strategy assumes the source domain is different
from but akin to the target domain. Even so, negative transfer can still occur. To preclude
this, we propose a two-stage transfer scheme: first, we construct a pre-trained model in the
source domain via a vanilla transfer from an off-the-shelf inter-domain deep neural network;
then, we transfer the pretrained model to the target domain via shallow-layer freezing and
finetuning. Figure 2 depicts the two-stage intra-domain transfer learning strategy.

In our problem setting, the source domain is data-abundant, and this prevents negative
transfer, even though we use an inter-domain vanilla transfer. We also use the first-stage



Appl. Sci. 2022, 12, 7032 4 of 16

transfer to speed up model training in the source domain. In the second stage, the shallow-
layer freezing is intended to ensure knowledge transfer between akin domains, while
finetuning uses the limited number of samples in the target domain to further train the
model for better performance in target tasks.

In addition to requiring relative proximity between source and target domains, the
intra-domain transfer learning strategy requires the source domain to be data-abundant.
Note that in the field of fault diagnosis, annotated faulty samples are less expensive to
acquire in the laboratory than in real-world applications. Therefore, a deluge of labelled
samples in the source domain can be generated via fault injection experiments or simply
first-principal simulation. This constitutes another motivation of this research.

Figure 2. Illustration of the intra-domain transfer learning strategy.

2.2. Fault Diagnosis Model with Intra-Domain Transfer

Armed with the above intra-domain transfer strategy, in this section, we propose
a fault diagnosis model for rotating machinery. Although many types of data (infrared
images, temperature sequences, etc.) can be measured, vibration signals are still most
prevalent in fault diagnosis applications. Without loss of generality, we assume both
the source and the target domain use high frequency non-periodic vibration signals to
diagnose faults.

Given their enormous capacity to represent knowledge, deep neural networks have
been widely adopted as the carrier of knowledge in transfer learning applications. Specifi-
cally, convolutional neural networks (CNN) were early choices in the fields of computer
vision and industrial fault diagnosis. Hereinafter, we use CNN as the main architecture
for fault diagnosis modelling. Again, without loss of generality, we select ResNet-50 as
our off-the-shelf inter-domain model since it is a benchmarking model [32]. Notably, the
complexity (depth) of the selected model can vary depending on the problem to be solved,
especially the complexity of the data input.

Since ResNet-50 is trained on natural images, we propose to use continuous wavelet
transform (CWT) to convert our vibration signals to time-frequency spectrums, as has
been carried out elsewhere [33]. This brings the data in source and target domains into the
same format as the distant domain (i.e., images); see Figure 3 for an example. In addition,
CWT conducts multi-scale transform on non-stationary signals, and this retains as much
information as possible from the input. For simplicity, we select the complex Morlet wavelet
as the mother wavelet, defined as:

ψa,τ(t) =
1√
a

ψ

(
t− τ

a

)
(1)

where a represents a scale parameter related to frequency, and τ is a translation parameter
related to time.
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The wavelet coefficients of a signal are calculated by a convolution operation between
the mother wavelet function ψa,τ(t) and the signal x(t), as defined by:

W(a, τ) =
1√
a

∫
x(t)ψ∗

(
t− τ

a

)
dt (2)

where ψ∗(·) indicates the complex conjugate of function ψ(·). The signal is decomposed
into a series of complex numbers in distinct frequency bands, as shown in Figure 3. The
moduli of the complex numbers are calculated and grouped by frequency and time. In
this fashion, we get a one-dimensional signal mapping in the time-frequency domain,
with the horizontal and vertical axes corresponding to time and frequency, respectively.
Next, we conduct three-channel extensions of a time-frequency mapping to produce a
time-frequency image.

Figure 3. Time-frequency transformation from vibration signals to images using CWT.

The above time-frequency transformation describes the data preprocessing step of
our fault diagnosis model. Once this step is completed, the model performs a vanilla
transfer from ResNet-50 to the source domain. As the source domain is data-abundant,
negative transfer in this step can be avoided. Studies in computer vision have found the
convolutional layers of a CNN are essential for automatic feature learning. The deeper the
layers, the more abstract the learned features are, and vice versa.

That being said, we propose shallow-layer freezing to ensure feature extractors in
the source domain are reused in the target domain. The sharing of feature extractors is
supported by assuming the distribution discrepancy between source and target domains
is reasonably small. In other words, the weights of those shallow layers in the CNN are
fixed to extract features in the target domain (i.e., features shared in common with the
source domain).

The last step of our fault diagnosis model is finetuning in the target domain. Concretely,
the final classification layer (e.g., a soft-max layer) of the CNN is customized to fit the
number of classes in the target domain. Those learnable weights in the deep layers are
further trained using the small samples to accomplish the target task. The finetuning
step aims to improve the generalization capability in the target task, and it is typically
implemented at a small learning rate, depending on the number of samples available. A
summary of the above steps appears in Figure 4.
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Figure 4. The proposed fault diagnosis model with intra-domain learning strategy.

3. Experiments and Results

To validate the proposed intra-domain transfer learning strategy and the fault diagno-
sis model, we select a bearing dataset and a gearbox dataset for a case study comparing
various transfer strategies. We also carry out extensive experiments to empirically analyze
the impact of training sample scarcity on diagnostic accuracy.

3.1. Dataset Introduction

The gearbox dataset, featuring small samples in the target domain, was collected
from a two-stage gearbox test rig, as shown in Figure 5. Vibration signals of the gear
were measured via an accelerometer attached to the gearbox housing. The signals were
recorded using a dSPACE system (DS1006 processor board, dSPACE Inc., Wixom, MI, USA)
at a sampling frequency of 20 kHZ. More details about the test rig and data acquisition
apparatus are in [8]. The dataset was gathered under nine working conditions: healthy,
missing tooth, root crack, spalling, and chipping tip with five different severities. These
conditions are shown in Figure 6.
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Figure 5. Gearbox test rig of University of Connecticut [6].

Each working condition of the gearbox dataset has 104 samples, each of which has
a length of 3600. Table 1 briefly describes some metadata of the dataset. In the case of a
nine-class classification problem where the number of samples is far less than the sample
dimension, it is challenging to train a reasonably good diagnostic model from scratch. In
addition, fault signatures might be submerged by meshing frequencies and noises, thus
aggravating the difficulties of feature extraction. Note that when the dataset was released
originally in [8], the authors considered utilizing transfer learning to solve the problem,
but ultimately chose a different approach.

Figure 6. Nine working conditions, including healthy state and eight types of fault [6].

The Case Western Reserve University (CWRU) bearing dataset is chosen as the source
domain for transfer learning in this study, as it is one of the most extensively used datasets
for fault diagnosis benchmarking [34]. The dataset contains vibration signals collected at
a frequency of 12kHz and 48kHz. We only utilize those with a sampling frequency of 12
kHz to reduce variation in the source domain. Three types of faults (ball, inner race, and
outer race) are introduced in the experiments, each with three fault sizes (0.007, 0.014, and
0.021 in).

The monitoring items, sampling frequency, and working conditions are different
across source and target domains, but both datasets have high-frequency aperiodicity.
Moreover, the source and target domains resemble each other visually after time-frequency
transformation, allowing us to transfer feature extractors between intra-domains.
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Table 1. Metadata of the gearbox dataset.

Working Conditions Sampling Frequency (HZ) Number of
Samples

Length of Each
Sample

Healthy 20k 104 3600
Missing 20k 104 3600
Crack 20k 104 3600

Spalling 20k 104 3600
Chip5a 20k 104 3600
Chip4a 20k 104 3600
Chip3a 20k 104 3600
Chip2a 20k 104 3600
Chip1a 20k 104 3600

3.2. Data Preparation

Following the proposed fault diagnosis model in Section 2, we convert the time-
domain waveforms of the source and target domains into time-frequency images using
CWT. Under the condition that Nyquist’s sampling theorem is satisfied, the waveforms are
first sliced into vibrational snippets of equal length, 1200 points in our experiments. Each
vibration snippet is transformed into one time-frequency image of size 224 × 224 via down-
sampling. The images are then extended to three channels to fit the input dimension of
ResNet-50. Figure 7 shows an example of the time-frequency images in our target domain.

Using the above approach, we construct two data repositories of time-frequency
images: one is the source-domain CWRU dataset for pretraining; the other is the target-
domain gearbox dataset for finetuning and model validation. The former consists of nine
faulty states (three fault locations and three sizes), each of which has 1203 time-frequency
domain images; approximately 20% of them (240) are used for model selection. The latter
has 2808 samples, and each of the nine working conditions includes 312 samples. To
investigate how the number of samples in the target domain affects the diagnostic accuracy,
we split the target domain into a training set and a testing set using different ratios: 90:10,
50:50, 10:90, 5:95, and 1:99. This is summarized in Table 2.

Figure 7. Vibration signals of nine working conditions and their corresponding time-frequency
images in the target domain.

Table 2. Target-domain training/testing set division under different splitting ratios.

Splitting Ratios Total Number of
Samples

Number of Samples for Each Working State

Training Set Testing Set

90:10 2808 2529 279
50:50 2808 1404 1404
10:90 2808 279 2529
5:95 2808 144 2664
1:99 2808 27 2781
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3.3. Pretraining and Finetuning

To validate the intra-domain transfer learning strategy and the proposed fault diag-
nosis model, we introduce two more learning schemes for comparison: train from scratch
(TFS) and transfer from ImageNet (TFI). The proposed intra-domain transfer learning
method is abbreviated as TFC, signifying transfer from the CWRU dataset.

The weights of the ResNet-50 model are randomly reinitialized in TFS. We can imagine
the dilemma the TFS scheme ran into with small samples to train such a complex model. All
of the convolutional layers of TFI and TFC inherit weights from the off-the-shelf ResNet-50
model, and their batch normalization layers and the fully-connected layers are reinitialized.

With prior knowledge that the target-domain samples differ significantly from natural
images, the convolutional layers of TFI are trainable but at a relatively small learning rate.
Therefore, the convolutional layers of TFC are frozen to reuse the feature extractors learned
from intra-domain samples. The final soft-max layer of each of the above three schemes is
customized to match the number of desired classes in our target task. We choose Adam
optimizer in our pretraining and finetuning, and the learning rate is set to 1 × 10−4. All
models are trained with mini-batch samples of a size of 16.

Under the settings of the three training schemes and five splitting ratios of target-
domain samples, we train the ResNet-50 model for 100 epochs, each repeated five times.
The training history is shown in Figure 8. From the figure, we observe the proposed method
converges faster than the alternatives, and it consistently plateaus at the highest diagnostic
accuracy in our target task. Given adequate training samples, all three learning schemes
can achieve a satisfactory result if the model is sufficiently trained. But when training
samples are scarce, intra-domain transfer learning can boost the performance in terms of
both convergence speed and accuracy in the target task.

3.4. Testing Resultss

Testing accuracy of the three learning schemes in our target task is shown in Table 3.
The proposed intra-domain transfer learning strategy exhibits the best diagnostic accuracy,
even with small training samples. With proper model training, TFS can achieve a high pre-
diction accuracy in the testing set when training samples are abundant, but it degenerates
as the number of training samples decreases. In general, TFI improves the performance
compared to TFS, indicating that inter-domain experience helps classify faults in the gear-
box dataset. But as shown in Figure 8B,C, negative transfer does occur occasionally, though
this is not always evident.

Table 3. Testing accuracy in the target task under three learning schemes and various splitting ratios
of target-domain samples (each number is an average of five runs of experiments).

Learning
Schemes

Best Accuracy in First
10 Epochs (%)

Best Accuracy in First
50 Epochs (%)

Best Accuracy in First
100 Epochs (%)

90:10 50:50 10:90 5:95 1:99 90:10 50:50 10:90 5:95 1:99 90:10 50:50 10:90 5:95 1:99

TFS 97.1 82.4 72.5 51.6 11.1 100 97.0 89.2 69.2 11.6 100 97.0 96.6 79.0 33.6

TFI 98.9 90.1 92.2 74.5 14.9 100 97.9 97.2 82.9 51.2 100 99.0 97.5 82.3 53.1

TFC 100 99.0 97.8 92.9 27.9 100 99.5 98.9 97.5 83.2 100 99.8 99.7 97.8 84.3

As shown in Figure 8 and Table 3, TFC (the proposed learning scheme) consistently
outperforms TFI. There is a large gain in accuracy using intra-domain transfer instead of its
inter-domain counterpart. This confirms that the feature extractors learned from a different
but akin domain can not only avoid negative transfer but also boost prediction accuracy
in the target task. Table 3 also demonstrates that TFC has strong generalization capability
even when the splitting ratio is set to 1:99, resulting in an accuracy of 84.3% after 100 epochs
of training. We note that a nine-class classification problem is not an easy task.
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Figure 8. Training history of the three learning schemes in our target task, under various splitting
ratios: (A) 90:10; (B) 50:50; (C) 10:90; (D) 5:95; (E) 1:99.
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The confusion matrices of the three learning schemes with small training samples
are shown in Figure 9. As the figure indicates, TFS performs slightly better than random
guessing, and the most misclassified classes are “chip4a” and “chip2a”. TFI obtains a
higher diagnostic accuracy, and misclassifications distribute more evenly across different
classes. TFC significantly improves the classification of “healthy”, “missing”, “crack”,
“spall”, and “chip5a”, leading to an accuracy of 93.5% in these five states (red rectangle).
The remaining four states (blue rectangle) have a relatively higher misclassification rate. An
intuitive explanation is that the four faults are of the same type but have different severities.
Consequently, their features are comparable, making it hard to distinguish them. Although
data size considerably affects the diagnostic accuracy, the proposed method can achieve
satisfactory results when training samples are scarce. This proves the efficacy of using the
intra-domain transfer learning strategy for fault diagnosis with small samples.

Figure 9. Confusion matrices of the three transfer schemes (a) TFS; (b) TFI; (c) TFC, when the splitting
ratio of training/testing samples is 1:99.

4. Demystifying the “Black-Box” via Visualization

This section adopts the heat map method to demystify the learned fault diagnosis
model, giving us a way to visualize high-level features of inputs in an intuitive and
explainable manner. As a complementary study to the proposed intra-domain transfer
learning strategy, we compare the above three learning schemes via heat map visualization.

4.1. Heat Map Visualization

Heat mapping is widely used in computer vision applications [35,36]. It attempts to
visualize the most activated area in an input to reveal how the final classification conclusions
are drawn by deep learning models. For example, in a face recognition problem, those
image patches corresponding to noses, eyes, and mouths will contribute the most to the
final decision. Similarly, we hypothesize that fault-related frequencies in our time-frequency
images should be recognized by our ResNet-50 model in the target task.

The deeper the layer in a model, the more abstract the extracted features. Therefore,
we use the feature maps yielded by the last convolutional layer of the ResNet-50 model to
construct a heat map. In the ResNet-50 architecture, the output size of the last convolutional
layer is 512 × 7 × 7, corresponding to channels, heights, and widths, respectively. Taking
the average along the first axis produces a 7 × 7 matrix. Note this channel-wise average
operation is different from the average pooling layer in the ResNet-50 model, as it averages
over the whole feature map.

The magnitude of the above matrix reflects the extent of the activation in the original
input but on a much smaller scale. To solve this, we up-sample the matrix to match the
input size using bilinear interpolation; this results in an average activation matrix, as shown
in Figure 10b. We select bilinear interpolation to make the transition between image blocks
smoother. Then, the final heat map can be obtained by overlaying the average activation
matrix on the original input. Figure 10 demonstrates an example of heat map visualization
taking a time-frequency image of our target sample as input.
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Figure 10. An exemplar illustration of heat map visualization: (a) input image, (b) average activation
matrix, (c) heat map.

4.2. Qualitative Assessment of the Heat Maps of the Target Task

The ability to learn high-level abstraction of features using CNN has already been
verified in computer vision applications but is relatively underexplored in fault diagnosis.
Armed with the above heat map method, we attempt to visualize those high-level features
extracted by the transferred ResNet-50 model in our target task and correlate them with the
underlying fault characteristics. Hereinafter, to validate the efficacy of our proposed intra-
domain transfer learning strategy using small samples, we analyze the model finetuned
when the splitting ratio of training and testing samples is set at 1:99.

Figure 11 shows some heat maps generated by the fault diagnosis model at testing time.
Each heat map corresponds to one random testing sample in a specific working condition
in our target task; see Table 1 for a reference. Three frequency spectrums are presented in
Figure 11. Healthy samples are normally characterized by an amplitude located at the shaft
rotating frequency and its harmonies, as shown in Figure 11a, while faulty samples can be
recognized by anomalous amplitude in their characteristic frequencies.

The activations highlighted in red boxes are consistent with their corresponding fault
characteristics. For example, as shown in the frequency spectrum of Figure 11c, the fault
“crack” has a characteristic frequency around 5000 Hz, and the energy in this frequency
band is correctly identified in its heat map. Similar results can be observed in other fault
classes. Notably, the horizontal axis in our heat map is time, the same as in the time-
frequency image. Therefore, the horizontal location of the most activated area can also
signify the temporal features of non-stationary signals that lead to CNN’s final classification.

Another observation is the most activated spots in these heat maps are distinctive,
making it easy to separate them. Figure 12 compares the heat maps of the various working
conditions obtained via the three learning schemes. Intuitively, it can be deduced that TFC
leads to the highest differentiability in these heat maps, TFI ranks second, and TFS comes in
last. This coincides with the confusion matrices shown in Figure 9 and the testing accuracy
results in Table 3.

From a result-oriented perspective, higher differentiability in the heat maps would
yield higher diagnostic accuracy. But it by no means implies that the most activated area in
the feature maps must match the underlying physical mechanisms of the corresponding
faults. The above qualitative assessment of the heat maps not only proves the efficacy
of the proposed intra-domain learning strategy, but also discloses how the transferred
ResNet-50 model infers the diagnostic results. Since the feature extractors learned from an
intra-domain task are frozen in our target-domain task, the knowledge sharing enabled
by our transfer learning strategy is validated in the heat maps. Moreover, the heat maps
of misclassification samples can provide new perspectives to improve the fault diagno-
sis model.
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Figure 11. Heat maps and frequency spectrums of various states: (a) Healthy; (b) Spall; (c) Crack;
(d) Chip.

Figure 12. Heat map comparison of the three learning schemes under various working conditions.
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5. Conclusions

This study proposed an intra-domain transfer learning strategy to tackle the challenge
of insufficient training samples in fault diagnosis applications. To alleviate the impact of
negative transfer, the intra-domain transfer learning strategy first uses the vanilla transfer
of an off-the-shelf inter-domain model to a data-abundant source domain that is akin to the
target domain. The learned feature extractors are then reutilized in the target domain via
shallow-layer freezing, followed by a finetuning step with small samples.

We verified the proposed transfer learning strategy in a gearbox fault diagnosis case
study and compared it to two other learning schemes. In the case study, we adopted CWT as
a preprocessing tool to convert 1D vibrational waveform to 3D time-frequency images, and
selected ResNet-50 as the base model. Under various small sample settings (splitting ratio
of training and testing samples in the target task), we carried out extensive experiments
and observed superior performance of the proposed strategy in both convergence speed
and accuracy. Finally, we introduced heat map visualization to demystify the learned deep
neural network. We leave the quantitative assessment of a fault diagnosis model using heat
maps to future work.
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VAE Variational Auto-Encoder
GAN Generative Adversarial Network
DDTL Distant Domain Transfer Learning
CNN Convolutional Neural Network
CWT Continuous Wavelet Transform
CWRU Case Western Reserve University
TFS Train from Scratch
TFI Train from ImageNet
TFC Train from the CWRU dataset
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DS Source Domain
DT Target Domain
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