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Abstract: In this paper, the combined compact difference scheme (CCD) and the combined super-
compact difference scheme (CSCD) are used in the numerical simulation of the shear-wave equation.
According to the Taylor series expansion and shear-wave equation, the fourth-order discrete scheme
of the displacement field is established; then, the CCD and CSCD schemes are used to calculate
the spatial derivative of the displacement field. Additionally, the accuracy, dispersion, and stability
of the CCD and CSCD are analyzed, and numerical simulation analyses are carried out using 1D
uniform models. Lastly, based on the processing of artificial boundary reflection using PML boundary
conditions, shear-wave reverse-time migrations are carried out using synthetic data. The results
show that (1) CCD and CSCD have smaller truncation errors, higher simulation precision, and lower
numerical dispersion than other normal difference schemes; (2) CCD and CSCD can use the coarse
grid and larger time step to calculate, with less memory and high computational efficiency; (3) finally,
the result of the shear-wave reverse-time migration of the 2D synthetic data model show that the
reverse-time migration imaging is clear, and the proposed method for shear-wave reverse-time

migration is practical and effective.

Keywords: shear wave; reverse-time migration; combined supercompact difference scheme; combined
compact difference scheme; numerical simulation

1. Introduction

At present, reverse-time migration imaging simulation is an important means to
explore the morphology of underground media. As the reverse-time migration imaging
method is based on the two-way wave equation, which can accurately describe the dynamic
and kinematic characteristics of a seismic wavefield propagating underground, reverse-
time migration has no inclination angle limit and can adapt to the imaging of complex
structural areas, especially for structures with clear lateral velocity changes [1-4]. The
finite difference scheme is widely used in the numerical simulation of the elastic-wave
equation because of its simplicity and flexibility, high calculation efficiency, and small
memory requirement [5-13]. On the one hand, with the development of multicomponent
seismic exploration in recent years, particularly shear-wave seismic exploration, in order to
minimize computational costs, there is a need to increase the time and spatial steps used in
finite difference modeling while maintaining sufficient accuracy during numerical simula-
tion [14]. On the other hand, if the traditional finite difference scheme is used for numerical
simulation, small time and spatial steps are required to achieve sufficient accuracy. Com-
pared with the traditional difference scheme, the compact difference scheme has the same
accuracy and high stability. The development of compact difference schemes can be traced
back to 1989 when Dennis and Hudson (1989) first proposed spatial fourth-order compact
schemes for Navier-Stokes equations [15]. Lele (1992) studied the Pade scheme and pro-
posed a symmetric compact difference scheme for solving the first and second derivatives,
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and the accuracy of the scheme can reach that of the spectral method [16]. Chu et al.
(2000) used the combined compact difference scheme (CCD) for the convection—diffusion
equation [17].

Since the mid-1990s, reverse-time migration has been applied to multicomponent wave
seismic data excited from P-wave sources [18-20], having overcome calculation problems
and interference artifacts in P- and S-wave simulations. During reverse-time migration,
the P- and S-wave vectors of the source wavefield and the P- and S-wave vectors of the
receiver wavefield are obtained and then imaged. In general, P-and S-wave wavefields
are obtained either via the Helmholtz decomposition or by using the pled elastic-wave
equation. These approaches are all designed for P-wave and elastic-wave sources, focusing
mainly on how to retain the phase, amplitude, wavefield and vector characteristics of the
wavefield efficiently during wavefield separation [21-28]. In recent years, because of a
breakthrough in S-wave vibrator technology, pure S-wave seismic data can be obtained
via artificial excitation [29,30]. As the wavelet length of an S-wave is shorter than that
of a P-wave for the same frequency bandwidth, the resolution of its wavefield is higher,
and its advantage for imaging beneath gas clouds area is unmatched by a P-wave [31].
Using the S-wave wavefield generated by an S-wave source for reverse-time migration
imaging (RTM) is a key step for processing shear-wave data. Due to the characteristics of
shear-wave wavelength, higher accuracy is required in numerical simulation. To ensure
the accuracy of shear-wave RTM, a smaller time and spatial step than P-wave is needed,
which reduces the calculation efficiency.

To improve the accuracy and efficiency of shear-wave RTM, based on the characteristics
of the shear-wave velocity model, we used the combined compact difference (CCD) and
combined supercompact difference scheme (CSCD) for shear-wave (SH) RTM, with larger
spatial grid conditions. Wang Shugiang (2002) applied the compact difference scheme
to the numerical simulation of seismic wavefields [32]. Most recent studies of the finite
difference scheme focus on the compressional wavefield from an explosion source, but few
have studied the finite difference scheme based on the shear wavefield of the shear-wave
source (SH-wave).

This paper aims at the problem of low shear-wave velocity by introducing the su-
percompact difference scheme to suppress the numerical dispersion caused by the large
spatial step. We introduce the basic concept of shear-wave reverse-time migration, followed
by the implementation methods of the combined compact difference scheme (CCD) and
combined supercompact difference scheme (CSCD); the numerical simulation accuracy
of CCD and CSCD is also discussed, and the accuracy of CCD and CSCD is compared
with the traditional finite difference scheme. Finally, the method is applied to synthetic
data to verify the accuracy and efficiency of the algorithm. Furthermore, extending the
present research to take into the viscoelastic behavior of media will have a great potential
for imaging oil and gas reservoirs [33].

2. Principle of RTM and Combined Compact Difference Scheme
2.1. Principle of RTM

The technique of reverse-time migration imaging (RTM) is composed of the following
three steps [34]:

(1) The source wavefield is obtained by using the source constructed manually or ex-
tracted from actual data, and the corresponding model is numerically simulated to
obtain the source wavefield S(x, z, t), where x, z is the space vector.

(2) Using the seismic data obtained at the receiver, the reverse continuation propagation
passes through the same velocity model, and the corresponding receiver wavefield
R(x,z,t) is obtained, where the position of the receiver is xy, z;.

(3) Applying appropriate imaging conditions, such as cross-correlation, we obtain

I(x,z) = /OTS(x,z, F)R(x,z, t)dt 1)
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where S(x,z,t) is the source wavefield obtained via forward modeling, R(x, z, t) is
the receiver wavefield obtained at the same time via reverse continuation simulation
under the same velocity model, and t is the total propagation time.

It can be seen from Equation (1) that the final result of reverse-time migration is affected
by the accuracy of the source wavefield S(x,z,t) and the receiver wavefield R(x, z, t).
Notably, the method to improve the accuracy of the source wavefield S (x,z,t) can also be
applied to the receiver wavefield R(x, z, t). Thus, a high-precision finite difference scheme
is applied to generate the source and receiver wavefields S(x, z, t) and R(x, z, t), which will
give an ideal result of reverse-time migration. In this paper, we adopted cross-correlation
imaging conditions; in addition, the method in this paper can also be applied to some
imaging conditions developed by researchers in recent years [35-37].

2.2. Principle of Combined Compact Difference Scheme

For the construction of the compact difference scheme, Lele extended Hermite’s
equation in 1992 and created the compact difference scheme as follows:

Cf, +fl —|—C 1+1 f1+2 fz 2 +a1fz+1 fz
—2 - i+1—2fitfi

@

In Equation (2), & is the grid spacing, a, ¢ are the difference coefficient matrices. f is
the function value of node i. f/ and f; represent the first- and second-order derivatives of
node i, respectively; fii1, fito, fi—1, fi—» represent the function values of node i successively
two nodes forward and two nodes backward; f; ,, f/_; represent the first-order derivatives
of node i successively one node forward and one node backward, respectively; f;’ i fie "
represent the second derivative of i node one node forward and one node backward,
respectively.

Following [38], the wave equation of a shear wave in a two-dimensional medium is

0%V,

2%V, 2%V,
S (1+2*'y)vsoz—2y +0502?2y + pFy, (©)]

ox
where V; (x, z) is the displacement component of the shear wave. vsy(x, z) is the shear-wave
velocity in the vertical direction, and pFy is the shear-wave source, that is, the concentrated
force source excited in the y direction on the surface. If the input medium is isotropic, the
value of the anisotropic parameter y = 0.

Expanding the above shear-wave equation to represent the time of n +1and n — 1,
we obtain

v, B (v \" @ [PV )" | (an* (o',
Y Y Y -y 5
Vy(lf)+At< at) T (atz Z,],Jr 6 | op ij+ 24 | op ij+O(At> @
v, B2 (v " @) (v | (an* (a'y,
y v) y aVy 5
) At( at) T (81‘2 L6 \ar ij+ 24 | o ij+O(At> ®)

By adding these two equations, omitting the higher-order term, and substituting it
into the shear-wave equation, the fourth-order accuracy difference scheme of displacement
field time can be obtained as follows:

n+1l _ n _ yn—1 BVV ﬂ !
Valis) = 2Valsy) ~ Yaliy) + (1 27)(8t0)° ( )ij+<azz>i]'
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Equation (6) can be used to advance the time step of the shear wavefield in a two-
dimensional medium. The equation contains the second and fourth derivatives of the
sum of displacement pairs in the horizontal and vertical directions, and the sum of dis-
placement pairs in the horizontal and vertical directions can be differentiated by the finite
difference scheme.

Chu (1998) and others constructed a combined compact difference (CCD) scheme with
higher accuracy as follows:

(z+l+f/ )+f/+hbl<f1+1 fz”f) élcm(fl-l—m_fi—m) (7)

1
n
h <z+1 1/ >+fi//+b2(fl+1+f// ):lzédm(fﬂrm_zfz“'fz m)

Compared with CCD, the supercompact difference scheme needs fewer adjacent nodes
to obtain the high-order accuracy approximations of the first and second derivatives at the
same time step. The first and second derivatives in the above equation are coupled, which
can be obtained at the same time, increasing the fidelity of the waveform.

For the CCD scheme, it is assumed that the number of longitudinal and transverse
nodes of the model is m and #, and h is the size of the spatial grid. We use Equation (7) to
find the spatial partial derivatives 9V}, /9z> and 0>V, /9x? in Equation (3) and then express
the results as

AE = BV,, FC=V,D ®)

where A and C are the difference coefficient matrices at the left end of the CCD Equation (7),
and the sizes are 2m x 2m and 2n x 2n, respectively. E and F are the first- and second-order
derivative matrices of the displacement field space to be solved, and the sizes are 2m x n
and m x 2n, respectively. B and D are the difference coefficient matrices at the right end
of Equation (7), and the sizes are 2m x m and n x 2n, respectively. V, is the displacement
field matrix, and the size is m x n. These matrices are expressed as

r 1 0 aq bih T
0 1 az/h bz
aq —blh 1 0 aq blh
A= —ﬂz/h bz 0 1 az/h b2 (9)
a1 *bﬂ/l 1 0
L —llz/h bz 0 1 |
0 S cu/h ]
m=1
(-2 Z dw)/H* (L dw)/H?
m=1
- 0 Y cu/h
m=1 n%:l
(L dn)/W2 (=2 dw)/W> (L dw)/H? (10)
m=1
- Z cm/h 0
m=1
(Y dw)/h?> (=2 dy)/W?
m=1 m=1 |




Appl. Sci. 2022,12, 7047 50f19

[ 1 0 a —ay/h i
0 1 —bih by
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bih by 0 1
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( 9z )m,l ( 0z >m,2 ( 9z )m,n—l ( 0z )m,n
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Vy = : : : : : (15)
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From Equation (8), E = A-lB Vy, the odd number behavior is 9V}, /dz, and the even
number behavior is 92 Vy /922 Similarly, the sum can also be obtained from avy /0x and
0%V, /9x? by transposing the displacement field.

At present, this method has been applied to acoustic forward modeling [39]. However,
for shear-wave reverse-time migration, it is necessary to adapt to the situation of low-
transverse wave velocity and take into account the accuracy and efficiency of calculations.
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Based on CCD, we introduce a combined supercompact difference scheme (CSCD), and its
equation configuration is as follows [40]:

fi+an(fly + flg) +anh (ﬂ+1 fil/—l) +aph? (fi/ll +fi,il) +anh? (fz(+)1 fi(il)l)
= H(fig1 — fic1) + R(firr — fim2) oo+ P (fien — fizn)

it (= fia) o (fla o+ )+ ah (£ = £1) o (£ + £24)

=W (fir + fio1 = 26) + B(fraa + fiz = 2f) -+ B (fin + fion — 2F)
(16)

£ +anh 2 (flg + fig) +ah™ (fi/i&-l *fi//_l) +as3 (fz/-i-l +fil ) + azsh (fz(+)1 fi(f)l)
=3 (fir1 — fiir) + 3 (fira = fica) - + 5 (fivn — fion)

fz(+)1 +anh™>(fl . = fi_y) +anh™? (fz‘/:rl +fi//—1) agh! (fi/iil-l —fily ) + (fz(ﬁ)l +fi(:1)1>
=B (firr+ fir1 = 2f) + B (fira+ fia = 2) -+ U (fipn + fion — 2F)

In this paper, we focused on the three-point format of Equation (16).

Using the CSCD scheme to calculate the spatial partial derivative of the equation
is similar to that of CCD, except for the difference coefficient matrix. The difference
coefficient matrix at the left end needs to be expanded, and its sizes are 4m x 4m and
4n x 4n, respectively. E and F are changed to the first-, second-, third-, and fourth-order
derivative matrices of the displacement field space to be solved, with the sizes of 4m x n
and m x 4n, respectively. B and D are the difference coefficient matrices at the right end of
the equation, and the size is changed to 4m X m and n X 4n.

3. Analysis of CCD and CSCD
3.1. Analysis of Truncation Error

In this section, the truncation errors of the second derivative calculated by these
schemes are compared. The results are shown in Table 1. «, 3,4, b, c are the difference
coefficient matrices. It can be seen from Table 1 that, although the three methods can
achieve a certain order of spatial accuracy, the truncation error is relatively different.
The truncation error of the traditional difference scheme (central difference scheme) in
calculating the second-order partial derivative is greater than that of the CCD and CSCD.

Table 1. Truncation errors in various difference schemes for the second-order derivative calculations.

« B a b c Truncation Error
CFD 0 0 3/2 -3/5 1/10 ~ 1.78 x 1073 (0O (%))
&y CD 2/11 0 12/11 3/11 0 ~ —4.2163 x 10~4(0(K®))
CcCcD / —4.9603 x 1073(O ( ©))
CSCD / ~ 4 x1075(0(h%))

3.2. Dispersion Analysis

In numerical simulations, if the size of the spatial grid is too large, it will cause large
solution errors and produce numerical dispersion [41,42]. Therefore, the analysis of the
dispersion relationship is not simply an important method to evaluate the advantages
and disadvantages of numerical simulation methods, but it is also an important way to
determine the size of the spatial grid [43].
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If we use a simple harmonic solution f" = Aexp[I(ihk — kv'nAt)], we can obtain the
following equations for CCD:

I[(a1 +a1) cos B+ 1] + [(by + by) cos B (—1)(B")*

- mél [(cm + cm) cos B] (17)
2a(IsinB)B' + (1 —2by cos B)(— )(,B”) = :l((dm+dm)cosﬁ71)

and the following equations for CSCD:

(14 1 cos(B))B + % sin(B)p" — 155 cos(B)B" — g sin(B)pH = 32 sin(p)
S5 sin(B)B + (& cos(B) + 1) + L sin(B)B” — 1 cos(B)p®) = 10(cos(p) — 1)
35 cos(B)p — B sin(B)” + (1 -+ cos())B” + 1 sin(B)pH) = 35 sin(p)
5 in(B)p — 195 cos(B)p" —5sin(B)p" + } (cos (B) + 1)) = ~240(cos(B) — 1)

where B = hk,p' = hk',p" = hk",p" = hk®),p® = hk® Solving the equations of

CCD gives,
" 81 — 48 cos B — 33 cos2
Beep = \/ P b (19)

(18)

48 +40cos  +2cos2p

In this equation, B = kh, k is the wavenumber, /1 is the spatial gird size, and B/-p is
the second-order modified wavenumber of the CCD scheme.

If this is substituted into the two-dimensional shear-wave equation, Equation (20)
becomes

g 81 — 48 cos By — 33c0s2Bx u 81 — 48 cos B, — 33 cos 2B 20)
CCD(x) ~ \| 48+ 40 cos By + 2cos 2B, | CCD() ~ \| 48+ 40 cos B, + 2 cos 2.

where By = Bcosh, B, = Psinb, and 8 is the angle between the wave’s propagation direction
and the x-axis. The modified wavenumber of the corresponding derivatives of CSCD can
be solved by substituting the numerical solution into the Equation Group (18) obtained by
the simple harmonic solution without writing the corresponding analytical expression.

The modified wavenumber solution of the finite difference scheme can then be substi-
tuted into the finite difference scheme of the shear-wave equation, yielding.

2 cos(kvpumAt) = 2 — (vAt/h)? [(1 +27) (,3;)2 + (ﬁg)z]

(21)

+(ont/h)H[(1+29)2 (B2)* + 21 +27) (BiBL)* + (B)*] /12
where vy, is the numerical wave velocity, v is the true wave velocity, At is the time step,
vAt/h is the Courant number, and I = /—1. Equation (21) shows that the dispersion
relationship for the shear-wave equation is related to the value of spatial step, propagation
speed, and time step. Based on the above dispersion relation, the corresponding kv, At
can be solved after j is determined. The ratio of numerical wave velocity to true velocity is

defined as
N Unum _ kvnum At _ kvnum At _ kvpum At 22)
v koAt k%8t h wrig

Ideally, if there is no numerical dispersion, then the velocity ratio A is equal to one.
The larger the velocity ratio, the more serious the numerical dispersion. For comparison,
we calculate the dispersion relation between velocity ratio and kh for the central differ-
ence scheme (CFD), compact difference scheme (CD), CCD, and CSCD difference scheme.
Figure 1 shows the velocity ratio curve for different 0 for the above four methods in the
isotropic (y = 0) condition.
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Figure 1. Velocity ratio curves for different numerical simulation methods. The blue curve is the
traditional central difference scheme, the green curve is the traditional implicit difference scheme, the
red curve is the CCD difference scheme, the blue curve is the CSCD difference scheme, and the black
line is the velocity ratio constant of 1: (a) § = 0,& = 0.25; (b) 8 = 71/6,a = 0.25; (¢) § = /3,0 = 0.25.

Figure la—c show the velocity ratio curves for the CCD and CSCD schemes and the
other two difference schemes using different 6. The Courant numbers (¢« = vAt/h) are 0.25,
the horizontal axis ¢ € [0, 7t] is the product of the wavenumber and the spatial step, and
the vertical axis is the velocity ratio. A velocity ratio of one indicates that the numerical
wave velocity is the same as the theoretical wave velocity, which shows that the method can
suppress numerical dispersion better; otherwise, it indicates that the numerical dispersion
of the method is worse. It can be seen that the dispersion phenomenon of the four methods
is gradually intensified with the decrease in the number of spatial sampling points. The
numerical dispersion of CSCD, CCD, and CD schemes is smaller than that of the CFD
scheme, as their dispersion curves are closer to one. CSCD shows the best dispersion
suppression, followed by CCD.

3.3. The Numerical Simulation Accuracy Analysis

To compare the numerical simulation accuracy of the models, we calculate the simula-
tion error by simulating the two-dimensional plane harmonic initial value problem and
then compare the numerical simulation accuracy of the CCD, CSCD, and CFD schemes.
The initial value problem of the two-dimensional plane wave can be expressed as

Pran(trz) _  2pa(txz) | 2P pa(Lxz)
2 =0 ox2 +v 0z2

ot
psn(0,x,2) = cos(—@- cosf-x — @ sinG-z) (23)
7‘9;’5"52'9{’2) = —27fy sin(—@«:os 0-x — @'Sin&z)

where v is the plane wave velocity, 0 is the angle between the propagation direction and
the x-axis, and fj is the frequency of the simple harmonic plane wave.
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The analytical solution for the above initial value problem is

psh(t,x,z):cos[an()(tU/:OseU/'Szine)} (24)

To simulate the two-dimensional shear wavefield, we specify the following: fo = 20 Hz

and 6 = 71/4, the wave velocity used is 1000 m/s, the length and depth of the model are

2000 m, the length of the vertical and horizontal grids are the same, and the sampling time

is 1 s. The relative error of numerical simulation is calculated under different spatial mesh
lengths and time steps, and it is defined as

1

N
Zl [psh (tn/ Xi, Zj)] i
]:

E (%) =

N 2
Zl {psh 1]) psh (tl’ll xi/ Z])i| X ].OO (25)
j=

&MZ

Itz

i

where Psh( i) is the numerical solution, and pg, (tn, X;, ]-) is an analytical solution. We then
compare the relative error curves of the CCD, CSCD, CD, and CFD schemes under different
spatial steps (10 m, 15 m) and fixed time steps of 1 ms (At = 0.001 s), as shown in Figure 2. It
can be seen from Figure 2 that the relative error gradually increases with increasing spatial
grid length, time step, and simulation time. When the spatial step is 15 m and the time
step is 1 ms, the maximum relative error of the CCD scheme is 8%, which is much smaller
when compared with the maximum relative error of the CFD scheme (39%). When the
smaller spatial gird size (10 m) is adopted, the accuracy is significantly improved, and the
relative error is only 0.8%. The shear-wave simulation result using the CCD scheme has
high accuracy and can handle the numerical simulation of the seismic wavefield with long
sampling times. The simulation accuracy of the CSCD scheme is even higher than the CCD
scheme. For CSCD, when the spatial gird size is 15 m, and the time step size is 1 ms, the
maximum relative error is only 0.05%, further reducing to 0.0036% when a small spatial
step (10 m) is used.

8 : 40
—CFD,Ax=10m,At=0.001s —CFD,Ax=15m,At=0.001s
7 CD,Ax=10m,At=0.001s 35 CD,Ax=15m,At=0.001s
—CCD,Ax=10m,At=0.001s —CCD,Ax=15m,At=0.001s
6[|—CSCD,Ax=10m,At=0.001s 1 30} | —CSCD,Ax=15m,At=0.001s
5 25,
4 20
i} i}
3 15
2 10+
1 5
0 0
0 0.2 04 06 0.8 1 0 0.2 04 0.6 0.8 1
time (s) time (s)
(a) (b)

Figure 2. Relative errors of numerical simulation for different schemes and gird size: (a) Ax =10 m,
At=0.001s; (b) Ax =15m, At =0.001 s.

3.4. Comparison of Spatial Dispersion Suppression Effect

As the shear wave has the characteristics of low propagation speed, a one-dimensional
low-speed homogeneous medium is constructed below. The velocity of the homogeneous
medium model is 1000 m/s, the excitation position is located in the center of the model,
and the source is a 10 Hz Rayleigh wavelet. Different space steps are set with a time step of
1 ms, the seismic records of 6 s are recorded, and the results are shown in Figures 3-5. As
shown in Figure 3, the traditional CFD scheme has numerical dispersion when the gird size
is 9 m, and the dispersion increased substantially when the step increases to 10 m (Figure 5).
In contrast, as shown in Figure 4, the corresponding seismic record calculated with the
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CCD scheme shows no numerical dispersion, and there is still no numerical dispersion
when the gird size increases by 10 m (Figure 5).

20 CFDseismicdata 1000m/s Ax=9m At=0.001s

60 ]

40

-80 1 1 1 1
4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3

time (s)
(a)

CCDseismicdata 1000m/s Ax=9m At=0.001s

-80 1 1 1 1
4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3

time (s)
(b)

Figure 3. (a) CFD is used to simulate the numerical simulation of seismic records in the 1D homoge-
neous medium model, Ax =9 m; (b) CCD is used to simulate the numerical simulation of seismic
records in the 1D homogeneous medium model, Ax =9 m.

80 CFDseismicdata 1000m/s Ax=10m At=0.001s

60 - -
40

20~ 1

-80 1 1 1 1
4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3

time (s)

(a)

Figure 4. Cont.
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B CCDseismicdata 1000m/s Ax=10m At=0.001s

60
40

20 - &

-80 | | | | | | I |
4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 52 53

time (s)
(b)

Figure 4. (a) CFD is used to simulate the numerical simulation of seismic records in the 1D homoge-
neous medium model, Ax = 10 m; (b) CCD is used to simulate the numerical simulation of seismic
records in the 1D homogeneous medium model, Ax = 10 m.

CCDseismicdata 1000m/s Ax=15m At=0.001s

100 |
50
O -
50+ 1
-100
150 ‘ : ‘ | .
4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3
time (s)
(a)
100 CSCDseismicdata 1000m/s Ax=15m At=0.001s
50 - b
0 |-
-50
-100
_150 L L Il Il
4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3
time (s)
(b)

Figure 5. (a) CCD is used to simulate the numerical simulation of seismic records in the 1D homoge-
neous medium model, Ax = 15 m; (b) CSCD is used to simulate the numerical simulation of seismic
records in the 1D homogeneous medium model, Ax = 15 m.

Figure 5a,b compare the numerical dispersion between the CCD and CSCD schemes
when the step increases to 15 m. As shown in Figure 5a, at the speed of 1000 m/s, when
the gird size continues to increase to 15 m, the CCD scheme shows dispersion, while the
CSCD scheme shows no numerical dispersion at the same step. This confirms that the
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CSCD scheme improves the compactness of the CCD scheme and can better suppress the
numerical dispersion so that a coarser grid may be used in the numerical simulation.

3.5. Time Dispersion Suppression Comparison

Seismic waves propagate in time and space. The numerical dispersion caused by grid
discretization includes both spatial dispersion and time dispersion. The accuracy of time
extrapolation of the traditional high-order difference (2 m, 2) scheme is only second order.
When a large time step is adopted, there will be obvious time dispersion.

We use the same model to evaluate time dispersion as used for spatial dispersion. To
evaluate time dispersion, it is necessary to eliminate the influence of numerical dispersion
caused by the spatial gird size. Therefore, the spatial grid size is set to 5 m, and we increase
the time step to 4 ms. The calculated seismic records of CCD and CFD are shown in
Figure 6a,b.

CFDseismicdata 1000m/s Ax=5m At=0.004s

20 1

4.3 4.4 4.5 46 4.7 4.8 4.9 5 5.1 5.2 5.3

time (s)
(a)
CCDseismicdata 1000m/s Ax=5m At=0.004s
2
1 |- |
0 [
A+ i
2
4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3
time (s)
(b)

Figure 6. (a) CFD is used to simulate the numerical simulation of seismic records in the 1D homoge-
neous medium model, At = 0.004 s; (b) CCD is used to simulate the numerical simulation of seismic
records in the 1D homogeneous medium model, At = 0.004 s.

The seismic record simulated using the CFD scheme shows serious and obvious dis-
persion, while the result of the CCD scheme shows almost no such dispersion. As the CCD
scheme proposed in this paper uses the fourth-order difference operator to approximate
the time partial derivative, it has better stability than the CFD scheme, which can only use
the second-order difference operator to approximate the time partial derivative. The CSCD
scheme, by contrast, uses the same fourth-order difference operator to approximate the
time partial derivative, which shows even higher accuracy than the CCD scheme.
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Figure 7a,b compare the seismic records using the fourth- and second-order difference
operators to approximate the time partial derivative from the CCD scheme. It can be
seen that when using the same finite difference scheme to suppress the numerical disper-
sion caused by the spatial gird size, the fourth-order operators show smaller numerical
dispersion caused by increasing time step size than the second-order operators, which
provides a theoretical basis for the use of large spatial gird size and large time step size for
shear-wave simulation.

fourth order accuracy in time seismicdata 1000m/s Ax=9m At=0.004s

2 1

4 - i
| | | ! | | |
4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.1 5.2 53
time (s)
(a)

second order accuracy in time seismicdata 1000m/s Ax=9m At=0.004s

4]

4+ N

4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 51 5.2 5.3
time (s)

(b)

Figure 7. (a) CCD is used to simulate the numerical simulation of seismic records in the 1D homoge-

neous medium model with fourth-order accuracy in time, dt = 0.004 s; (b) CCD is used to simulate the
numerical simulation of seismic records in the 1D homogeneous medium model with second-order
accuracy in time, dt = 0.004 s.

4. Shear-Wave (SH) RTM

4.1. Implementation of SH-RTM
The steps of shear-wave reverse-time migration, similar to those of traditional reverse-

time migration, are as follows:

1.  Forward extrapolating of the source wavefield: starting from a given or estimated
source wavefield, we solve the equation to forward propagate the source wavefield.
Thus, for a source emitting at source positions xs, zs,

Vy(xSIZSI t) = S(xS/ZSI t) (26)

2. Shear-wave reverse continuation: For receiver wavefield propagation, we reverse the
R of the seismic receiver recorded in time and then set the initial receiver position
as the initial boundary condition. We then use the selected finite difference scheme
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to solve the shear-wave equation (Equation (5)) iteratively to obtain the receiver
wavefield. As shown in the following equation, where x,, z, is the position of the
source transmitter and receiver, and T is the total duration of forward propagation.

Vy(xr, Zy, t) - R(.xr,Zr, T - t). (27)

3. Imaging conditions of shear-wave application: the last step is to use the cross-
correlation of source wavefield and receiver wavefield obtained in the previous two
steps to obtain the image of the underground structure.

I(x,z) = /OTS(x,z,t)R(x,z,t)dt. (28)

4.2. Shear-Wave Reverse-Time Migration in Marmousi Models

A set of two-dimensional Marmousi models are set up, as shown in Figures 8 and 9,
where the S-wave velocity (Figure 9) is modified by the ratio of horizontal to vertical P-wave
velocity (Figure 8). The model size is 121 x 401 grid points, the spatial grid size Ax = 10 m,
the time step is 1 ms, the Ricker wavelet of 20 Hz is excited, and the sampling time is 4 s.
With these initial conditions, the reverse-time migration imaging is then carried out.

marmousi vp
3500
200
3000
400
E
£ 600
= 2500
@
-
800
2000
1000
1200
500 1000 1500 2000 2500 3000 3500 4000
distance (m)
Figure 8. Marmousi model: acoustic velocity model.
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Figure 9. Marmousi model: shear-wave velocity model.

We use the acoustic-wave equation and P-wave source loading method for the reverse-
time migration of the P-wave velocity (Figure 10), and the shear-wave equation and
shear-wave source loading method for the reverse-time migration of the S-wave velocity
(Figure 11). The result of using shear-wave velocity for reverse-time migration (Figure 11)
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has clearer structural definitions and higher resolution compared with the result of acoustic
reverse-time migration using P-wave velocity in Figure 10. We then continue with the SH
reverse-time migration imaging experiment, by increasing the spatial gird size, setting
Ax =15 m, get new S-wave velocity Marmousi model (Figure 12) and the sampling time to
4000 ms. The images for different differential methods are then compared. The following
figures (Figures 13-15) show the reverse-time migration results of the Marmousi model in
the shear-wave equation using different finite difference schemes.

marmousi rtm P wave

200 A
400
600

depth (m)

800
1000

1200
500 1000 1500 2000 2500 3000 3500 4000

distance (m)

Figure 10. The reverse-time migration result with Marmousi acoustic velocity model.

marmousi rtm shear wave
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1200 ;
500 1000 1500 2000 2500 3000 3500 4000
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Figure 11. The reverse-time migration result with Marmousi shear-wave velocity model.
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Figure 12. Marmousi model: shear-wave velocity model.
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CFD marmousi rtm Ax=15m
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Figure 13. CFD is used for the reverse-time migration result with Marmousi shear-wave velocity
model, Ax =15 m.
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Figure 14. CCD is used to the reverse-time migration result with Marmousi shear-wave velocity
model, Ax =15 m.

CSCD marmousi rtm Ax=15m

750 1500 2250 3000 3750 4500 5250 6000
distance (m)

Figure 15. CSCD is used for the reverse-time migration result with Marmousi shear-wave velocity
model, Ax =15 m.

As shown in Figures 13 and 14, the CCD scheme yields better imaging than the
CFD scheme, where the red boxes mark the area of improvement, due to higher accuracy
in accounting for numerical dispersion caused by the spatial gird size. Compared with
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Figures 13 and 14, the CSCD scheme produces the best imaging results of the Marmousi
model (Figure 15).

5. Conclusions

In this paper, we proposed a fourth-order time difference solution for the shear-wave
equation using the supercompact difference scheme and the combined supercompact
difference scheme. We carried out a detailed comparison of their accuracy in numerical
simulations and reverse-time migrations. Thus, we reached the following conclusions:

The combined compact difference scheme (CCD) has the characteristics of low nu-
merical dispersion, high stability, and simulation accuracy. It is suitable for the numerical
simulation of the seismic wavefield with large space and time steps. It provides an ef-
fective method for simulating shear-wave propagation and implementing shear-wave
reverse-time migration.

The combined supercompact difference scheme (CSCD) is extended and optimized
from the combined compact difference scheme (CCD). Compared with its prototype, the
supercompact difference scheme, the combined supercompact difference scheme further
suppresses the numerical dispersion caused by the increase in spatial step length and is
suitable for numerical simulation with even larger spatial step length.

Finally, we carried out the reverse-time migration imaging of the Marmousi model of
shear-wave velocity under isotropic conditions. The combined supercompact difference
scheme (CSCD) yields the best shear-wave imaging results of the Marmousi model when
compared with the other methods. These results reveal the potential for further extending
the supercompact difference scheme and the combined supercompact difference scheme
forward simulation of shear waves in complex media such as two-dimensional or three-
dimensional anisotropic media and viscoelastic media. It is worth highlighting that the
method presented in this paper is restricted to isotropic media at the moment. However,
these results reveal the potential for further extending the supercompact difference scheme
and the combined supercompact difference scheme forward simulation of shear-wave in
complex media such as two-dimensional or three-dimensional anisotropic or viscoelastic
media. Of course, the method in this paper also has its limitations, such as low computa-
tional efficiency, making it very challenging to apply to three-dimensional media, which is
also the focus of our subsequent research.
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