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Abstract: Fine particulate matter (PM2.5) has attracted extensive attention due to its harmful effects on
humans and the environment. The sparse ground-based air monitoring stations limit their application
for scientific research, while aerosol optical depth (AOD) by remote sensing satellite technology
retrieval can reflect air quality on a large scale and thus compensate for the shortcomings of ground-
based measurements. In this study, the elaborate vertical-humidity method was used to estimate
PM2.5 with the spatial resolution 1 km and the temporal resolution 1 hour. For vertical correction, the
scale height of aerosols (Ha) was introduced based on the relationship between the visibility data and
extinction coefficient of meteorological observations to correct the AOD of the Advance Himawari
Imager (AHI) onboard the Himawari-8 satellite. The hygroscopic growth factor (f(RH)) was fitted
site-by-site and month by month (1–12 months). Meanwhile, the spatial distribution of the fitted
coefficients can be obtained by interpolation assuming that the aerosol properties vary smoothly
on a regional scale. The inverse distance weighted (IDW) method was performed to construct the
hygroscopic correction factor grid for humidity correction so as to estimate the PM2.5 concentrations
in Sichuan and Chongqing from 09:00 to 16:00 in 2017–2018. The results indicate that the correlation
between “dry” extinction coefficient and PM2.5 is slightly improved compared to the correlation
between AOD and PM2.5, with r coefficient values increasing from 0.12–0.45 to 0.32–0.69. The r of
hour-by-hour verification is between 0.69 and 0.85, and the accuracy of the afternoon is higher than
that of the morning. Due to the missing rate of AOD in the southwest is very high, this study utilized
inverse variance weighting (IVW) gap-filling method combine satellite estimation PM2.5 and the
nested air-quality prediction modeling system (NAQPMS) simulation data to obtain the full-coverage
hourly PM2.5 concentration and analyze a pollution process in the fall and winter.

Keywords: Himawari-8 AOD; vertical correction; humidity correction; NAQPMS; IVW

1. Introduction

The PM2.5, as known as fine particulate matter, denotes particulate matter with an
aerodynamic diameter less than 2.5 µm. PM2.5 has raised significant public concerns over
the past decades because of its adverse effects on human health [1]. Studies have shown
that people who exposed to PM2.5 for long periods of time are more likely to suffer from
respiratory and cardiovascular diseases and even die prematurely [2,3]. Therefore, long-
term continuous regional PM2.5 concentration monitoring is important for the assessment
of various haze impacts. To monitor air pollutants, China started to develop a ground-based
monitoring network at the end of 2012, which has covered major cities by now. The ground-
based monitoring network can grasp the real-time information of PM2.5 concentration

Appl. Sci. 2022, 12, 7065. https://doi.org/10.3390/app12147065 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12147065
https://doi.org/10.3390/app12147065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app12147065
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12147065?type=check_update&version=1


Appl. Sci. 2022, 12, 7065 2 of 18

overtime at the observation sites with high accuracy, but it is difficult to support the
assessment of regional haze impact due to the inability to accurately represent non-site
regional concentrations. Meanwhile, the cost of site maintenance is high and the distribution
is uneven with most located in urban centers. To overcome these limitations, the use
of satellite remote sensing technology to derive the spatial and temporal distribution
characteristics of PM2.5 was proposed [4], due to its advantages such as wide spatial
coverage and long time series [5,6].

The AOD retrieved by satellite is a measure of the integration of the extinction co-
efficient of the medium between satellite remote sensing and the ground in the vertical
direction [7], which cannot directly represent the ground-level PM2.5. Therefore, various
methods have been proposed to represent the relationship between AOD and PM2.5, and
obtain the near-ground PM2.5 concentration. Up to now, the main methods for estimating
PM2.5 concentration using AOD are scale factor methods, semi-empirical formula methods,
statistical model methods, and machine learning methods. The scale factor method simu-
lates the scale coefficient between PM2.5 and AOD by atmospheric radiative transfer model
and then multiplies the coefficient by the AOD obtained from satellite retrieval, which
does not involve ground-based monitoring data and is conducive to estimating PM2.5
concentration during the period when there is no ground-based monitoring station, but
the estimation accuracy is low [8–10]. The semi-empirical formula method is based on the
physical properties between AOD and PM2.5 such as humidity and vertical profile features
of AOD [11–15]. However, it is difficult to fully express the relationship between PM2.5 and
AOD by a simple function due to its complex physical mechanism, while some parameters
in the semi-empirical formula are not easily accessible, which limits the extension of this
method. The statistical model method evolved from the initial linear model (e.g., linear
mixed-effect regression, LME) [16,17] to the nonlinear regression model (e.g., generalized
additive model, GAM; geographically and temporally weighted regression, GTWR) [18–20].
Some researches improve the accuracy of the model by introducing meteorology, topogra-
phy, land use and other relevant parameters [21,22], but the nonlinear relationship between
the factors still cannot be fully expressed. Machine learning algorithms have significant
advantages over statistical models for classification and prediction [23], and a variety of
models are widely used for PM2.5 estimation, e.g., random forest (RF) [24,25], Deep Neural
Networks (DNN) [26,27], Capsule Networks (CapsNet) [28], space-time extremely ran-
domized trees (STEM) [29]. Machine learning methods have the advantage of expressing
nonlinear relationships between large data and achieve excellent results in estimation
accuracy compared with other methods but ignore the physical characteristics between
AOD and PM2.5. As the relationship between AOD and PM2.5 varies greatly from region
to region, moment to moment, and season to season [30,31], most studies that used a
single machine learning method to estimate PM2.5 concentrations in a large area have some
shortcomings in spatial distribution. Meanwhile, the accuracy of the estimation using
machine learning methods is related to the training samples.

Meanwhile, there is still a huge challenge in estimating regional PM2.5 concentrations
using AOD, which is missing AOD retrievals caused by cloud cover and bright surfaces
(desert or snow) [32,33]. Different methods are proposed for addressing missing AOD re-
trievals, such as kriging interpolation [34], machine learning methods to combine chemical
transport models such as the Community Multi-scale Air Quality Model (CMAQ), Modern-
Era Retrospective Analysis for Research and Applications-version 2 (MERRA-2) to simulate
AOD or PM2.5 with complete spatial and temporal coverage. For example, Sun et al. com-
bined Multi-angle Implementation of Atmospheric Correction (MAIAC) AOD, AHI AOD,
and meteorological data to obtain 24 h full-coverage PM2.5 concentrations in Beijing [35].
Li et al. used residual networks for the downscaling fusion of MERRA-2 and MAIAC AOD
to obtain full-coverage of PM2.5 concentrations in the California [36]. Chen et al. used
AQUA and TERRA AOD to perform linear regression firstly, and then combined with
Copernicus Atmosphere Monitoring Service (CAMS) AOD, using a self-adaptive deep
neural network (SADNN) to estimate regional full-coverage PM2.5 in China [37]. Bai et al.
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performed ten different fusion strategies for comparison to obtaining full-coverage PM2.5
concentrations using the classical RF model [38].

Due to the unique climatic conditions in the Sichuan and Chongqing regions, where
the air pollution is heavier but with more cloud coverage in autumn and winter, and less
cloud coverage but relatively better air quality in spring and summer. As well know,
machine learning method is relation with training samples, the training samples in the
special area of the study may not truly represent the distribution of PM2.5 long-time series.
Thus, we proposed the elaborate Vertical-Humidity correction method to estimate PM2.5
concentrations in areas of Sichuan and Chongqing (the scope of the study mainly includes
the Sichuan area except Ganzi, Aba, Liangshan, and Panzhihua, and the main urban area
of Chongqing). Meanwhile, to make up for the missing data of PM2.5 retrieved by satellite,
we combine satellite and NAQPMS data to obtain full-coverage PM2.5 concentration over
Sichuan and Chongqing. The main research of this study is as follows:

(1) Considering the complex topography and meteorological conditions in Sichuan and
Chongqing, the scale height of aerosols (Ha) was introduced for the vertical correction
of regional AOD. For humidity correction, five different stations were selected for the
analysis of the fitted curves and f(90%), and the results showed that the hygroscopic
correction factors varied greatly in different months and stations, so the data in
the study area were fitted site by site and month by month to construct a grid of
hygroscopic correction factors.

(2) The hourly PM2.5 concentrations in the study area from 09:00 to 16:00 were estimated
using the AHI AOD data based on the constructed hygroscopic correction factors grid,
and the accuracy was verified.

(3) Considering the frequent cloud coverage in Sichuan and Chongqing regions and the
existence of gaps in the satellite retrieval PM2.5, we adopt inverse variance weighting
(IVW) for effective fusion with the help of NAQPMS data to finally obtain PM2.5 con-
centrations with seamless coverage and effectively analyze the processes of pollutant
aggregation, migration, and dissipation in this place.

2. Materials and Methods

The study area we selected mainly includes Sichuan Province (except Ganzi, Aba,
Liangshan, and Panzhihua) and the main urban area of Chongqing (Figure 1), which located
in southwest China, with regional elevations ranging from 400–5000 m [39]. The study
area is influenced by the Qinghai-Tibet Plateau to form high humidity and low wind speed
atmospheric conditions, which are not conducive to pollution transmission and are prone
to haze with the wide range and long duration leading to heavy pollution. Additionally,
the population of the region is about 100 million, and a large amount of industrial, traffic,
and anthropogenic emissions of pollutants leads to frequent heavy pollution weather [40].

2.1. Data
2.1.1. Ground-Level PM2.5 Measurements

Ground measured hourly PM2.5 concentration data in 2017 and 2018 were obtained
from the China National Environmental Monitoring Center (CNEMC) (http://106.37.2
08.233:20035/, accessed on 12 June 2022), Department of Ecology and Environment of
Sichuan Province, and Chongqing Environmental Monitoring Center, including CNEMC
stations, Sichuan stations, and Chongqing stations. For every three hours of data, PM2.5
concentration values below the 3% quantile or above the 97% quantile are not included in
the calculation.

2.1.2. Himawari-8 AHI/AOD Data

Himawari-8 is a second-generation geostationary meteorological satellite of Japan Me-
teorological Agency (JMA), which was successfully launched in October 2014 and officially
put into operation in July 2015. Himawari-8 carries an AHI sensor with 16 observation
channels, which includes 3 visible channels, 3 near-infrared channels, and 10 infrared

http://106.37.208.233:20035/
http://106.37.208.233:20035/
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channels, of which the resolution of visible channels can reach 0.5 km, and the resolution of
near-infrared and infrared channels can reach 1~2 km. This study used the AOD by the
dark target algorithm retrieval with a spatial resolution of 1 km and a temporal resolution
of 1 h; please refer to the literature for the detailed retrieval algorithm [41].
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Figure 1. Location of PM2.5 and meteorology monitoring stations in study area.

2.1.3. Meteorological Data

The meteorological data were obtained from China Meteorological Data Service Centre
with a temporal resolution of 1 h, and the two main parameters utilized were visibility (VIS)
and relative humidity (RH). To reduce the experimental error, the data were pre-processed
as follows. (1) If the ratio of the visibility data of the current day to the data of the previous
day and the next day was less than 1/3 in three consecutive days, the visibility data of that
day were deleted [42]. (2) Relative humidity values greater than 98% were not involved in
the statistical study. (3) To avoid affecting the aerosol hygroscopic growth fitting results,
when matching environmental monitoring station data and meteorological station data, if
the distance between two stations was greater than 10 km, they were not involved in the
statistical study.

2.1.4. Aerosol Robotic Network (AERONET) Data

To verify the accuracy of the AHI AOD in the retrieval of this study, we downloaded
the AERONET [43] level 2.0 data of 2017 and 2018 at six stations: Bamboo (25.19◦ N,
121.54◦ E), Hong Kong PolyU (22.3◦ N, 114.18◦ E), Hong Kong Sheung (22.48◦ N, 114.12◦ E),
Beijing CAMS (39.93◦ N,116.32◦ E), Xiang He (39.75◦ N, 116.96◦ E), and Beijing (39.98◦ N,
116.38◦ E). The AERONET AODs were interpolated using 440 nm and 675 nm with the
help of Angstrom exponential to be consistent with the AHI AOD 550 µm band [44].
During the validation process, to ensure consistency in space and time, the average value
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of 3 × 3 images was calculated with AERONET sites as the center, and the average value of
AERONET AOD before and after half an hour of satellite transit time was calculated, with
a total of 4544 validation data. The validation comparison scatter plot is shown in Figure 2,
with a high correlation coefficient value of r = 0.82 and a fit slope close to 1, RMSE = 0.38.
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2.1.5. Nested Air Quality Prediction Modeling System (NAQPMS) Data

The simulated PM2.5 data used in this study were obtained from the Nested Air
Quality Prediction Modeling System (NAQPMS); the NAQPMS is a multiscale air-quality
model developed by the Institute of Atmospheric Physics, Chinese Academy of Sciences.
The NAQPMS uses a new generation of mesoscale Weather Research and Forecast (WRF)
models with a resolution of 1–30 km developed by the National Center for Environmental
Prediction (NCEP), the National Center for Atmospheric Research (NCAR), and other
research institutions and universities [45,46]. The NAQPMS can simulate atmospheric trace
gases (e.g., O3, NOX, SO2, CO) and atmospheric aerosol components (e.g., sand, sea salt,
sulfate, nitrate, ammonium, and carbon-containing aerosols). It has been widely used in the
study of the development mechanism and transport deposition process of sand, dust, acid
rain, ozone, and particulate pollution, as well as the forecast and prediction of urban air
quality [47]. To be consistent with the AHI AOD resolution, the NAQPMS was resampled
to 1 km by the nearest neighbor method.

2.2. Methods

AOD represents the sum of the extinction capacity of all aerosol particles in the
vertical column of the atmosphere. To obtain near-ground PM2.5, not only the near-ground
extinction coefficient needs to be revised from the vertical extinction coefficient, but also
the hygroscopic properties of the particles should be considered. However, the hygroscopic
properties of aerosol particles vary greatly in different seasons and regions, so this study
fitted the hygroscopic growth factors month by month and site by site and constructed a
grid of hygroscopic correction factors by using the IDW method.
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2.2.1. Vertical Correction

Assuming that the extinction coefficient of the aerosol shows a negative exponential
decay in the vertical direction, the AOD can be expressed as:

AOD =
∫ ∞

0
σa(λ)× e−

z
Ha dz = σa(λ)×Ha (1)

where λ = 550 nm, z denotes the height in the vertical direction, and σa(λ) is the near-
ground extinction coefficient, which unit is m−1. Ha is the scale height of aerosols. Ha can
be approximately replaced by the boundary [48], the unit of which is m.

According to Koschmieder’s law [49–51], the near-ground extinction coefficient σa(λ)
can be expressed by Equation (2):

σa(λ) =
3.912
vis

− 32π3(n− 1)2

3Nλ4 (2)

where n denotes the atmospheric refractive index, and N denotes the molecular number
density. At sea level, n − 1 = 293 × 10−6, N = 266 × 10−19 cm−3.

Therefore, the visibility provided by the meteorological station can be used to calculate
the near-ground extinction coefficient σa(λ) and thus the corresponding Ha. Assuming
that the variation of Ha is small within a certain range, this study uses IDW to interpolate
Ha distribution to 1 km in the study area.

2.2.2. Relativity Correction

Based on the Mie scattering theory [11,48], the near-ground extinction coefficient of
aerosols σa(λ) can also be expressed as:

σa(λ) =
3〈Qext〉
4reffρ

·PMx (3)

where 〈Qext〉 denotes the scattering efficiency of normalized particles, reff denotes the
effective radius of the particle, ρ denotes the average density of particles, PMx denotes
the mass concentration of aerosol, and all parameters are influenced by relative humidity.
Assuming that the particles, particle spectrum, and density of the aerosol remain relatively
constant, 〈Qext〉, reff, and ρ can be viewed as constants so that there is a certain positive
relationship between σa(λ) and PMx. According to the average mass extinction rate defined
by Wang [11].

Eext =
σa(λ)

PMx
≈ Eext(RH) (4)

Since the fine particulate matter is the main contributor to aerosol extinction, here,
PMx refers to particulate matter with a particle radius less than 2.5 µm, and Eext(RH)
describes the average state of the extinction ability of particles with different properties. To
quantitatively describe the hygroscopic growth characteristics of Eext(RH), the extinction
hygroscopic growth factor of the average mass extinction rate f(RH) can be expressed as

f(RH) =
Eext(RH)

Edry
(5)

where Edry denotes the average mass extinction rate under dry conditions (RH = 40%). Ac-
cording to the Kotchenruther’s research [52], Eext(RH) can be represented by Equation (6),

Eext(RH) = a + b×
(

RH
100

)c
(6)
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where a, b, and c are coefficients fitted with RH variation, depending on the aerosol
physicochemical properties. According to the above equations, the expression of PM2.5 can
be obtained as follows:

PM2.5 =
σa(λ)

Eext(RH)
=

AOD
Ha(

a + b×
(

RH
100

)c)
× Edry

(7)

Since fine particles can stay in the atmosphere for days or even weeks and can be well
mixed in the atmosphere and transported over long distances to other regions, the spatial
distribution of the fitted coefficients a, b, and c can be obtained by interpolation, assuming
that the aerosol properties vary smoothly on a regional scale. Subsequently, assuming that
the regional relative humidity varies smoothly, the distribution of relative humidity in the
study area can be obtained by IDW interpolation. Finally, the PM2.5 concentration value
of each pixel can be calculated based on the AOD, Ha, relative humidity, a, b, and c in the
study area.

2.2.3. IVW Fusion Method

To fill the gap in PM2.5 estimation by satellite, we used the inverse variance weighting
method (IVW), which is based on the difference between PM2.5 estimated by satellite
(NAQPMS) and ground-based PM2.5 data, to fuse satellite data and NAQPMS data. Since
the dispersion of the variance is related to the quality of the estimation (or simulation)
results, by calculating the variance of the corresponding data pair, a lower weight is
assigned when the variance between the estimated (simulated) results and the ground-
based data is large, and when the variance is small, a higher weight is assigned [53]. The
IVW method is expressed as follows:

PMf =

PMst−f
Varstm

+
PMmodel−f
Varmodelm

1
Varstm

+
1

Varmodelm

(8)

where PMst−f and PMmodel−f denote PM2.5 of satellite estimation and NAQPMS simu-
lation. Varstm (Varmodelm) is the variance of the difference between the satellite estima-
tion (NAQPMS simulation) and the ground-based PM2.5. PMf is PM2.5 concentration
after fusion.

This study fused the satellite estimated PM2.5 with the NAQPMS simulation results to
obtain spatially full-coverage PM2.5 distribution.

3. Results
3.1. The Fitting Result of Eext(RH) and Statists Analysis of f (RH)

In this study, Eext(RH) fitting results for five different urban sites were selected for
analysis, which are Chengdu Lingjianglu (built-up area), Leshan Jiajiangxian (near the
river), Yibin Xingwenerzhong (densely vegetated area), Bazhong Tongjiangzhongxue (near
the river), and Chongqing Guanyinqiao (commercial area), and the fitting results are shown
in Figure 3 and Figures S1–S4. In general, (1) the fitting ability of the model was strong at
all five stations, with r around 0.9 at the stations of Leshan Jiajiang, Yibin Xingwen, and
Chongqing Guanyinqiao; only in February, June, and December was the r less than 0.8 at the
station of Bazhong Tongjiang, and the r was less than 0.8 at the station of Chengdu Linjiang
only in July and August. (2) While the RH value is small, Eext(RH) grows slowly with RH,
but the fitted curve is flat while RH > 80%, and the Eext(RH) shows a fast-rising trend.
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Figure 3. Eext(RH) fitting Chengdu Lingjianglu station. The red solid lines are fitting lines of the
scattered dots.

The fitting results of the five stations have obvious differences: the fitted curve of the
Chengdu Lingjianglu station is basically the same from January to December and shows
a slow rise when the relative humidity is higher, indicating that the aerosol hygroscopic
growth characteristics of this station are weak, and its aerosol sources and environmental
conditions vary less with the season [54], which may be related to the location of the
selected station in a built-up area. The differences in hygroscopic growth characteristics
between the months are large at Leshan Jiajiang and Bazhong Tongjiang, which are located
close to the river. The fitted curve of Leshan Jiajiang shows a slow rise from January to May
but a sharp rise from June to October, indicating that the hygroscopic growth characteristics
vary greatly with the seasons, and there is almost no relative humidity less than 40% in July
and August. For Bazhong Tongjiang, the fitted curve shows a sharp and steep rise in all
12 months. The hygroscopic growth characteristics of Yibin Xingwen, located in a densely
vegetated area, and Chongqing Guanyinqiao Station, located in a commercial area, are
relatively similar, where the fitted curves both show a slow rise from January to December
with no obvious deliquescence.

Using Equation (5), f(90%) from January to December was calculated for Chengdu
Linjianglu, Leshan Jiajiangxian, Yibin Xingwenerzhong, Bazhong Tongjiangzhongxue, and
Chongqing Guanyinqiao, respectively. The corresponding f(90%) could not be calculated
because of the missing value of relative humidity less than 40% in December at Chongqing
Guanyinqiao station and in July and August at Leshan Jiajiang station, as shown in Table 1.
Comparison of different stations showed that the hygroscopic growth factors varied widely
among stations, the variation of f(90%) at the same site in different months was large.
There are 3.91 in November and 1.70 in February at Yibin Xingwenerzhong, and 5.02 in
February and 1.13 in October at Leshan Jiajiangxian. The f(90%) of Chongqing Guanyinqiao
is the highest (low) at 5.35 (2.46). There are small variations both Chengdu Linjianglu and
Bazhong Tongjiangzhongxue stations. The f(90%) at Chongqing Guanyinqiao and Leshan
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Jiajiangxian stations are significantly higher than other stations, which the reason is that
the main source of aerosols in commercial areas is secondary pollutants (such as sulfates)
from vehicle emissions, which are water-soluble ions with strong hygroscopic properties.
Leshan Jiajiangxian site is located between the built-up area and the river, and the aerosol
is relatively complex.

Table 1. Hygroscopic growth ability of f (90%) at Chengdu Linjianglu, Leshan Jiajiangxian, Yibin
Xingwenerzhong, Bazhong Tongjiangzhongxue, and Chongqing Guanyinqiao.

Month Chengdu
Linjianglu

Yibin
Xingwenerzhong

Leshan
Jiajiangxian

Bazhong
Tongjiang

Chongqing
Guanyinqiao

January 1.85 1.62 3.64 1.51 2.46
February 1.58 1.70 5.02 1.65 2.51

March 1.58 2.38 4.92 1.65 2.67
April 1.57 3.52 4.59 1.45 4.85
May 1.47 2.66 4.03 1.33 3.94
June 1.70 1.92 2.44 1.46 3.78
July 2.08 1.93 - 1.85 4.78

August 2.52 1.83 - 1.21 4.64
September 1.99 2.38 3.22 1.19 5.35

October 1.20 3.52 1.13 1.41 3.27
November 1.61 3.91 3.26 1.62 5.34
December 2.22 2.57 2.68 2.14 -

3.2. Vertical and Humidity Correction on AOD

To verify that the dry extinction coefficient of AOD after vertical and humidity correc-
tions (σdry) is useful for estimating PM2.5 concentration, the scatter plots of AOD&PM2.5
from 09:00 to 16:00 (Beijing time) and the σdry and PM2.5 are shown in Figures 4 and 5.
According to Figure 4, the correlation coefficient between AOD and PM2.5 increased by
hours, and the correlation coefficient ranged from 0.11 to 0.44 (the lowest correlation r = 0.11
at 9:00 and the highest correlation r = 0.44 at 16:00). The correlation between the σdry and
PM2.5 was significantly improved (Figure 5), with the highest correlation r = 0.68 at 15:00.
Comparison of Figures 4 and 5 shows that the correlation between the σdry and PM2.5 after
the vertical and humidity corrections is significantly improved, which is beneficial to the
estimation of PM2.5 concentration.
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3.3. The PM2.5 of Satellite Estimation Validation

The comparison of Figures 4 and 5 shows that the correlation between σdry and PM2.5 is
significantly improved after the vertical and humidity corrections compared to that between
AOD and PM2.5, and the correlation coefficient increases from 0.11–0.44 to 0.28–0.68. The
mass concentration of near-ground PM2.5 was estimated using Equation (8), and the hour-
by-hour density scatter plots of satellite estimates against ground-based observations are
shown in Figure 6, where the red dashed line is the 1:1 line, and the blue dashed line
is the fitted line. According to Figure 6 the correlations are all high in general, but the
correlation coefficient varies more from 09:00 to 16:00 (0.69–0.85), and the correlation is
significantly higher in the afternoon than in the morning, the variation of which is consistent
with the study of Xu [30]. This may be caused by the following two reasons: (1) in the
morning hours, when the solar azimuth is larger and the atmospheric water vapor content
is higher, the sunlight passes through a longer atmospheric path to reach the ground, which
affects the accuracy of the AOD retrieval, and thus the PM2.5 estimation results may be
relatively poor, especially at 09:00. (2) Particulate matter deliquesces with the increase
in temperature, which may affect the results of humidity corrections [15] and thus affect
the PM2.5 estimation results. (3) In the process of vertical revision, we use the visibility to
calculate the near-surface extinction coefficient (σa(λ)). The fog or high humidity conditions
in the morning over the Chengdu-Chongqing regions may affect the visibility measurement,
thus affecting the final PM2.5 estimation [51]. (4) We fit this based on the monthly scale in
constructing the hygroscopic correction factor grid, which may have a greater impact at
9:00 and 10:00 because of the high humidity conditions, so it is necessary to construct the
hygroscopic correction factor grid for a more refined sub-hour.



Appl. Sci. 2022, 12, 7065 11 of 18

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 18 
 

visibility to calculate the near-surface extinction coefficient (RV(W)). The fog or high hu-

midity conditions in the morning over the Chengdu-Chongqing regions may affect the 

visibility measurement, thus affecting the final PM2.5 estimation [51]. (4) We fit this based 

on the monthly scale in constructing the hygroscopic correction factor grid, which may 

have a greater impact at 9:00 and 10:00 because of the high humidity conditions, so it is 

necessary to construct the hygroscopic correction factor grid for a more refined sub-hour. 

 

 

 

Figure 6. Scatterplot of the hourly density of PM2.5 from satellite estimation and ground-based ob-

servation (09:00–16:00). The red and blue lines are 1:1 and fitted lines. 

3.4. Application of Hourly PM2.5 in Pollution Event Analysis 

In this study, we plotted the satellite estimations (Figure 7a–d,i–l) and the satellite-

NAQPMS fused PM2.5 spatial distribution (Figure 7e–h,m–p) from 09:00 to 16:00 on 19 

April 2017. According to the spatial distribution, there are gaps in the satellite estimation 

PM2.5 due to the influence of cloud coverage, which cannot reflect the pollution in some 

regions (Figure 7a–d,i–l). The full-coverage PM2.5 spatial distribution was obtained after 

the fusion of satellite and NAQPMS data to make up for the shortcomings of satellite es-

timation results. At 09:00, the PM2.5 high concentration area is mainly located in the junc-

tion of Meishan, Leshan, and Zigong; at 10:00, with the transit of southeast wind, pollu-

tants migrate to Meishan and Chengdu, while the PM2.5 concentration of some regions 

increases; at 11:00, with the transit of the northeast wind, pollutants of Ziyang and Deyang 

area migrate with the wind and pollutants accumulate in Meishan area, making PM2.5 

concentration higher; until 16:00, the northeast area of Sichuan pollutants diffuse and mi-

grate with the wind, making the air quality better and PM2.5 concentration lower. How-

ever, Leshan, Meishan, and Ya’an are located in the wind accumulation area and left of 

Figure 6. Scatterplot of the hourly density of PM2.5 from satellite estimation and ground-based
observation (09:00–16:00). The red and blue lines are 1:1 and fitted lines.

3.4. Application of Hourly PM2.5 in Pollution Event Analysis

In this study, we plotted the satellite estimations (Figure 7a–d,i–l) and the satellite-
NAQPMS fused PM2.5 spatial distribution (Figure 7e–h,m–p) from 09:00 to 16:00 on
19 April 2017. According to the spatial distribution, there are gaps in the satellite esti-
mation PM2.5 due to the influence of cloud coverage, which cannot reflect the pollution in
some regions (Figure 7a–d,i–l). The full-coverage PM2.5 spatial distribution was obtained
after the fusion of satellite and NAQPMS data to make up for the shortcomings of satellite
estimation results. At 09:00, the PM2.5 high concentration area is mainly located in the junc-
tion of Meishan, Leshan, and Zigong; at 10:00, with the transit of southeast wind, pollutants
migrate to Meishan and Chengdu, while the PM2.5 concentration of some regions increases;
at 11:00, with the transit of the northeast wind, pollutants of Ziyang and Deyang area
migrate with the wind and pollutants accumulate in Meishan area, making PM2.5 concen-
tration higher; until 16:00, the northeast area of Sichuan pollutants diffuse and migrate with
the wind, making the air quality better and PM2.5 concentration lower. However, Leshan,
Meishan, and Ya’an are located in the wind accumulation area and left of the mountainous
area, making pollutants accumulate and PM2.5 concentration relatively high.
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In addition, we selected the PM2.5 pollution process from 1 to 3 November 2018,
as shown in Figure 8. According to the PM2.5 concentration distribution and migration
process, it can be seen that on November 1, PM2.5 high concentration (>100 µg/m3) is
mainly located in the junction of Suining, Ziyang, Chengdu, and Deyang at 09:00; until
16:00, pollutants gradually dissipated and high concentration region migrates around
Mianyang. On 2 November, the high concentration area is located near Meishan and
Chengdu at 09:00; with the diffusion of pollutants, PM2.5 concentration gradually decreases
and is mainly concentrated in Leshan at 16:00. On 3 November, pollutants migrate and
gather near Yibin and Luzhou, and the whole pollution process ends by 16:00. Therefore,
the results of spatial full coverage obtained by fusion can analyze the changes in pollutant
migration, diffusion, and accumulation.
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4. Discussion

In this study, the near-ground extinction coefficient was calculated using the visibility
in the vertical correction to calculate the Ha of the corresponding pixel. According to the
principle of ground-based observation visibility, the near-ground extinction coefficient cal-
culated by using Equation (2) represents the integration of the particle extinction ability in
the horizontal direction, while the AOD represents the integration of the particle extinction
ability in the vertical direction. To verify its reasonableness, we conducted a comparative
analysis by obtaining the observation data from the LiDAR located at Southwest Jiao tong
University (SWJTU, 104.5 E, 30.73 N). Considering the distance between the LiDAR and me-
teorological observation stations, Jinquanhe Station (104.3 E, 30.72 N) and Xinduqudishui
(104.2 E, 30.78 N) station in Chengdu were used for comparative analysis, and the results
are shown in Figure 9. The scatter plots show that the correlation coefficients between
the near-ground extinction coefficients calculated by the boundary layer height observed
by LiDAR (EXT_vertical (PBL)) and ground-based PM2.5 are 0.19 and 0.27, respectively,
which are lower than the correlation coefficients between the results calculated based on
visibility (EXT_vertical (VIS)) and PM2.5. Therefore, the near-ground extinction coefficient
calculated by visibility in this study has a higher correlation with PM2.5 and is feasible for
calculating Ha.
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The study area is located in southwest China, which is less affected by sand and
dust so the pollutants in the region are mainly industrial and anthropogenic emissions.
Therefore, the defined average mass extinction efficiency is reasonable assuming PM2.5
as the main extinction particle in the humidity correction process. The Eext(RH) model
was studied experimentally by Kotchenruther [52] for Brazilian aerosols and Magi [55] for
South African aerosols. The model is effective for the scattering hygroscopic growth of the
carbonaceous aerosol population and can better characterize its variation with humidity.
According to the results of the hygroscopic correction fitting (Figure 7), there are some
observations that deviate from the fitted curve, but the overall fitting results for the regional
stations are good and the fitted curves are relatively smooth, indicating that the adopted
Eext(RH) model is feasible.

In addition, when calculating the corrected factor f(90%) (Table 1), no values of relative
humidity less than 40% were observed, so their corresponding f(90%) could not be calcu-
lated, such as at the Leshan Jiajiangxian station and the Chongqing Guanyinqiao station;
this may be related to the humidity environment around the stations. The calculation
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results indicate that the aerosol hygroscopic growth capacity is different at different stations
in the same month, and it also varies greatly at same stations at different times, so it is
necessary to construct a hygroscopic correction factor grid to estimate PM2.5 by fitting
the hygroscopic growth factor month by month and station by station in the humidity
correction, especially for regions with complex topographic conditions.

In this study, the IVW method was used to fuse PM2.5 estimated by satellite and
simulated by NAQPMS, which bridges the gap area of satellite retrieval and obtains
a seamless regional coverage of hour-by-hour PM2.5 concentrations (Figures 7 and 8).
Compared with other polar-orbiting satellite inversions, the PM2.5 concentrations we
obtained have a higher temporal–spatial resolution and can help to analyze the variation of
pollutants in detail throughout the day. For the urban cluster in Sichuan and Chongqing,
which is covered by clouds all year round and has serious pollution in autumn and winter,
the fusion results can better present the processes of pollutant migration and dissipation
(Figure 8). However, the fusion method is the classical IVW method. With the development
of machine learning, much research has applied deep learning to this field and achieved
better results, which will be an important research direction at a later stage.

5. Conclusions

Firstly, we used meteorological and environmental ground-based observation data to
explore the fitted hygroscopic correction at five different background sites located in Chengdu
Linjianglu, Leshan Jiajiangxian, Yibin Xingwenerzhong, Bazhong TongjiangZhongxue, and
Chongqing Guanyinqiao. Additionally, the f (90%) was calculated. The results showed
that in Sichuan and Chongqing regions with special climatic conditions, the hygroscopic
correction factor varies greatly by station and month. Therefore, a hygroscopic correction
factor grid with a spatial resolution of 1 km from January to December was constructed by
fitting the data from 2017 to 2018 on a site-by-site basis.

Secondly, we verified that the correlation of dry extinction coefficient (σdry) against
PM2.5 is improved compared with AOD against PM2.5. The hourly near-ground PM2.5
concentrations in the study area from 09:00 to 16:00 were estimated by using vertical-
humidity method, and the accuracy is verified, with r between 0.69–0.85.

Thirdly, considering that the satellite cannot detect the atmospheric aerosols under
the clouds, especially in the Sichuan and Chongqing regions, which have more continuous
cloud coverage and gaps in spatial distribution, the advantage of atmospheric model data
was fully utilized to obtain seamless coverage results for the region by using the IVW
method to fuse PM2.5 estimated by satellite and simulated by the atmospheric model. The
PM2.5 fusion results were used to analyze the processes of aggregation, migration, and
dissipation of pollutants.

Finally, we utilized the LiDAR data to demonstrate the reasonableness of this study
in discussion. So, the results can effectively provide important supporting data for air
pollution control and other works.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app12147065/s1, Figure S1. Eext(RH) fitting Leshan Jiajiangxian
station. The red solid lines are fitting lines of the scattered dots. Figure S2. Eext(RH) fitting Yibin
Xingwenerzhong station. The red solid lines are fitting lines of the scattered dots. Figure S3. Eext(RH)

fitting Bazhong Tongjiangzhongxue station. The red solid lines are fitting lines of the scattered dots.
Figure S4. Eext(RH) fitting Chongqing Guanyinqiao station. The red solid lines are fitting lines of the
scattered dots.

Author Contributions: Q.Z. proposed the method and wrote this paper; H.Z. collected data; Y.G.
revised the manuscript. T.X. translated the manuscript. S.L. constructed the model and analyzed
data. L.C. revised the manuscript. All authors have read and agreed to the published version of
the manuscript.

https://www.mdpi.com/article/10.3390/app12147065/s1
https://www.mdpi.com/article/10.3390/app12147065/s1


Appl. Sci. 2022, 12, 7065 16 of 18

Funding: This research was funded by the National Natural Science Foundation of China under Grant
42001315, the National Natural Science Foundation of China under Grant 41830109, the National
Science and Technology Support Program of China under Grant 2014BAC16B06.

Data Availability Statement: The datasets presented in this study can be found here: http://111.20
2.113.138:8081/h8/dataquery_h8.jsp; http://106.37.208.233:20035/; https://aeronet.gsfc.nasa.gov/
(accessed on 12 June 2022).

Acknowledgments: All authors would sincerely thank the reviewers and editors for their beneficial,
careful, and detailed comments and suggestions for improving the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, Y.; Guo, Y.F.; Qian, Z.M.; Ruan, Z.L.; Zheng, Y.; Alistair, W.; Ai, S.Q.; Steven, W.H.; Michael, G.V.; Ma, W.J.; et al. Ambient

fine particulate pollution associated with diabetes mellitus among the elderly aged 50 years and older in China. Environ. Pollut.
2018, 243, 815–823. [CrossRef] [PubMed]

2. Hu, Z.Y. Spatial analysis of MODIS aerosol optical depth, PM2.5, and chronic coronary heart disease. Int. J. Health Geogr. 2009,
8, 27. [CrossRef] [PubMed]

3. Tao, M.H.; Chen, L.F.; Su, L.; Tao, J.H. Satellite observation of regional haze pollution over the North China Plain. J. Geophys. Res.
Atmos. 2012, 117, D12203. [CrossRef]

4. Hoff, R.M.; Christopher, S.A. Remote sensing of particulate pollution from space: Have we reached the promised land. J. Air
Waste Manag. Assoc. 2009, 59, 645–675. [CrossRef] [PubMed]

5. Dominici, F.; Peng, R.D.; Bell, M.L.; Pham, L.; McDermott, A.; Zeger, S.L.; Samet, J.M. Fine particulate air pollution and hospital
admission for cardiovascular and respiratory diseases. JAMA 2006, 295, 1127. [CrossRef]

6. Ma, Z.W.; Liu, R.Y.; Liu, Y.; Bi, J. Effects of air pollution control policies on PM2.5 pollution improvement in China from 2005–2017:
A satellite-based perspective. Atmos. Chem. Phys. 2019, 19, 6861–6877. [CrossRef]

7. Levy, R.C.; Remer, L.A.; Dubovik, O. Global aerosol optical properties and application to Moderate Resolution Imaging
Spectroradiometer aerosol retrieval over land. J. Geophys. Res. Atmos. 2007, 112, D13210. [CrossRef]

8. Liu, Y.; Park, R.J.; Jacob, D.J.; Li, Q.B.; Vasu, K.; Jeremy, A.S. Mapping annual mean ground-level PM2.5 concentrations using
multiangle imaging spectroradiometer aerosol optical thickness over the contiguous united states. J. Geophys. Res. Atmos. 2004,
109, D22206.

9. Donkelaar, V.A.; Martin, R.V.; Brauer, M.K.; Levy, R.; Verduzco, C.; Villeneuve, P.J. Global estimates of ambient fine particulate
matter concentrations from satellite-based aerosol optical depth: Development and application. Environ. Health Perspect. 2010,
118, 847–855. [CrossRef]

10. Donkelaar, V.A.; Martin, R.V.; Brauer, M.; Boys, B.L. Use of satellite observations for long-term exposure assessment of global
concentrations of fine particulate matter. Environ. Health Perspect. 2014, 123, 135–143. [CrossRef]

11. Wang, Z.F.; Chen, L.F.; Tao, J.H.; Zhang, Y.; Su, L. Satellite-based estimation of regional particulate matter (PM) in Beijing using
vertical-and-RH correcting method. Remote Sens. Environ. 2010, 114, 50–63. [CrossRef]

12. Chu, D.A.; Tsai, T.C.; Chen, J.P.; Chang, S.C.; Jeng, Y.J.; Chiang, W.L.; Lin, N.H. Interpreting aerosol lidar profiles to better estimate
surface PM2.5 for columnar AOD measurements. Atmos. Environ. 2013, 79, 172–187. [CrossRef]

13. Lin, C.Q.; Li, Y.; Yuan, Z.B.; Alexis, K.H.L.; Li, C.C.; Jimmy, C.H.F. Using satellite remote sensing data to estimate the high-
resolution distribution of ground-level PM2.5. Remote Sens. Environ. 2015, 156, 117–128. [CrossRef]

14. Zhang, Y.; Li, Z.Q. Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from
satellite observation. Remote Sens. Environ. 2015, 160, 252–262. [CrossRef]

15. Zeng, Q.L.; Chen, L.F.; Zhu, H.; Wang, Z.F.; Wang, X.H.; Zhang, L.; Gu, T.Y.; Zhu, G.Y.; Zhang, Y. Satellite-based estimation of
hourly PM2.5 concentrations using a vertical-humidity correction method from Himawari-AOD in Hebei. Sensors 2018, 18, 3456.
[CrossRef] [PubMed]

16. Lee, H.J.; Liu, Y.; Coull, B.A.; Schwartz, J.; Koutrakis, P. A novel calibration approach of MODIS AOD data to predict PM2.5
concentrations. Atmos. Chem. Phys. 2011, 11, 7991–8002. [CrossRef]

17. Pu, Q.; Yoo, E.H. Spatio-temporal modeling of PM2.5 concentrations with missing data problem: A case study in Beijing, China.
Int. J. Geogr. Inf. Sci. 2020, 34, 423–447. [CrossRef]

18. Ma, Z.W.; Hu, X.F.; Andrew, M.S.; Robert, C.L. Satellite-Based spatiaotemporal trends in PM2.5 concentrations China 2004–2013.
Environ. Health Perspect. 2016, 124, 184–192. [CrossRef]

19. Guo, Y.X.; Tang, Q.H.; Gong, D.Y.; Zhang, Z.Y. Estimating ground-level PM2.5 concentrations in Beijing using a satellite-based
geographically and temporally weighted regression model. Remote Sens. Environ. 2017, 198, 140–149. [CrossRef]

20. He, Q.Q.; Huang, B. Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling.
Remote Sens. Environ. 2018, 206, 72–83. [CrossRef]

21. Liu, Y.; Sarnat, J.A.; Kilaru, V.; Jacob, D.J.; Koutrakis, P. Estimating ground-level PM2.5 in the Eastern United States using satellite
remote sensing. Environ. Sci. Technol. 2005, 39, 3269–3278. [CrossRef] [PubMed]

http://111.202.113.138:8081/h8/dataquery_h8.jsp
http://111.202.113.138:8081/h8/dataquery_h8.jsp
http://106.37.208.233:20035/
https://aeronet.gsfc.nasa.gov/
http://doi.org/10.1016/j.envpol.2018.09.056
http://www.ncbi.nlm.nih.gov/pubmed/30243190
http://doi.org/10.1186/1476-072X-8-27
http://www.ncbi.nlm.nih.gov/pubmed/19435514
http://doi.org/10.1029/2012JD017915
http://doi.org/10.3155/1047-3289.59.6.645
http://www.ncbi.nlm.nih.gov/pubmed/19603734
http://doi.org/10.1001/jama.295.10.1127
http://doi.org/10.5194/acp-19-6861-2019
http://doi.org/10.1029/2006JD007815
http://doi.org/10.1289/ehp.0901623
http://doi.org/10.1289/ehp.1408646
http://doi.org/10.1016/j.rse.2009.08.009
http://doi.org/10.1016/j.atmosenv.2013.06.031
http://doi.org/10.1016/j.rse.2014.09.015
http://doi.org/10.1016/j.rse.2015.02.005
http://doi.org/10.3390/s18103456
http://www.ncbi.nlm.nih.gov/pubmed/30322216
http://doi.org/10.5194/acp-11-7991-2011
http://doi.org/10.1080/13658816.2019.1664742
http://doi.org/10.1289/ehp.1409481
http://doi.org/10.1016/j.rse.2017.06.001
http://doi.org/10.1016/j.rse.2017.12.018
http://doi.org/10.1021/es049352m
http://www.ncbi.nlm.nih.gov/pubmed/15926578


Appl. Sci. 2022, 12, 7065 17 of 18

22. Zou, B.; Xu, S.; Sternberg, T.; Fang, X. Effect of land use and cover change on air quality in Urban Sprawl. Sustainability 2016, 8,
677. [CrossRef]

23. Mitchell, T.M. Machine Learning; McGraw-Hill: New York, NY, USA, 1997.
24. Chen, Z.Y.; Zhang, T.H.; Zhang, R.; Zhu, Z.M.; Yang, J.; Chen, P.Y.; Ou, C.Q.; Guo, Y. Extreme gradient boosting model to estimate

PM2.5 concentrations with missing-filled satellite data in China. Atmos. Environ. 2019, 202, 180–189. [CrossRef]
25. Liu, Y.; Li, C.Y.; Liu, D.R.; Tang, Y.L.; Barnabas, C.S.; Zhou, Z.H.; Hu, X.; Yang, F.M.; Zhan, Y. Deriving hourly full-coverage PM2.5

concentrations across China’s Sichuan Basin by fusing multisource satellite retrievals: A machine-learning approach. Atmos.
Environ. 2022, 271, 118930. [CrossRef]

26. Sun, Y.B.; Zeng, Q.L.; Geng, B.; Lin, X.W.; Sude, B.; Chen, L.F. Deep learning architecture for estimating hourly ground-level
PM2.5 using satellite remote sensing. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1343–1347. [CrossRef]

27. Fan, W.Z.; Qin, K.; Cui, Y.L.; Li, D.; Bilal, M. Estimation of hourly ground-level PM2.5 concentration based on Himawari-8
apparent reflectance. IEEE Trans. Geosci. Remote Sens. 2021, 59, 76–85. [CrossRef]

28. Zeng, Q.L.; Xie, T.S.; Zhu, S.Y.; Fan, M.; Chen, L.F.; Tian, Y. Estimating the near-ground PM2.5 concentration over China based on
the CapsNet model during 2018–2020. Remote Sens. 2022, 14, 623. [CrossRef]

29. Wei, J.; Li, Z.Q.; Sun, L.; Xue, W.H.; Ma, Z.W.; Liu, L.; Fan, T.Y.; Cribb, M. Extending the EOS long-term PM2.5 data records since
2013 in China: Application to the VIIRS deep blue aerosol products. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4100412. [CrossRef]

30. Xu, Q.Q.; Chen, X.L.; Yang, S.B.; Tang, L.L.; Dong, J.D. Spatiotemporal relationship between Himawari-8 hourly columnar
aerosol optical depth (AOD) and ground-level PM2.5 mass concentration in mainland China. Sci. Total Environ. 2021, 765, 144241.
[CrossRef]

31. Yang, Q.Q.; Yuan, Q.Q.; Yue, L.W.; Li, T.W.; Shen, H.F.; Zhang, L.P. The relationships between PM2.5 and aerosol optical depth
(AOD) in mainland China: About and behind the spatiotemporal variations. Environ. Pollut. 2019, 248, 526–535. [CrossRef]

32. Belle, J.H.; Chang, H.H.; Wang, Y.; Hu, X.; Lyapustin, A.; Liu, Y. The potential impact of satellite-retrieved cloud parameters on
ground-level PM2.5 mass and composition. Int. J. Environ. Res. Public Health. 2017, 14, 1244. [CrossRef] [PubMed]

33. Bi, J.Z.; Belle, J.H.; Wang, Y.J.; Lyapustin, A.I.; Wildani, A.; Liu, Y. Impacts of snow and cloud covers on satellite-derived PM2.5
levels. Remote Sens. Environ. 2019, 221, 665–674. [CrossRef] [PubMed]

34. Lv, B.; Hu, Y.T.; Chang, H.H.; Russell, A.G.; Bai, Y.Q. Improving the accuracy of daily PM2.5 distributions derived from the fusion
of ground-level measurements with aerosol optical depth observations, a case study in North China. Environ. Sci. Technol. 2016,
50, 4752–4759. [CrossRef] [PubMed]

35. Sun, J.; Gong, J.H.; Zhou, J.P. Estimating hourly PM2.5 concentrations in Beijing with satellite aerosol optical depth and a random
forest approach. Sci. Total Environ. 2021, 762, 144502. [CrossRef]

36. Li, L.F.; Meredith, F.; Mariam, G.; Frederick, L.; Wu, J.; Nathan, P.; Carrie, B.; Frank, G.; Rima, H. Spatiotemporal imputation of
MAIAC AOD using deep learning with downscaling. Remote Sens. Environ. 2020, 237, 111584. [CrossRef] [PubMed]

37. Chen, B.J.; You, S.X.; Ye, Y.; Fu, Y.Y.; Ye, Z.R.; Deng, J.S.; Wang, K.; Hong, Y. An interpretable self-adaptive deep neural network
for estimating daily spatially-continuous PM2.5 concentrations across China. Sci. Total Environ. 2021, 768, 144724. [CrossRef]

38. Bai, K.X.; Li, K.; Guo, J.P.; Chang, N.B. Multiscale and multisource data fusion for full-coverage PM2.5 concentrantion mapping:
Can spatial pattern recognition come with modeling accuracy? ISPRS J. Photogramm. Remote Sens. 2022, 184, 31–44. [CrossRef]

39. Liao, T.T.; Gui, K.; Jiang, W.T.; Wang, S.G.; Wang, B.H.; Zeng, Z.L.; Che, H.Z.; Wang, Y.Q.; Sun, Y. Air stagnation and its impact on
air quality during winter in Sichuan and Chongqing, southwestern China. Sci. Total Environ. 2018, 635, 576–585. [CrossRef]

40. Tao, J.; Zhang, L.M.; Engling, G.; Zhang, R.J.; Yang, Y.H.; Cao, J.J.; Zhu, C.S.; Wang, Q.Y.; Luo, L. Chemical composition of PM2.5
in an urban environment in Chengdu, China: Importance of springtime dust storms and biomass burning. Atmos. Res. 2013,
122, 270–283. [CrossRef]

41. Yang, F.K.; Wang, Y.; Tao, J.H.; Wang, Z.F.; Fan, M.; Gerrit, D.L.; Chen, L.F. Preliminary investigation of a new AHI aerosol optical
depth (AOD) retrieval algorithm and evaluation with multiple source AOD measurements in China. Remote Sens. 2018, 10, 748.
[CrossRef]

42. Husar, R.B.; Husar, J.D.; Martin, L. Distribution of continental surface aerosol extinction based on visual range data. Atmos.
Environ. 2000, 34, 5067–5078. [CrossRef]

43. Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Yoram, J.F. Second-generation operational algorithm: Retrieval of aerosol
properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res.
Atmos. 2007, 112, D13211. [CrossRef]

44. McHardy, T.M.; Zhang, J.; Reid, J.S.; Miller, S.D.; Hyer, E.J.; Kuehn, R.E. An improved method for retrieving nighttime aerosol
optical thickness from the VIIRS Day/Night Band. Atmos. Meas. Tech. 2015, 8, 4773–4783. [CrossRef]

45. Wang, Z.; MAEDA, T.; Hayashi, M.; Hsiao, L.F.; Liu, K.Y. A nested air quality prediction modeling system for urban and regional
scales: Application for high-ozone episode in Taiwan. Water Air Soil Pollut. 2001, 130, 391–396. [CrossRef]

46. Wang, Z.; Pan, X.L.; Uno, I.; Chen, X.S.; Yamamoto, S.; Zheng, H.T.; Li, J.; Wang, Z.F. Importance of mineral dust and anthropogenic
pollutants mixing during a long-lasting high PM event over East Asia. Environ. Pollut. 2018, 234, 368–378. [CrossRef]

47. Wang, Q.X.; Zeng, Q.L.; Tao, J.H.; Sun, L.; Zhang, L.; Gu, T.Y.; Wang, Z.F.; Chen, L.F. Estimating PM2.5 concentrations based on
MODIS AOD and NAQPMS data over Beijing-Tianjin-Hebei. Sensors 2019, 19, 1207. [CrossRef]

48. Koelemeijer, R.; Homan, C.; Matthijsen, J. Comparison of spatial and temporal variations of aerosol optical thickness and
particulate matter over Europe. Atmos. Environ. 2006, 40, 5304–5315. [CrossRef]

http://doi.org/10.3390/su8070677
http://doi.org/10.1016/j.atmosenv.2019.01.027
http://doi.org/10.1016/j.atmosenv.2021.118930
http://doi.org/10.1109/LGRS.2019.2900270
http://doi.org/10.1109/TGRS.2020.2990791
http://doi.org/10.3390/rs14030623
http://doi.org/10.1109/TGRS.2021.3050999
http://doi.org/10.1016/j.scitotenv.2020.144241
http://doi.org/10.1016/j.envpol.2019.02.071
http://doi.org/10.3390/ijerph14101244
http://www.ncbi.nlm.nih.gov/pubmed/29057838
http://doi.org/10.1016/j.rse.2018.12.002
http://www.ncbi.nlm.nih.gov/pubmed/31359889
http://doi.org/10.1021/acs.est.5b05940
http://www.ncbi.nlm.nih.gov/pubmed/27043852
http://doi.org/10.1016/j.scitotenv.2020.144502
http://doi.org/10.1016/j.rse.2019.111584
http://www.ncbi.nlm.nih.gov/pubmed/32158056
http://doi.org/10.1016/j.scitotenv.2020.144724
http://doi.org/10.1016/j.isprsjprs.2021.12.002
http://doi.org/10.1016/j.scitotenv.2018.04.122
http://doi.org/10.1016/j.atmosres.2012.11.004
http://doi.org/10.3390/rs10050748
http://doi.org/10.1016/S1352-2310(00)00324-1
http://doi.org/10.1029/2006JD007811
http://doi.org/10.5194/amt-8-4773-2015
http://doi.org/10.1023/A:1013833217916
http://doi.org/10.1016/j.envpol.2017.11.068
http://doi.org/10.3390/s19051207
http://doi.org/10.1016/j.atmosenv.2006.04.044


Appl. Sci. 2022, 12, 7065 18 of 18

49. Koschmieder, H. Theorie der horizontalen sichtweite II: Kontrast und sichtweite. Beiträge Phys. Freien Atmosphäre 1925, 12, 171–181.
50. Wan, H.Y.; Dong, X.B.; Liu, S.Y.; Pu, J.P. Analysis on aerosol scale height based on aircraft observation and MODIS products over

North China. J. Meteorol. Sci. 2016, 36, 655–660.
51. Zhang, Z.Y.; Wu, W.L.; Wei, J.; Song, Y.; Yan, X.D.; Zhu, L.D.; Wang, Q. Aerosol optical depth retrieval from visibility in China

during 1973–2014. Atmos. Environ. 2017, 171, 38–48. [CrossRef]
52. Kotchenruther, R.A.; Hobbs, P.V. Humidification factors of aerosols from biomass burning in Brazil. J. Geophy. Res. Atmos. 1988,

103, 32081–32089. [CrossRef]
53. Ma, Z. Study on Spatiotemporal Distributions of PM2.5 in China Using Satellite Remote Sensing. Ph.D. Thesis, Nanjing University,

Nanjing, China, 2015.
54. Wang, Z.F.; Chen, L.F.; Tao, J.H.; Liu, Y.; Hu, X.F.; Tao, M.H. An empirical method of RH correction for satellite estimation of

ground-level PM concentrations. Atmos. Environ. 2014, 95, 71–81. [CrossRef]
55. Magi, B.I.; Hobbs, P.V. Effects of humidity on aerosols in southern Africa during the biomass burning season. J. Geophys. Res.

Atmos. 2003, 108, 8495. [CrossRef]

http://doi.org/10.1016/j.atmosenv.2017.09.004
http://doi.org/10.1029/98JD00340
http://doi.org/10.1016/j.atmosenv.2014.05.030
http://doi.org/10.1029/2002JD002144

	Introduction 
	Materials and Methods 
	Data 
	Ground-Level PM2.5 Measurements 
	Himawari-8 AHI/AOD Data 
	Meteorological Data 
	Aerosol Robotic Network (AERONET) Data 
	Nested Air Quality Prediction Modeling System (NAQPMS) Data 

	Methods 
	Vertical Correction 
	Relativity Correction 
	IVW Fusion Method 


	Results 
	The Fitting Result of Eext( RH )  and Statists Analysis of f( RH )  
	Vertical and Humidity Correction on AOD 
	The PM2.5 of Satellite Estimation Validation 
	Application of Hourly PM2.5 in Pollution Event Analysis 

	Discussion 
	Conclusions 
	References

