Nonlinear Impact Force Reduction of Layered Polymers with the Damage-Trap Interface
Abstract
:Featured Application
Abstract
1. Introduction
2. Out-of-Plane Impact Experiments
2.1. Materials
2.2. Specimen Preparation
2.3. Impact Test
3. Experimental Results
4. Simplified Dynamic Contact Mechanics Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sarva, S.S.; Deschanel, S.; Boyce, M.C.; Chen, W. Stress–strain behavior of a polyurea and a polyurethane from low to high strain rates. Polymer 2007, 48, 2208–2213. [Google Scholar] [CrossRef]
- Cao, J.; Gong, Y.; Zhu, K.; Yang, Z.G.; Luo, X.M.; Gu, F.M. Microstructure and mechanical properties of dissimilar materials joints between T92 martensitic and S304H austenitic steels. Mater. Des. 2011, 32, 2763–2770. [Google Scholar] [CrossRef]
- Chen, J.; Xu, J.; Yao, X.; Xu, X.; Liu, B.; Li, Y. Different driving mechanisms of in-plane cracking on two brittle layers of laminated glass. Int. J. Impact Eng. 2014, 69, 80–85. [Google Scholar] [CrossRef]
- Sun, C.T.; Rechak, S. Effect of adhesive layers on impact damage in composite laminates. In Composite Materials: Testing and Design; Whitcomb, J.D., Ed.; American Society for Testing and Materials: Philadelphia, PA, USA, 1988; pp. 97–123. [Google Scholar]
- Hirai, Y.; Hamada, H.; Kim, J.K. Impact response of woven glass-fabric composites—I.: Effect of fibre surface treatment. Compos. Sci. Technol. 1998, 58, 91–104. [Google Scholar] [CrossRef]
- Sands, J.M.; Patel, P.J.; Dehmer, P.G.; Hsieh, A.J.; Boyce, M.C. Protecting the force: Transparent materials safeguard the Army’s vision. AMPTIAC Q. 2004, 8, 28–36. [Google Scholar]
- Lim, J.; Chen, W.W.; Zheng, J.Q. Dynamic small strain measurements of Kevlar® 129 single fibers with a miniaturized tension Kolsky bar. Polym. Test. 2010, 29, 701–705. [Google Scholar] [CrossRef]
- Rhymer, J.; Kim, H.; Roach, D. The damage resistance of quasi-isotropic carbon/epoxy composite tape laminates impacted by high velocity ice. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1134–1144. [Google Scholar] [CrossRef]
- Yaghoubi, A.S.; Liaw, B. Thickness influence on ballistic impact behaviors of GLARE 5 fiber-metal laminated beams: Experimental and numerical studies. Compos. Struct. 2012, 94, 2585–2598. [Google Scholar] [CrossRef]
- Sanborn, B.; Weerasooriya, T. Quantifying damage at multiple loading rates to Kevlar KM2 fibers due to weaving, finishing, and pre-twist. Int. J. Impact Eng. 2014, 71, 50–59. [Google Scholar] [CrossRef]
- Xu, L.R.; Rosakis, A.J. Impact failure characteristics in sandwich structures: Part I: Basic failure mode selection. Int. J. Solids Struct. 2002, 39, 4215–4235. [Google Scholar] [CrossRef]
- Xu, L.R.; Rosakis, A.J. An experimental study of impact-induced failure events in homogeneous layered materials using dynamic photoelasticity and high-speed photography. Opt. Lasers Eng. 2003, 40, 263–288. [Google Scholar] [CrossRef]
- Xu, L.R.; Rosakis, A.J. Impact damage visualization of heterogeneous two-layer materials subjected to low-speed impact. Int. J. Damage Mech. 2005, 14, 215–233. [Google Scholar] [CrossRef]
- Sheshkar, N.; Verma, G.; Pandey, C.; Sharma, A.K.; Gupta, A. Enhanced thermal and mechanical properties of hydrophobic graphite-embedded polydimethylsiloxane composite. J. Polym. Res. 2021, 28, 403. [Google Scholar] [CrossRef]
- Alhareb, A.O.; Akil, H.M.; Ahmad, Z.A. Impact strength, fracture toughness and hardness improvement of PMMA denture base through addition of nitrile rubber/ceramic fillers. Saudi J. Dent. Res. 2017, 8, 26–34. [Google Scholar] [CrossRef]
- Guo, Y.; Zuo, X.; Xue, Y.; Zhou, Y.; Yang, Z.; Chuang, Y.C.; Chang, C.C.; Yuan, G.; Satija, S.K.; Gersappe, D.; et al. Enhancing impact resistance of polymer blends via self-assembled nanoscale interfacial structures. Macromolecules 2018, 51, 3897–3910. [Google Scholar] [CrossRef]
- Singh, R.P.; Kavaturu, M.; Shukla, A. Initiation, propagation and arrest of an interface crack subjected to controlled stress wave loading. Int. J. Fract. 1997, 83, 291–304. [Google Scholar] [CrossRef]
- Xu, L.R. 2lhh5083 lt1 NEW. 12 December 2012. Available online: https://www.youtube.com/watch?v=5EDG2VZXaQ8 (accessed on 7 April 2022).
- Islam, M.S. A Damage-Trap Interfacial Design to Improve Impact Resistance of Polymers. Master’s Thesis, The University of Texas at El Paso, El Paso, TX, USA, 2013. [Google Scholar]
- Geubelle, P.H.; Baylor, J.S. Impact-induced delamination of composites: A 2D simulation. Compos. Part B Eng. 1998, 29, 589–602. [Google Scholar] [CrossRef]
- Grujicic, M.; Pandurangan, B.; Bell, W.C.; Coutris, N.; Cheeseman, B.A.; Fountzoulas, C.; Patel, P.; Templeton, D.W.; Bishnoi, K.D. An improved mechanical material model for ballistic soda-lime glass. J. Mater. Eng. Perform. 2009, 18, 1012–1028. [Google Scholar] [CrossRef] [Green Version]
- Abrate, S. Impact on Composite Structures; Cambridge University Press: New York, NY, USA, 1998. [Google Scholar]
- Kistler, L.S.; Waas, A.M. Experiment and Analysison the Response of Curved Laminated Composite Panels Subjected to Low Velocity Impact. Int. J. Impact Eng. 1998, 21, 711–736. [Google Scholar] [CrossRef]
- Fisher-Cripps, A.C. Nano-Indentation; Springer: New York, NY, USA, 2004. [Google Scholar]
- Andrews, E.W.; Giannakopoulos, A.E.; Plisson, E.; Suresh, S. Analysis of the impact of a sharp indenter. Int. J. Solids Struct. 2002, 39, 281–295. [Google Scholar] [CrossRef]
- Daniel, I.M.; Ishai, O. Engineering Mechanics of Composite Materials; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- Xu, L.R.; Kuai, H.; Sengupta, S. Free-edge stress singularities and edge modifications for fiber pushout experiments. J. Compos. Mater. 2005, 39, 1103–1125. [Google Scholar] [CrossRef]
- Krishnan, A.; Xu, L.R. Systematic evaluation of bonding strengths and fracture toughnesses of adhesive joints. J. Adhes. 2011, 87, 53–71. [Google Scholar] [CrossRef]
- Ruan, J.S.; Khalil, T.; King, A.I. Human head dynamic response to side impact by finite element modeling. J. Biomech. Eng. 1991, 113, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Pellman, E.J.; Viano, D.C.; Withnall, C.; Shewchenko, N.; Bir, C.A.; Halstead, P.D. Concussion in professional football: Helmet testing to assess impact performance—Part 11. Neurosurgery 2006, 58, 78–95. [Google Scholar] [CrossRef]
- Aschwanden, J.; Stark, H.; Peter, D.; Steuri, T.; Schmid, B.; Liechti, F. Bird collisions at wind turbines in a mountainous area related to bird movement intensities measured by radar. Biol. Conserv. 2018, 220, 228–236. [Google Scholar] [CrossRef]
- Kuncius, T.; Rimašauskas, M.; Rimašauskienė, R. Interlayer adhesion analysis of 3d-printed continuous carbon fibre-reinforced composites. Polymers 2021, 13, 1653. [Google Scholar] [CrossRef]
- Striemann, P.; Gerdes, L.; Huelsbusch, D.; Niedermeier, M.; Walther, F. Interlayer Bonding Capability of Additively Manufactured Polymer Structures under High Strain Rate Tensile and Shear Loading. Polymers 2021, 13, 1301. [Google Scholar] [CrossRef]
Impact Energy (J) | Max. Impact Force (kN) | Percentage Reduction | |
---|---|---|---|
Baseline | Layered PMMA | ||
1.00 | 3.95 ± 0.64 | 2.30 ± 0.38 | 41.77 |
5.00 | 7.94 ± 0.81 | 3.87 ± 0.43 | 51.26 |
8.00 | 9.83 ± 1.37 | - | - |
11.00 | 11.39 ± 1.53 | - | - |
12.00 | 11.95 ± 1.24 | 4.54 ± 0.58 | 62.01 |
15.00 | 12.75 ± 1.49 | 4.50 ± 0.73 | 64.71 |
18.00 | 12.35 ± 1.23 | - | - |
20.00 | 12.51 ± 1.87 | 4.66 ± 0.96 | 62.75 |
Impact Energy (J) | Max. Impact Force (kN) | Percentage Reduction | |
---|---|---|---|
Baseline | Layered Polycarbonate | ||
7.00 | 7.03 ± 0.68 | 3.75 ± 1.12 | 46.66 |
10.00 | 8.16 ± 1.26 | 4.50 ± 0.95 | 44.85 |
20.00 | 10.60 ± 1.74 | 6.19 ± 1.08 | 41.60 |
30.00 | 12.17 ± 1.16 | 7.58 ± 1.20 | 37.72 |
40.00 | 13.20 ± 1.92 | 8.68 ± 1.22 | 34.24 |
50.00 | 14.06 ± 1.11 | 9.90 ± 1.31 | 29.59 |
60.00 | 14.90 ± 2.46 | 10.97 ± 1.19 | 26.38 |
70.00 | 15.64 ± 1.10 | 12.04 ± 1.67 | 23.02 |
80.00 | 16.45 ± 2.02 | 12.10 ± 1.84 | 26.44 |
90.00 | 16.89 ± 1.95 | 13.91 ± 1.56 | 17.64 |
100.00 | 17.46 ± 1.89 | 14.65 ± 1.81 | 16.09 |
120.00 | 18.22 ± 1.76 | 16.18 ± 1.45 | 11.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.S.; Xu, L.R. Nonlinear Impact Force Reduction of Layered Polymers with the Damage-Trap Interface. Appl. Sci. 2022, 12, 7078. https://doi.org/10.3390/app12147078
Islam MS, Xu LR. Nonlinear Impact Force Reduction of Layered Polymers with the Damage-Trap Interface. Applied Sciences. 2022; 12(14):7078. https://doi.org/10.3390/app12147078
Chicago/Turabian StyleIslam, Md Shariful, and Luoyu Roy Xu. 2022. "Nonlinear Impact Force Reduction of Layered Polymers with the Damage-Trap Interface" Applied Sciences 12, no. 14: 7078. https://doi.org/10.3390/app12147078
APA StyleIslam, M. S., & Xu, L. R. (2022). Nonlinear Impact Force Reduction of Layered Polymers with the Damage-Trap Interface. Applied Sciences, 12(14), 7078. https://doi.org/10.3390/app12147078