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Abstract: This article proposes the use of reinforcement learning (RL) algorithms to control the
position of a simulated Kephera IV mobile robot in a virtual environment. The simulated environment
uses the OpenAI Gym library in conjunction with CoppeliaSim, a 3D simulation platform, to perform
the experiments and control the position of the robot. The RL agents used correspond to the deep
deterministic policy gradient (DDPG) and deep Q network (DQN), and their results are compared
with two control algorithms called Villela and IPC. The results obtained from the experiments in
environments with and without obstacles show that DDPG and DQN manage to learn and infer the
best actions in the environment, allowing us to effectively perform the position control of different
target points and obtain the best results based on different metrics and indices.
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1. Introduction

Mobile robots are widely used today and allow for the performance of tasks in en-
vironments dangerous for humans—for example, minefields, radioactive areas, deep-sea
exploration, etc.—and for access to complex places, such as extraterrestrial exploration
and nanorobotics in medicine [1]. The main problem lies in the need for these robots to be
able to move around the environment with some autonomy such that they do not require
human interaction—that is, they can be controlled automatically by their own intelligent
systems to allow them to achieve certain objectives [2].

By combining control and robotics, different strategies can be provided that allow for
the efficient control of mobile robots. The foregoing is represented by the use of control
algorithms, such as Villela [3] and IPC [4], which seek to manipulate the speeds of the
robot by controlling its linear and angular speed. To these algorithms, other systems can
be added to strengthen their tasks—for example, obstacle avoidance systems through
the use of sensor arrays arranged in the robot [5] and line trackers to improve position
control [6,7]. In the previous cases, models of the feedback system are used that allow for
the modification of a control law through inputs to calculate the next action and gradually
decrease the error associated with its measurements. Additionally, different approaches are
available, such as finite-time adaptive fault-tolerant control [8] and adaptive fuzzy control
algorithms [9], which have been used for nonlinear systems in mobile robotics, as in [10].

Reinforcement learning (RL) is an area of machine learning that has its origins in the
psychological and neuroscientific perspectives of animal behavior [11], where an agent
learns to behave in an environment by performing actions and seeing the results of these
actions in order to obtain the best expected result. Reinforcement learning has been
used to solve different tasks—for example, in games obtaining high performance, as in
Go [12], Starcraft [13] and Dota [14]. In the pursuit of making a general-purpose algorithm,
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DeepMind presented the MuZero [15] agent, which is capable of solving different games
such as Go, Chess, Shogi and Atari. RL has been implemented in robotic systems for the
precise manipulation of objects [16,17], and it has also been used to study how to transfer
the training learned in simulation to reality (Sim-to-Real) [18–20].

Currently, RL is a widely used approach for robot control, and, regarding position
control in mobile robots, it has been analyzed in [21,22], where they compare the results with
control algorithms. Obstacle evasion has also been studied using different techniques from
RL. For example, in [23], the Q-learning algorithm [24] is used, which bases its operation
on the use of matrices (Q tables); thus, according to the state in which one is within the
environment, observe which action has the best quality, that is, which one delivers the
best reward. In [25,26], the neural Q-learning algorithm [27] is used, an approach quite
similar to the previous one but which includes the use of neural networks as a nonlinear
approximation to obtain the Q-values. In [28–30], different approaches of path planning
with reinforcement learning are used, and in [31], a mixture of Q-learning and a neural
network planner is used to solve route path planning problems. In [32], a version of the
deep deterministic policy gradient (DDPG) [33] is implemented, which is used when the
environment has a continuous action space. The indicated methods attempt to improve
classical path-planning algorithms such as Dijkstra [34], BUG1 and BUG2 [35], and A* [36]
has also been used for the navigation task.

In this work, we propose the development of an environment to control the position
of the simulated mobile robot Khepera IV [37] by using two algorithms of the state of the
art of RL—the deep Q-network (DQN) [38] and the deep deterministic policy gradient
(DDPG)—and two control algorithms: Villela and IPC. The environment will be made using
the CoppeliaSim simulation program (V-REP) [39] and the OpenAI Gym [40] library. The
objective of the work is to adopt two known RL methods (DDPG and DQN) for the control
of a simulated mobile robot and to compare the effectiveness of these methods with two
known control methods. Several experiments to control the position of the mobile robot
in environments with and without obstacles—and with one or more target points—will
be performed. The results of the experiments will finally be compared by using various
graphs and performance indices.

2. Reinforcement Learning

Reinforcement learning corresponds to a computational approach that allows for
learning through interactions with the environment, which follows the structure given in
the diagram in Figure 1. In machine learning, the environment is formulated as a Markov
decision process, MDP [41], and allows us to obtain an idealized mathematical model that
seeks to solve the learning problem through the interactions of an agent with an observable
environment to achieve a goal.
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agent. The environment also delivers a reward: a special numerical value that the agent
seeks to maximize over time through decision making.

According to [42], the agent and the environment interact for each discrete time step t.
As seen in Figure 1, the agent receives an observation or state of the environment, with which
the agent selects an action within the set of actions allowed by the environment. Given this
action, the agent receives a reward and a new state. At each time step, the agent performs a
“mapping” of the states of the probability of selecting one of the possible actions. This task is
called agent policy and is represented as πt.

One of the problems to be addressed in RL is the “exploration/exploitation trade-off”,
which occurs in learning systems that have to repeatedly decide on the basis of uncertain
information. In essence, the dilemma lies in choosing whether to repeat decisions that have
worked well so far (exploiting the information already obtained) or to make novel decisions
in the hope of obtaining even greater rewards (exploring new possibilities) [43].

This article proposes the use of two deep reinforcement learning agents called deep Q-
networks (DQNs) and deep deterministic policy gradients (DDPGs), which will be studied and
analyzed as an alternative to mobile robotics problems, where control methods are usually used.

2.1. Deep Q-Network (DQN)

The DQN algorithm is an application of the Q-learning algorithm that uses neural
networks. Through interaction with the environment, it is sought that the agent can
maximize the future accumulated reward, which is achieved by occupying neural networks
to optimally approximate the action-value function (Equation (1)), which is responsible
for maximizing the sum of the reward r discounted by γ; thus, as the time step t increases,
future rewards are increasingly less likely to occur.

Q∗(s, a) = max
π

E
[
rt + γrt+1 + γ2rt+2 + . . .

∣∣∣st = s, at = a, π
]

(1)

where a is an action, s is the current state and γ ∈ [0, 1] and π are policies that map the
agent’s behavior (π = P(a|s)). A pseudoexplanatory code of the algorithms is presented
in Algorithm 1. To address the effect of the “Exploration/Exploitation trade-off”, Epsilon
Greedy can be used; Epsilon refers to the probability of choosing between exploring or
exploiting, where most of the time the probability of exploring is low.

Algorithm 1 Deep Q-Learning algorithm with Experience Replay [44]

Initialize replay memory D to capacity N
Initialize action− value function Q with random weights θ

Initialize target action− value function Q̂ with weights θ− = θ

for episode = 1, M do
Initialize sequence s1 = {x1} and preprocessed sequenced φ1 = φ(s1)
for t = 1, T do
With select a random action at
Otherwise, select at = argmaxaQ(φ(st), a; θ)
Execute action at in simulation and observe reward rt and image xt+1
Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)
Store transition (φt, at, rt,φt+1) in D
Sample random minibatch of transitions

(
φj, aj, rj,φj+1

)
from D

Set yj =

{
rj i f episode terminates at step j + 1

rj + γmax
a′

Q̂
(
φj, aj; θ

)
otherwise

Perform a gradient descent step on
(

yj −Q
(
φj, aj; θ

))2

with respect to the network parameters θ

Every steps, reset Q̂ = Q
end for
end for
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2.2. Deep Deterministic Policy Gradient (DDPG)

The deep deterministic policy gradient (DDPG) agent is an off-policy algorithm and
can be considered as a DQN for continuous action spaces. This agent uses two neural
networks, one of which is called Actor and is in charge of learning the action policy (µ),
and the other is called Critic and works as an approximation of the Q-function. The policy
is deterministic given that the action is to be performed directly, without the need to make
an argmax of the Q-values, as is carried out in DQN. A pseudoexplanatory code of the
DDPG algorithm is presented in Algorithm 2.

Algorithm 2 Deep Deterministic Policy Gradient algorithm [33]

Randomly initialize critic network Q
(
s, a
∣∣θQ) and actor µ(s|θµ) with weights

θQ and θµ, respectively
Initialize target network Q′ and µ′ with weight θQ′ ← θQ, θµ′ ← θµ

Initialize replay buffer R
for episode = 1, M do
Initialize a random process N for action exploration
Receive initial observation state s1
for t = 1, T do
Select action at = µ

(
st|θ µ)+ Nt according to the current policy and exploration noise

Execute action at and observe reward and observe new state
Store transition (st, at, rt, st+1) in R
Sample a random minibatch of N transitions (si, ai, ri, si+1) from R
Set yi = ri + γQ′

(
si+1, µ′

(
si+1|θ µ′

)
|θ Q′

)
Update critic by minimizing the loss : L = 1

N ∑
i

(
yi −Q

(
si, ai

∣∣θQ))2

Update the actor policy using the sampled policy gradient:

∇θµ J ≈ 1
N ∑

i
∇aQ

(
s, a
∣∣θQ)∣∣∣∣s=si ,a=µ(si)∇θµµ(s|θµ)

∣∣∣∣
si

Update the target networks:
θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′

end for
end for

To balance the exploitation and exploration problem, we can introduce a random
process that adds noise to the action determined by the actor and allows for exploration.
For this effect, the Ornstein–Uhlenbeck process [45] is used, which is adapted for the
problems of physical control with inertia.

3. Position Control

The problem of controlling the position of a mobile robot consists of maneuvering the
vehicle from its current position, C(xc, yc), to a target point, TP =

(
xp, yp

)
, manipulating the

angular velocity, ω, and the linear velocity, v, of the mobile robot. To achieve this maneuver,
we define the distance d (Equation (2)), the angle α (Equation (3)) between the robot and the
TP and the angular error Oc (Equation (4)) from the scheme in Figure 2. A graphical scheme
of the control of the position of a differential robot is presented in this figure.

d =

√(
yp − yc

)2
+
(
xp − xc

)2 (2)

α = tan−1
(

yp − yc

xp − xc

)
(3)

Oc = tan−1
(

sin(α− θ)

cos(α− θ)

)
(4)
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The angular error Oc lies between the π and −π values and is equivalent to the
subtraction between α and θ within that interval. To get the robot to reach the TP, we seek
to reduce the distance and the angular error between α and θ.

By using control algorithms, such as the Villela algorithm and the IPC algorithm, a
set of rules to be followed for the control law can be defined. Thus, Figure 3 shows the
block diagram of the implementation of the control law for the control algorithms; in this
work, the Villela and IPC algorithms are used, which have their control laws defined by
Equations (5) and (6) for Villela and by Equations (7) and (8) for IPC.
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v =

{
vmax i f |d| > kr

d
(

vmax
kr

)
i f |d| ≤ kr

(5)

ω = ωmax sin(α− θ) (6)

where vmax andωmax are the maximum values of the lineal and angular velocities, respec-
tively, and kr is a radio of a docking area of the TP.

v = min{kv p(Oc) d, vmax} (7)

ω = kp sin(Oc) + ki

∫ t

0
Oc dt (8)

where kv, and ki are the tuning parameters of the IPC algorithm obtained empirically and
p(Oc) = 1− |Oc|/π, for Oc ∈ [−π, π] [4].
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Once the problem of position control has been solved, we can add obstacles to the
trajectory of the robot and avoid them. This can be archived by adding a new block of
obstacle avoidance, such as the Braitenberg algorithm [46]. This method builds a weighted
matrix that converts the measurements of obstacle sensors (eight infrared sensors for
the Khepera) into new lienal and angular velocities, just as how its shown in Figure 4.
For more details, see [46].
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4. Simulated Environment and Mobile Robot

To perform the experiments, a simulated environment was created to perform the
position control of the mobile robot Khepera IV. The basic elements used for the construction
of environments compatible with the Gym library, the simulation program and the robot
are presented below, which are part of the simulated platform and are used to make the
comparison between the control and deep reinforcement learning.

4.1. Robot Khepera IV

The robot used in this work is a simulation of the mobile robot Khepera IV of the
K-Team company (Figure 5); it has two main wheels that share a common axis and are
controlled by independent motors, and it can have one or more rotating wheels that serve
as support and prevent it from tipping over. It has a compact and modular design, making
it perfect for research and education in various fields, such as autonomous navigation,
artificial intelligence, multiagent systems and automatic control. Despite its small size,
this robot has a wide range of sensors. It has an array of eight infrared sensors to detect
obstacles, four more sensors to avoid falls or follow lines, five ultrasonic sensors to detect
long-range objects, an accelerometer, a gyroscope and a color camera. It has two DC motors
of very high quality, efficiency and precision. It also has a powerful Linux kernel with WiFi
and Bluetooth for communication between devices and a large battery with an autonomy
of approximately 7 h.
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4.2. CoppeliaSim

To create the environment, CoppeliaSim is used—a robotics 3D simulation platform
that is widely used in contexts such as robotics education, human–robot interaction and
reinforcement learning. Its architecture is based on a distributed control of objects or
robots, which can be controlled individually through a script, a plugin, an ROS node or a
remote API client. This design makes CoppeliaSim very versatile and ideal for multirobot
applications. Controllers can be written in C/C++, Python, Java, Lua, MATLAB or Octave.
CoppeliaSim comes with sensors, actuators and robot models included by default, with
which you can virtually recreate an environment and interact with it in real time. For the
simulation, we used the 3D model of the Khepera robot corresponding to the one provided
by the KH4VREP library [47]. The model assumes that the mobile robot has a rigid structure
and wheels that do not deform or slide.

To control the position of the Khepera robot, the remote API in Python will be used,
which makes communication between CoppeliaSim and external applications possible. This
allows for the programming of the reinforcement learning algorithms, which allows for a
bidirectional transmission of information [48]. To perform the position control, CoppeliaSim
communicates with Keras-RL2 [49], which allows for the implementation of state-of-the-
art deep reinforcement learning algorithms in Python. Please check the implementation
of the environments and the connection with Keras RL in the following repository: https:
//github.com/Fco-Quiroga/gym-kheperaposition (accessed on 12 July 2022).

4.3. Environments

To generate an interface that converts the CoppeliaSim simulation to an environment
compatible with RL agents and control algorithms, the OpenAI Gym library is used.
Gym provides a simple definition of RL environments, formalized as partially observable
Markov decision processes (POMDPs) [40]. Figure 6 is a diagram of the communication
that happens in the environments and shows the flow of information between the algorithm
or agent, the gym environment, the API and, finally, the CoppeliaSim program.
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The objective is to drive the robot from its current position to a predefined target point (the
red sphere). Each episode ends when the TP is reached, when the maximum number of
steps allowed per episode is exceeded, when the robot leaves the maximum allowed area
(4 square meters) or when the robot collides with an obstacle, if any. At the beginning of a
new episode, the position of the TP and that of the robot are randomly changed, as is the
orientation of the robot.

The reward function is observed in Equation (9), As the robot draws close to the TP,
the reward increases until it becomes zero. In addition, when using the environment to
train an agent, collisions are allowed, but they are penalized, adding a negative factor
(rcollision = −10) to the reward; in this way, the robot learns to not collide with obstacles.
Additionally, when the robot reaches the TP, a positive reward is delivered (rarrival = 100),
rewarding the robot for reaching its goal. The values of rcollision and rarrival were determined
empirically to minimize the training time of the RL agents and maximize their performance
in the experiments.

reward =


rarrival i f the robot reaches the TP

rcollision −
(
d2) i f the robot collides

−
(
d2) in another case

(9)
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Two environments were created with different action spaces, depending on the agent
to be used. In the case of DQN, there is a discrete action space of size 3: turn left, go straight
or turn right, which correspond to the minimum set of instructions that allow for free
movement in the environment. For DDPG, the set of actions is continuous so that the linear
and angular velocities of the robot can be manipulated, these two being the action space.
Continuous actions are normalized to obtain better agent behavior, but in the environment,
they are mapped to the allowed values of linear and angular velocity.

The observation space for these environments is presented in Table 1. Table 1 shows
that the values used correspond to the distance to the TP (d), which varies between 0 and
2.82 m (minimum and maximum distance between the robot and the TP); the angular
error (Oc) between the orientation of the robot and the TP, with values between −π
and π; the linear and angular velocity for the previous step; and an arrangement with
the measurements of the eight sensors that the Kephera IV robot has. The sensors take
measurements from 0 to 20 cm, but the data are normalized between 0 and 1. All these
values can be obtained from the simulation or calculated by requesting information from
the API, such as the position of the robot and the TP, which helps to calculate the distance
to the TP and the angular error. In a real case, the absolute position and orientation of
the robot can be obtained by using an Indoor Positioning System (IPS) [50]. Note that the
action space depends only on the agent or algorithm to be used; instead, the observation
space depends on the environment and its physical constraints.
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Table 1. Observation space.

Number Observation Minimum Maximum

0 Distance to TP (d) 0 2.82
1 Angular error (Oc) −π π
2 Linear velocity in previous step 0 0.05
3 Angular velocity in previous step −π/4 π/4

4 to 12 Distance measurements from eight infrared sensors 0 1

5. Experiments and Results

Next, the experiments to control the position of a mobile robot and obstacle avoidance
are explained. In addition, how the training of each of the agents was performed and an
analysis of the obtained results are presented.

5.1. Experiments
5.1.1. Khepera Robot Position Control

The first experiment corresponds to the problem of controlling the position of the
mobile robot. The two deep reinforcement learning agents, DQN and DDPG, were used
and compared with the two control algorithms: Villela and IPC. Figure 7a corresponds to
an image of the simulated environment for the position control used in this experiment.

5.1.2. Position Control with Obstacles

The second experiment corresponds to the problem of controlling the position of the
mobile robot with disturbances (obstacles). The Kephera robot must reach its target point,
crossing obstacles without collision. For this experiment, the RL algorithms (DDPG and
DQN) and control algorithms, (IPC and Villela with the Braitenberg obstacle avoidance
algorithm [51]) are used. Figure 7b shows the environment of the obstacle position control
used in this experiment.

5.2. Training of RL Agents

The RL agents were trained by a million steps, which took approximately 8.6 h in
the case of DQN and 11.4 h for DDPG. Figure 8 shows the reward per episode of the
DDPG and DQN agents, the gradual increase in the reward and how the agent learns
from the environment. Notably, DQN’s learning is “slower” than that of DDPG because
DDPG achieves greater rewards from the 100,000 steps, unlike DQN, improving from
550,000 steps, but this effect should be mostly due to the technique used to address the
exploitation–exploration trade-off effect, which, in the case of DQN, is Epsilon Greedy.
Both algorithms can learn properly in their training.
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5.3. Results

After training, the agents are tested by assigning them positions with new targets,
maintaining the same initial conditions for the two algorithms. For these effects, the best
weights obtained from the DQN and DDPG training were chosen, with which a better
action policy can be obtained in the environment. The first environment consists of using
only one target point, while the second environment uses multiple target points to analyze
the position control with and without obstacles.

5.3.1. One Target Point

For the case without obstacles, the initial position of the robot is represented by a black
circle at (−0.4, 0), while the target point is represented by a red circle at position (0.8, 0).
The orientation of the robot is indicated by a black arrow with a value of −178◦ (the values
extracted from the experiments are presented in [52]).

Figure 9 shows a graph of the trajectory followed by the robot for each algorithm.
Please observe how the RL, Villela and IPC agents manage to fulfill the task, reaching
the desired target. Figure 10 shows the robot trajectory for the RL agents and the control
algorithms for the environment with obstacles. A blue circle symbolizes the presence of an
obstacle in the path of the robot to the target point. All the algorithms can reach the target,
dodging the obstacle by using their sensors. In addition, the control algorithms result in a
wider curve than the RL agents, maintaining a greater distance from the obstacle.
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To analyze how the angular velocity of the robot varies, Figures 11 and 12 are presented
for the environment without and with obstacles, respectively. Figure 11 shows that the
control algorithms have similar behaviors, taking approximately 10 s to rotate and orient
themselves to the target point. The RL agents are oriented to the target faster, but they
continue to maneuver the robot throughout the experiment. These algorithms reach the
target point first. For the case with obstacles, Figure 12 shows how the algorithms in the
first instance maneuver to orient themselves toward the target and then again to avoid the
obstacle. The control algorithms show a slower behavior than the RL agents.

To perform an analysis of the arrival times at the target point of each algorithm,
Tables 2 and 3 are presented, where the best values obtained are marked in bold. In Table 2,
the arrival times of the different algorithms at the target point can be observed. Notice
how DDPG has the best time (27.4 s), followed by DQN, IPC and, finally, Villela (33.95 s).
For the experiment with obstacles, in Table 3, the DDPG reaches the target point very
quickly (30.2 s), avoiding the obstacle in a better way than DQN, Villela and IPC Braitenberg.
In both experiments, the RL agents perform this task the fastest. All of the algorithms tested
in this work are capable of maneuvering the robot by manipulating its linear and angular
velocities. The difference in the time it takes for the robot to reach the TP is mainly due to
the trajectory but also to the linear velocity that the Khepera robot has. RL agents learn to
set the linear velocity to the maximum allowed value almost all of the time, in contrast to
control methods such as IPC, which reduce the linear velocity when the angular velocity is
non-zero, i.e., when the robot is turning.
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Table 2. Time to reach the target point for the experiment without an obstacle.

Algorithm Times (s)

Villela 33.95
IPC 30.40

DQN 28.75
DDPG 27.40

Table 3. Time to reach the target point for the experiment with an obstacle.

Algorithm Times (s)

Villela–Braitenberg 41.50
IPC–Braitenberg 47.55

DQN 36.45
DDPG 30.20

Finally, a comparative table of the control and RL algorithms is made using the
performance indices in both environments (with and without obstacles). The indices to be
evaluated correspond to the integral of the absolute magnitude (IAE), the integral of the
square of the error (ISE), the integral of time multiplied by the absolute error (ITAE) and the
integral of time multiplied by the squared error (ITSE). From Table 4, it is observed that the
RL agents obtain better results for all the indices, with DDPG having the best performance.
Table 5 shows that the DDPG agent again obtains better results for all the indices, followed
by DQN, IPC–Braitenberg and Villela–Braitenberg. To summarize the improvement of
the RL agents, they have a faster response at the beginning of the experiment, decreasing
their distance to the target in the first steps of time, adjusting much better than the control
algorithm and reducing the error. DQN and DDPG obtain the best results.

Table 4. Performance indices for the environment without obstacles.

Index Villela IPC DQN DDPG

ISE 30.94 22.62 19.53 18.04
IAE 28.92 23.42 21.08 19.66
ITSE 301.92 195.92 158.02 131.99
ITAE 351.39 254.32 213.51 187.5

Table 5. Performance indices for the environment with obstacles.

Index Villela–Braitenberg IPC–Braitenberg DQN DDPG

ISE 33.64 27.96 22.79 19.07
IAE 33.45 32.20 26.05 21.32
ITSE 386.75 343.27 233.22 154.48
ITAE 498.41 533.28 346.31 226.06

5.3.2. Multiple Target Points

Next, it will be analyzed what happens with the control of the robot’s position in front
of multiple target points—specifically, three target points for environments without and
with obstacles. Target points 1, 2 and 3 are located 0.95 m from the robot, with an angular
difference from the robot’s orientation of 178◦, 135◦ and 45◦, respectively.

The objective of the multiple targets experiment is to evaluate the robustness of the
proposed algorithms with respect to changes produced by the robot orientation versus the
target point position. This experiment allows us to evaluate the control algorithms, since
they exhibit low performance when the orientations of the target point and the robot have
a high angular error—for example, when Oc ≈ 180◦.
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Figure 13 shows a graph with the trajectories made by the robot for the environment
without obstacles. All of the algorithms manage to reach their target points; however, DDPG
and DQN have trajectories that react earlier, reaching the target before Villela and IPC,
which adjust more to reach the target point. Figure 14 shows the trajectory of the robot in an
environment with obstacles. The DDPG agent has the shortest trajectory, allowing it to reach
the target point faster, followed by DQN. In contrast, the agents controlled by the Villela
and IPC methods move away from obstacles, maintaining a distance of approximately
20 cm, which corresponds to the maximum distance of its sensor’s measurement.

To make a better comparison of the times used in the experiments, Table 6 shows the
time taken to reach the targets for the experiment without obstacles. Note how DDPG and
DQN obtain the lowest times on average compared to the control algorithms; however, in
some cases, the control algorithms obtain a performance comparable to that of the RL agents.
Table 7 shows the time taken to reach the target points in the case of the obstacle experiment.
The excellent performance of DDPG is observed, reaching its TPs in 22.68 s, on average.
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Table 6. Arrival time for the three target points for the experiment without obstacles.

Algorithm TP 1 s TP 2 s TP 3 s Mean Time (s)

Villela 30.45 20.80 18.25 23.17
IPC 25.85 20.70 18.25 21.60

DQN 22.50 20.65 18.35 20.50
DDPG 22.60 20.55 18.30 20.48

Table 7. Arrival time for the three target points for the experiment with obstacles.

Algorithm TP 1 s TP 2 s TP 3 s Mean Time (s)

Villela–Braitenberg 36.45 28.85 27.95 31.08
IPC–Braitenberg 27.90 50.65 50.05 42.87

DQN 23.00 25.65 24.75 24.47
DDPG 22.50 23.40 22.15 22.68

To finish the analysis, Tables 8 and 9 were added, showing the average performance
indices for each algorithm in the experiments without and with obstacles, respectively.
From Table 8, it is observed how the RL algorithms once again present very favorable
results, indicating that the control of the position of a mobile robot can be performed
efficiently with RL algorithms. Table 9 shows that DDPG obtains very low metrics, it being
the algorithm to choose to perform this type of task.

Table 8. Average performance indices (three target points) in the experiment without obstacles.

Index Villela IPC DQN DDPG

ISE 14.52 14.44 11.43 11.30
IAE 11.68 90.5 8.08 7.95
ITSE 132.47 99.72 83.67 82.27
ITAE 89.16 58.29 45.86 44.61

Table 9. Average performance indices (three target points) in the experiment with obstacles.

Index Villela–Braitenberg IPC–Braitenberg DQN DDPG

ISE 20.72 19.82 13.82 12.60
IAE 17.42 13.01 9.61 8.77
ITSE 251.91 276.84 123.23 102.00
ITAE 182.20 131.94 67.21 54.95

6. Discussion

The results obtained from the experiments show how the DDPG and DQN algorithms
exhibit adequate decision making in reaching the targets in environments with and without
obstacles. This finding is reflected through an analysis of metrics and variables such
as trajectory, angular velocity and time. When comparing the results with the control
algorithms, it is shown that DDPG and DQN obtain shorter arrival times at the destination
point, and it is possible to dominate environments with and without obstacles.

Reinforcement learning agents can obtain a route point by point in real time and only
need information about the environment, the robot position and the position of the target
point. The position of the obstacle can be random since, in the training process, the position
of the robot was changed at every episode. In this way, the agent did not learn the position
of the obstacles but learned only to rely on the sensor’s data, so when a new obstacle
appears, the robot will be able to avoid it.

7. Conclusions

This article presents the use of reinforcement learning algorithms and two control
algorithms to control the position of the mobile robot Kephera IV in a simulated envi-
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ronment. The work shows the effectiveness of RL algorithms in comparison with control
algorithms for the task of position control in environments with and without obstacles.

The use of RL agents has a substantial advantage in controlling the position of robots
because they learn from experience and can improve decision making compared to control
algorithms. The results obtained show how the DDPG and DQN agents manage to obtain
the shortest times taken to reach the target point in environments with and without obsta-
cles; however, the time required to learn all the robot interactions is high compared to that
of the control algorithms.

In future work, we will consider two important tasks: first, to make a comparison with
other types of algorithms, such as adaptive neural networks [53], PPO (proximal policy
optimization) [54], Muesli [55], neuroevolution [56] and adaptive NN dynamic surface
controllers [57,58]; second, to perform the transfer of learning from the simulation to the
real world [18–20], which will allow us to validate our theoretical and simulated results
in real environments, analyze whether reinforced learning agents can operate with more
complex tasks, corroborate decision making in the face of different obstacles (more complex
shapes and layouts) and analyze the reaction times used to start the motors of the robot,
among other things.
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