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Abstract: In this paper, a Power Factor Correction (PFC) application, based on the novel power
stage topology named Independent Double-Boost Interleaved Converter (IDBIC), has been analyzed.
The novelty of the proposed PFC rectifier is based on the sum of capabilities, such as supplying
three independent output voltage levels with interleaved operation at the input and high voltage
gain. The hardware used within this application consists of an AC input L-C-L filter, a single-phase
bridge rectifier, the IDBIC power stage, output capacitors group and a group of variable high-power
rheostats (resistors) group as DC load. The main purpose of the carried study was to highlight
the advantages and disadvantages of the novel power stage topology in the context of a green and
modern AC to DC conversion solution. Nowadays, a high level of the efficiency and power factor
have become a mandatory feature for the AC to DC conversion solutions to satisfy the international
electrical standards. Thus, considering the modern electrical standards and recommendations, the
current study tries to better depict the working steps and principles of the modern power stage
topology within an AC to DC conversion application. The behavior of the considered power stage
described in different detailed working steps (such as the Discontinuous Conduction Mode and
Continuous Conduction Mode) may help understand how the energy conversions process of AC
to DC becomes more efficient. The high output voltage gain of the considered power stage is the
key feature in the Power Factor Correction process. With such a feature, the AC to DC conversion
solution/application can also operate at lower input AC voltages (such as 90 [V] and 110 [V]). The
proposed solution can be successfully used in the electric vehicle (automotive field) and high-power
electrical traction (e.g., trains, high power electrical machines and drives). The same solution can also
be used successfully in fast battery charging applications and chemical electrolysis processes.

Keywords: Power Factor Correction (PFC); Independent Double-Boost Interleaved Converter (IDBIC);
high voltage gain; low input voltage; electrical traction; electric vehicle; fast battery charging

1. Introduction

Modern applications such as smart houses, hybrid microgrids, renewable energy,
electric vehicles and energy storage systems demand an increase in quality for their in-
frastructure, as different policies regarding energy efficiency have been internationally
introduced [1–3]. Concerning energy conversion systems and external power supplies,
the European Union (EU) Commission has also established efficiency criteria that aims to
improve power quality [4]. Since AC/DC converters have become a component of almost
all electronic devices used daily, the AC distribution grid may be subjected to poor perfor-
mance due to the behavior and low power quality of such equipment. Often single-phase
rectifiers are required to operate over a wide supply voltage range, with low input current
ripple and near-unity power factor in order to meet the present-day standards and market
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needs [5,6]. Usually, if bidirectional power flow is not required, a common solution is the
boost PFC rectifier. In order to improve the performance of this type of converter, reducing
the input current ripple and minimizing the volume of passive devices in the interleaved
topology are considered to be among the best practice. Studies and analyses have been
made in developing and improving the performance and efficiency of such converter
topology. In [7], a method for analyzing the input and output currents in the converter is
proposed and derives the specific time functions. A coupled inductor approach is presented
in [8–11] to improve the inductor current ripple and power density of the interleaved PFC
bridge rectifier. In [12], a hybrid topology comprised of a conventional boost PFC rectifier
and a semi-bridgeless PFC interleaved rectifier is presented, claiming better efficiency and
performance than that of the traditional interleaved boost PFC. Bridgeless configurations,
as mentioned in [13], can present an interleaved topology that offers better performance
and reduces the size of the magnetic devices needed. Improved efficiency through the soft
switching operation of all switching devices is analyzed in [14]. Here, a snubber circuit is
integrated into an interleaved PFC converter. Lighting applications [15,16], connected to
the mains grid or industrial, can be provided with a voltage driver which in term has PFC
features realized with an interleaved boost rectifier topology. Other applications such as
electric vehicle chargers [17–19] are also being studied.

The novelty of the proposed PFC rectifier is the capability of supplying three output
voltage levels with interleaved operation at the input. The so-called “three-level PWM
rectifiers” [20,21] have been studied for their high efficiency power conversion (>98%) [22],
large voltage gain and low stress on the semiconductor devices [23], but they lack the
interleaved functionality. More, the concept of bipolar DC microgrids used in distributed
generation systems [24,25] presents an increasing interest because of its benefits in energy
saving, power quality and power electronics control [26]. Hence, the proposed PFC rectifier
can easily interconnect a single-phase AC grid with a multilevel DC microgrid, also assuring
the interleaved behavior, and it can be successfully used as a solution in the development
of distributed generation.

2. Converter Topology Analysis
2.1. General Representation of the Switching States

The proposed PFC application consists of a novel DC–DC power-stage topology
named Independent Double Boost Interleaved Converter (IDBIC). The current topology
is based on a patent application in reference [27] that describes its operation in DC–DC
systems through paper [28]. The basic PFC converter topology is presented in Figure 1,
while the characteristic waveforms during operation are introduced in Figure 2, where the
continuous conduction mode (CCM) is exemplified for a duty cycle D larger than 0.5 by
means of switching states S1, S4 and S5, respectively, for a duty cycle smaller than 0.5 with
the help of switching states S1, S2, S3 and S5.

The main operating stages of the converter for positive alternation are shown in
Figure 3, where the diodes Dr1 and Dr4 are in conduction and five independent switching
states (S1–S5) are highlighted. For the negative alternation, the operating stages are the
same on the DC stage; the only difference is that the input current flows through the Dr2
and Dr3 diodes.
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Figure 1. The electronic schematic of the proposed converter. Vin—main input voltage; Vrec—recti-
fied voltage; Vout—DC output voltage; Irec—rectified current; Iin—input current; and IL1 and IL2–L1 
and L2 inductor currents. 
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Figure 2. Presumptive functioning waveform and switching stages correlations. VGS-T1, VGS-T2, VGS-T3 
and VGS-T4—Gate-Source voltage for T1–T4 transistors; VDS-T1, VDS-T2, VDS-T3 and VDS-T4—Drain-Source 
voltage for T1–T4 transistors; IL1 and IL2–L1 and L2 inductor currents; D—Duty Cycle; CCM—contin-
uous conduction mode; S1–S5—switching stages from Figure 2. 

Figure 1. The electronic schematic of the proposed converter. Vin—main input voltage; Vrec—rectified
voltage; Vout—DC output voltage; Irec—rectified current; Iin—input current; and IL1 and IL2–L1 and
L2 inductor currents.
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Figure 2. Presumptive functioning waveform and switching stages correlations. VGS-T1,
VGS-T2, VGS-T3 and VGS-T4—Gate-Source voltage for T1–T4 transistors; VDS-T1, VDS-T2, VDS-T3 and
VDS-T4—Drain-Source voltage for T1–T4 transistors; IL1 and IL2–L1 and L2 inductor currents; D—Duty
Cycle; CCM—continuous conduction mode; S1–S5—switching stages from Figure 2.
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2.2. State-Space Modeling of the Converter

Observing the switching states presented in Figure 3, the state-space analysis of the
proposed converter has been made [29]. Thus, the expressions that describe the behavior of
the converter at CCM were first derived for the operation at a duty cycle smaller than 0.5.



Appl. Sci. 2022, 12, 7209 5 of 16

This operation is characterized by the switching stated S1–S2–S5–S3, as can be observed in
Figure 2b. Therefore, for the switching state S1, will result:

diL1

dt
=

1
L1

vrec

diL2

dt
=

1
L2

vrec −
1
L2

vC2

dvC1

dt
=

−1
RC1

vC2 −
1

RC1
vC1

dvC2

dt
=

1
C2

iL2 −
1

RC2
vC1 −

1
RC2

vC2

(1)

Considering the next switching state, S2, when operating at the specified conditions,
the equations will be: 

diL1

dt
=

−1
L1

vC1 +
1
L1

vrec

diL2

dt
=

−1
L2

vC2

dvC1

dt
=

−1
C1

iL1 +
1

RC1
vC1 +

1
RC1

vC2

dvC2

dt
=

1
C2

iL2 −
1

RC2
vC1 −

1
RC2

vC2

(2)

For the switching states S5 and S3, the resulted expressions can be written as:

diL1

dt
=

−1
L1

vC1 +
1
L1

v0

diL2

dt
=

1
L2

v0

dvC1

dt
=

1
C1

iL1 −
1

RC1
vC1 −

1
RC1

vC2

dvC2

dt
=

−1
RC2

vC1 −
1

RC2
vC2

(3)

Respectively, 

diL1

dt
=

−1
L1

vC1

diL2

dt
=

−1
L2

vC2 +
1
L2

v0

dvC1

dt
=

1
C1

iL1 −
1

RC1
vC1 −

1
RC1

vC2

dvC2

dt
=

−1
C2

iL2 +
1

RC2
vC1 +

1
RC2

vC2

(4)

The general state space representation of the modeled system will be:{ .
x = Aix + Biu
y = Cix

(5)

where
.
x =

[ .
iL1

.
iL2

.
vC1

.
vC2

]
; x = [iL1 iL2 vC1 vC2]; u = vrec.
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Thus, from relation (1), the state-space system for the S1 switching configuration is
characterized by the matrices:

AS1 =



0 0 0 0

0 0 0
−1
L2

0 0
−1
RC1

−1
RC1

0
1

C2

−1
RC2

−1
RC2


; BS1 =



1
L1

1
L2

0

0


(6)

The representation of relation (2) under state matrices will yield:

AS2 =



0 0
−1
L1

0

0 0 0
−1
L2

−1
C1

0
1

RC1

1
RC1

0
1

C2

−1
RC2

−1
RC2


; BS2 =



1
L1

0

0

0


(7)

For the expressions in (3) and (4), corelated with the switching states S5 and S3, the
state-space matrices will be:

AS5 =



0 0
−1
L1

0

0 0 0 0

1
C1

0
−1
RC1

−1
RC1

0 0
−1
RC2

−1
RC2


; BS5 =



1
L1

1
L2

0

0


(8)

and

AS3 =



0 0
−1
L1

0

0 0 0
−1
L2

1
C1

0
−1
RC1

−1
RC1

0
−1
C2

1
RC2

1
RC2


; BS3 =



0

1
L2

0

0


(9)

while

CS1 = CS2 = CS5 = CS3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (10)

Considering the representation from Figure 2b and the duty cycle as d, the state
matrices averaged over one switching period will result the following:

Aav = AS1 d + AS2(0.5 − d) + AS5 d + AS3(0.5 − d)
Bav = BS1 d + BS2(0.5 − d) + BS5 d + BS3(0.5 − d)
Cav = CS1 d + CS2(0.5 − d) + CS5 d + CS3(0.5 − d)

(11)
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To obtain the expressions depicting the continuous, linear behavior of the converter,
the small signal analysis is implied to the linearized model. Small variations of the input
variables, ṽrec and duty cycle d̃, around the quiescent operating point of the converter will
result in small variations of the output variables ĩL1, ĩL2, ṽC1 and ṽC2.{ .

x̃ = Aav x̃ + Bav ṽrec + Eav d̃
ỹ = Cav x̃

(12)

where Eav = [(AS1 + AS5)− (AS2 + AS3)]X + [(BS1 + BS5)− (BS2 + BS3)]Vrec.
After specific algebraic operation, the Laplace domain solutions of the state vectors

will determine the output to input transfer functions. Thus, the solution for the output to
input voltage transfer function will be:

Ỹ
Ṽrec

= Cav (sI − Aav)
−1·Bav (13)

and for the output to duty cycle variation:

Ỹ
D̃

= Cav (sI − Aav)
−1·Eav (14)

The steady-state values of the state variables can be determined as:

Y = −Cav (Aav)
−1·Bav Vrec (15)

Concerning the operation at a duty cycle greater than 0.5, the switching states from
Figure 2a are partially similar with the ones described by (1) and (3). The only particular
switching state for this mode of operation is S4, which is characterized by the equations:

diL1

dt
=

1
L1

v0

diL2

dt
=

1
L2

v0

dvC1

dt
=

−1
RC1

vC2 −
1

RC1
vC1

dvC2

dt
=

−1
RC2

vC1 −
1

RC2
vC2

(16)

from which will result the following state matrices:

AS4 =



0 0 0 0
0 0 0 0

0 0
−1
RC1

−1
RC1

0 0
−1
RC2

−1
RC2


; BS4 =



1
L1

1
L2

0
0


(17)

Having obtained the state-space model of the converter, a suitable control strategy can
be developed.

3. Simulation Results

The simulation was performed based on a MATLAB Simulink model of the described
PFC solution within this paper. The whole structure is depicted in Figure 4.
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Figure 4. The generic output voltage control loop and PWM generator. Vin—AC input voltage;
Vrec—rectified voltage; Vout—DC output voltage; V*out—reference DC output voltage; Irec—rectified
current; I*rec—reference rectified current; Iin—input current; PWM T1, PWM T2, PWM T3 and PWM
T4 — Gate-Source voltage for T1–T4 transistors.

The “PFC” sub-system represented in Figure 5 contains the control law of the power
stage [30]. The reference rectified voltage was obtained from the input voltage waveform by
reversing the negative half-cycle. Based on two proportional–integrator (PI) regulators, the
control law was implemented, and the output “Duty_Cycle” drive signal was computed
as result. The “Voltage_PI” regulator maintains the output DC voltage constant, and the
“Current_PI” regulator limits and shapes the input current.
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Figure 5. MATLAB Simulink inside “PFC” sub-system. K—Current calibration factor.

Figure 6 represents the sub-system of the “PWM_generator” which, depending on the
signals received by the “PFC” subsystem, realizes the control logic of the four transistors.
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Following Figure 7, the input current (Iin) and voltage (Vin) can be analyzed in con-
junction with the output voltage (Vout). Additionally, the inductor L1 and L2 currents (iL1
and iL2) synchronized at low frequency are represented, followed by the rectified input
voltage (Vrec), all these signals being introduced in Figure 4.
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Figure 8 shows the L1 and L2 coils’ current evolution at both low- and high-frequency
representations. One can see that during a low-frequency cycle, the boost converters are



Appl. Sci. 2022, 12, 7209 10 of 16

working from DCM (Figure 8a) and BCM (boundary conduction mode, Figure 8b) to CCM.
In CCM, two current waveforms can be noticed at duty cycles bigger then 0.5 (Figure 8c) or
smaller then 0.5 (Figure 8d).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 17 
 

working from DCM (Figure 8a) and BCM (boundary conduction mode, Figure 8b) to 
CCM. In CCM, two current waveforms can be noticed at duty cycles bigger then 0.5 (Fig-
ure 8c) or smaller then 0.5 (Figure 8d). 

  

 
(a) (b) 

  

  
(c) (d) 

Figure 8. L1 and L2 inductor currents’ (IL1, IL2)) representation at low and high frequency representa-
tions; (a) DCM; (b) BCM; (c) CCM for D > 0.5; (d) CCM for D < 0.5. 
Figure 8. L1 and L2 inductor currents’ (IL1, IL2)) representation at low and high frequency representa-
tions; (a) DCM; (b) BCM; (c) CCM for D > 0.5; (d) CCM for D < 0.5.



Appl. Sci. 2022, 12, 7209 11 of 16

4. Experimental Implementation

The experimental implementation was based on the schematic represented in Figure 4.
In this figure, both the control loop and the gate signal generator block structure was
depicted. The resultant PWM gate signals are used to drive the four IDBIC power stage
transistors (MOSFET IPW60R099CPFKSA1, 600 [V], 31 [A]). This scheme is suitable for
a symmetrical control of the two integrated boost converters in which a single reference
voltage is used for both, so that each will work independently but identically. In view of
this, the voltage on the output capacitors C1 and C2 will be regulated at the same value,
and there is no need for a further balancing mechanism. For the considered power factor
application, in which the total output voltage Vout must be regulated, the symmetrical
approach of the control loop is sufficient, which means that only a PI controller and a
voltage reference Vref are required for the output voltage control loop.

If a three-voltage-levels approach is desired at the output, the asymmetric control of
the converter can be applied, in which two reference voltages must be entered and the
two integrated boost converters will operate independently and potentially with different
duty cycles.

The laboratory test settings are shown in Figure 9. Based on an application with AC
input voltages of 90 [V], 110 [V] and 130 [V] and a 350 [V] DC output voltage, the total
harmonic distortion (THD) and power factor (PF), performed with the Tektronix PA3000
power analyzer, are illustrated in Figures 10 and 11. The main waveforms taken with the
Tektronix MDO3024 oscilloscope are shown in Figure 12, while in Figure 13 one can notice
the efficiency measurements.

In Table 1, a comparison is made of the proposed solution with similar converter
topologies. Limited three-level boost converter topologies are available for power factor
correction applications; thus, the comparison is made also with similar topologies used in
the DC–DC converter application.

Table 1. Comparison of the proposed topology with similar approaches.

Ref.
Converter

Application
Voltage Stress On Maximum

Efficiency
Components

S*/D*/L*/C*/C.I*/T*Switches VS/VO Diodes VD/VO

[27] DC–DC (M + 1)/2 M (M + 1)/2 M 91.7 2/2/2/4/2/-

[28] DC–DC 0.5 0.5 95.9 4/2/2/3/-/-

[29] DC–DC 0.5 0.5 95 2/3/2/3/-/-

[30] DC–DC (M + 1)/4 M
(M − 1)/2 M (M + 1)2 M 95.85 3/4/2/3/-/-

[31] DC–DC (1 + 5 M)/6 M (M + 1)/M 95.9 6/9/6/1/-/-

[32] DC–DC 0.5 - 94.3 4/0/1/4/-/-

[33] DC–DC 0.33 0.33 93.9 1/5/1/5/0/-

[34] DC–DC (M + 1)/4 M (M + 1)/2 M 96 2/3/-/3/1/-

[35] Boost PFC 0.5 0.5 95.8 2/6/1/2/-/-

[36] Boost PFC 0.5 0.5 94.8 2/4/1/2/-/-

[37] Boost PFC Vdc/2; Vdc; VO/2 - 95.1 6/6/2/5/-/1

[38] Boost PFC Vdc/2; VO/2 - 94.2 6/8/2/6/-/1

Proposed Boost PFC 1/M + 0.5
1/M 0.5 95.8 4/6/2/2/-/-

S*: switch, D*: diode, L*: inductor, C*: capacitor, C.I*: coupled inductor, T*: transformer, VO: output voltage,
VS: switch voltage, VD: diode voltage, Vin: input voltage, M: voltage gain (Vo/Vin), Vdc: primary stage DC voltage.
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5. Conclusions

The paper proposes a new type of converter for active Power Factor Correction applica-
tions, combining some key functions in one solution. The three voltage levels at the output
together with the high gain capability could be favorable assets for future integration in
bipolar symmetric/asymmetric DC microgrids. Likewise, the input interleaved opera-
tion and low voltage stress on the power semiconductors can be beneficial for efficiency
improvements and high-power/high-voltage applications.

The proposed converter has been analyzed through theoretical, simulated and practical
approaches to highlight the overall impact of the solution. From the simulation results,
the operation of the new converter meets the analytical description presented, where
the mathematical model of the converter was developed to help tuning the control loop.
According to the experimental part, near the converter rated power, the obtained results in
terms of THD and power factor are improving. Another phenomenon that can be observed
is that the converter has better performance, in terms of power quality, at higher voltage
gains. In terms of efficiency, on the other hand, it has been observed that at low supply
voltage, the efficiency is lower. Therefore, the performance is decreasing with the increasing
of the converter’s gain. In this matter, for future optimization iterations, this tradeoff must
be considered, but with the remark that these are common facts in boost PFC applications.

Regarding the converter overall performance attained, the results are promising,
considering that this is the first prototype developed, which is not optimized in terms
of switching and passive elements criteria. In view of this, future developments are
mandatory for power and control optimizations, and more close analyses are needed on
the implementation of the converter topology in market applications.
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