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Abstract: In recent years, many studies have been carried out to detect clouds on remote sensing
images. Due to the complex terrain, the variety of clouds, the density, and content of clouds are
various, and the current model has difficulty accurately detecting the cloud in the image. In our
strategy, a multi-view data training set based on super pixel is constructed. View A uses multi-level
network to extract the boundary, texture, and deep abstract feature of super pixels. View B is the
statistical feature of the three channels of the image. Privilege information View P contains the
cloud content of super pixels and the tag status of adjacent super pixels. Finally, we propose a
cloud detection method for remote sensing image classification based on multi-view support vector
machine (SVM). The proposed method is tested on images of different terrain and cloud distribution
in GF-1_WHU and Cloud-38 remote sensing datasets. Visual performance and quantitative analysis
show that the method has excellent cloud detection performance.

Keywords: cloud detection; feature extraction network; fusion information; multi-view learning

1. Introduction

Remote sensing images are widely used in land resource utilization, meteorological
monitoring, and geology [1,2]; however, the monitoring data of sensors are often affected
by clouds. Many remote sensing studies have been plagued by cloud occlusion, resulting
in inaccurate observation results [3]. Therefore, it is necessary to accurately detect the cloud
in remote sensing images.

Most cloud detection methods are highly dependent on available spectral bands,
and use specific physical constraints to separate different categories according to spectral
bands [4]. In particular, when relying on handmade features or experiences and searching
for specific thresholds, these methods will have some problems in the segmentation of
categories, and there may be some situations that cannot be segmented from the spec-
tral threshold, such as deserts and super-high-brightness pixel areas [5]. The key of the
threshold-based method is how to choose the best threshold to distinguish foreground
cloud and background surface. Early fixed threshold methods failed to meet the increasing
accuracy requirements. Therefore, more and more dynamic adaptive threshold methods are
proposed for the difference between cloud features and surface features. Jedlovec et al. [6]
used two images with different channels to incorporate the spatiotemporal change thresh-
old into the cloud detection process. Zhang et al. [7] proposed an automatic cloud detection
algorithm for remote sensing image observation statistics. They improved the global
threshold method and gradually improved the detection results.

With the development of machine learning, the method based on Markov random
field [8] and the widely used SVM [9–12] are becoming more and more popular in cloud
detection. There are also some deep networks used as tools for cloud detection tasks. For ex-
ample, Mohajerani et al. [13] proposed a hybrid full convolution network (FCN) and gradi-
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ent recognition algorithm and applied FCN to the field of cloud detection. Manzo et al. [14]
proposed a framework that combines convolutional neural networks, adapted to the cloud
recognition task through a transfer learning approach, using voting rules. The cloud-net al-
gorithm has better detection effect by redesigning the convolution block based on FCN [15],
and usually uses the cloud network as the baseline of the deep learning cloud detection
network. The multilevel feature fused segmentation network (MFFSNet) algorithm uses a
pyramid pooling module to aggregate feature information at different scales to improve the
utilization of local and global features of clouds in images [16]. In the detection of cloud
area in cloud-containing remote sensing images, judging from the pixel level or dividing the
image into rectangular blocks, super-pixel-level judgment is more effective than pixel-level
judgment [17,18]. Liu et al. [19] proposed a cloud judgment method combined with several
statistical characteristics of super pixels and conducted experiments. The above studies
show that judging cloud or non-cloud with super pixel as the basic unit can obtain excellent
cloud and non-cloud segmentation results of remote sensing images.

Many methods determine labels according to the number of cloud-containing pixels
or the proportion of cloud-containing pixels in the super pixel, and cannot make good use
of the label data of adjacent pixels and their own cloud proportion data. The information
between super pixels cannot be well combined. The current methods are difficult to define
the super pixel as a certain category, or the super pixel cannot fully contain the cloud,
and the corresponding cloud-containing state information cannot be reasonably used. At
the same time, most remote sensing images now use multiple sensors to collect data, but
there will be only three RGB visible light channels of data. For this image, a segmentation
method with high accuracy is also needed.

In order to solve the above problems, a multi-layer network structure is used to extract
the texture, boundary, and high-level abstract information of super pixels, and the statistical
features of the basic three-channel color data are utilized. The data of different extracted
views are essentially relevant because they provide complementary information for the
same data in semantics. Many methods show that the combination of multiple views
learning is superior to the simple method of using a connected view or learning from each
view alone [20,21]. The structural relationship between pixels and the cloud state of the
pixel itself belong to a privilege information. In order to unify the use of each view, a
multi-view classification method based on information fusion is proposed. In the training
stage, three feature views are used. The model introducing the privileged information
mechanism can accurately determine the super pixel category by using the extracted two
feature views (except the privilege information features). Overall, our main contributions
are as follows:

1. A feature extraction network at the super pixel level is constructed to extract the fast
features of super pixels in cloud-containing remote sensing images at multi-scales.
The cloud content in super pixels and the cloud-containing marker state information
of adjacent super pixels are effectively utilized.

2. A multi-view support vector machine cloud detection classifier based on fusion
information is constructed and the solving algorithm based on quadratic convex
optimization is given.

3. We provide a multi-view classification dataset based on remote sensing cloud super
pixels. The new model is used to classify the super pixels and synthesize the cloud
mask bipartite graph. Experiments are carried out in images with different cloud
contents to verify the effectiveness of the new method.

The rest of this article is organized as follows. Section 2 introduces the research status
of multi-view learning and an advanced multi-view classification method. In Section 3,
we introduce the framework of the proposed method in detail, including the multi-view
feature extraction method and fusion information multi-view classification model. Section 4
shows the experimental results on two remote sensing datasets and discusses the results of
the experiment. Finally, Section 5 summarizes the research work.
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2. Related Work
2.1. Multi-View Learning

Multi-view learning algorithms can be divided into co-training, multi-kernel learning,
and subspace learning [21,22]. The co-training algorithm iteratively maximizes mutual
conventions on two distinct views to ensure consistency on the same validation data,
such as multi-view collaborative clustering algorithm and research [23] using multiple
collaborative training for document classification [24]. The multi-kernel learning (MKL)
algorithm uses the kernels corresponding to different views and combines them linearly
or nonlinearly to improve performance. For example, the support kernel machine (SKM)
model introduced in [25], and the sequential minimum optimization (SMO) algorithm is
developed to solve it. Multi-kernel framework with nonparallel support vector machine
(MKNPSVM) works by integrating non-parallel support vector machines into the MKL
framework to learn the optimal kernel combination [26]. The subspace learning algorithm
assumes that the input view comes from a potential subspace and aims to realize the
potential subspace shared by multiple views, such as SVM-2K combined with two support
vector machines and kernel canonical correlation analysis (KCCA) [27], SVM classification
method with coupling privileged kernel method [28], etc.

2.2. Coupling Privileged Kernel Method for Multi-View Learning

Tang et al. [28] proposed a simple and effective multi-view learning coupling privi-
leged kernel method (MCPK). MCPK integrates consensus and complementarity principles
into a unified framework. In particular, consistency is captured by coupling terms between
two views. Because the multi-view data collected from different domains can complement
each other, a different feature view can receive explicit privilege information from its view.
MCPK can be built as Equation (1).

min
wA ,wB ,ξA ,ξB

1
2
(‖wA‖2 + γ‖wB‖2) + CA

l

∑
i=1

ξA
i + CB

l

∑
i=1

ξB
i + C

l

∑
i=1

ξA
i ξB

i ,

s.t. yi(wA · φA(xA
i )) ≥ 1− ξA

i ,

yi(wB · φB(xB
i )) ≥ 1− ξB

i ,

ξA
i ≥ yi(wB · φB(xB

i )),

ξB
i ≥ yi(wA · φA(xA

i )),

ξA
i ≥ 0, ξB

i ≥ 0, i = 1, . . . , l. (1)

where wA and wB are the weight vectors of view A and view B, respectively, and the two
views are weighed by the non-negative trade-off parameter γ. As slack variables, ξA

i and
ξA

i are constrained by the correction functions determined by the two views. The coupling
term C ∑l

i=1 ξ A
i ξB

i makes the product of error variables of the two views as small as possible.
When classifiers constructed from different views are more consistent, errors from both
views are small, resulting in smaller couplings. Therefore, its consistency can be fully
ensured. C is a non-negative coupling parameter that controls the influence of the coupling
term. CA and CB are non-negative penalty parameters.

3. Proposed Method
3.1. Multi-View Feature Extraction

View A: Texture, boundary, and other features are extracted from the super pixel
circumscribed rectangular region through a multi-layer joint convolutional neural network
(CNN). Cloud area has similar shape to super pixel boundary, which is quite different
from grassland area and water area boundary. In this paper, we use the inherent multi-
scale pyramid level of a deep convolution network to develop a top architecture with
horizontal connection, which is used to construct high-level feature maps at all scales.
Features can be easily extracted by multi-scale feature extraction structure in the super
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pixel circumscribed rectangle, and texture, boundary, gradient, and other information can
be obtained from multiple horizons. The feature extraction layer Conv3 in the deepest
part will extract more abstract features. View A feature extraction is realized by cloud
super pixel feature extraction network (CSPFE-Net); CSPFE-Net structure is shown in
Figure 1. In the network structure, the super pixel external rectangular region has the input
of 3× 16× 16 images. Conv refers to the convolution layer. Relu increases the nonlinear
ability. Pooling downsampling is used to further extract the image. LRN is normalized to
constrain the data within a certain range. Concat refers to stitching vectors. The features
extracted from each feature extraction layer are weighted splicing, and are jointly output
as the feature vector through the full connection layer. The feature vector with the super
pixel output structure of 1× 64 under the fine scale is sufficient to complete the feature
representation.

Figure 1. CSPFE-NET structure.

View B: The color statistical characteristics extracted by the super pixel itself, excluding
the black edge region of the circumscribed rectangle. Specifically, we calculate the mean,
variance, maximum, minimum, and median of the data describing the color in each channel.
SPi represents three-channel data for the i-th super pixel, and RGB color statistics can be
calculated by Equation (3). The feature vector format of view b is 1× 15.

getCF(x) = [mean(x), std(x), max(x), min(x), median(x)] (2)

RGB f eature = [getCF(SPi(R)), getCF(SPi(G)), getCF(SPi(B))] (3)

where getCF(x) extracts and splices the statistical features of the data of one channel x;
SPi(R), SPi(G), and SPi(B) represent three visible light channels: red, green, and blue.

View P: View P (privileged information view) is the feature of privileged information.
The correction space guided by privilege information can correct the classification plane of
multi-view, which can make the performance of multi-view classifier better. The feature of
cloud-containing super pixel privileged information includes two parts. The first part is
the specific cloud content in the super pixel. The second part is the label of the fast adjacent
block of the super pixel. Generally, two super pixel blocks with the nearest center distance
are selected, and this part is the feature vector of 1× 3.
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3.2. Fusion Information Multi-View SVM Classification Method

Fusion information multi-view SVM classification method (FIMV-SVM) is based on
MCPK, using feature extraction network and three-channel statistical features as view A
and view B data, using privileged information view P to correct the separation hyperplane
of view A and view B. The optimized structure constructed is as per Equation (4).

min
wA ,wB ,wP ,ξA ,ξB ,ξP

1
2
(‖wA‖2 + γ‖wB‖2 + γP‖wP‖2)

+ CA

l

∑
i=1

ξA
i + CB

l

∑
i=1

ξB
i + CP

l

∑
i=1

ξP
i + C

l

∑
i=1

ξ A
i ξB

i ,

s.t. yi(wA · φA(xA
i )) ≥ 1− ξA

i ,

yi(wB · φB(xB
i )) ≥ 1− ξB

i ,

yi(wP · φP(xP
i )) ≥ 1− ξP

i ,

ξA
i ≥ yi(wB · φB(xB

i )),

ξB
i ≥ yi(wA · φA(xA

i )),

ξA
i ≥ yi(wP · φP(xP

i )),

ξB
i ≥ yi(wP · φP(xP

i )),

ξA
i ≥ 0, ξB

i ≥ 0, ξP
i ≥ 0, i = 1, . . . , l. (4)

In optimization problem Equation (4), ‖wA‖2 and ‖wA‖2 are regularization terms
of view A and view B, ‖wP‖2 is a regularization term for privileged information view
P, respectively. CA, CB, and CP are non-negative penalty parameters, ξA

i = [ξA
1 , . . . , ξ A

l ],
ξB

i = [ξB
1 , . . . , ξB

l ], and ξP
i = [ξP

1 , . . . , ξP
l ] are non-negative slack parameters. γ is the balance

parameter to balance the weight of view A and view B. γP is used to weigh the influence
of privileged information view P; φA(xA

i ), φB(xB
i ), and φP(xP

i ) represent the mapping of
views data. In the constraint, yi(wP · φP(xP

i )) ≥ 1− ξP
i denote that the slack variables

are constrained by the view P, ξA
i ≥ yi(wP · φP(xP

i )), and ξB
i ≥ yi(wP · φP(xP

i )) correcting
constraints on the classification hyperplane through the correction hyperplane formed
by privileged information. For the solution of the above optimization problem, it can
be transformed into a Lagrangian dual problem and solved by solving quadratic convex
optimization. The Lagrangian function is Equation (5).

L =
1
2
(‖wA‖2 + γ‖wB‖2 + γP‖wP‖2) + CA

l

∑
i=1

ξ A
i + CB

l

∑
i=1

ξB
i + CP

l

∑
i=1

ξP
i + C

l

∑
i=1

ξ A
i ξB

i

+
l

∑
i=1

αA
i (1− ξA

i − yi(wA · φA
i (xA

i ))) +
l

∑
i=1

αB
i (1− ξB

i − yi(wB · φB
i (xB

i )))

+
l

∑
i=1

αP
i (1− ξP

i − yi(wP · φP
i (xP

i )))

+
l

∑
i=1

λA
i (yi(wB · φB(xB

i ))− ξA
i ) +

l

∑
i=1

λB
i (yi(wA · φA(xA

i ))− ξB
i )

+
l

∑
i=1

µA
i (yi(wA · φA(xA

i ))− ξP
i ) +

l

∑
i=1

µB
i (yi(wB · φB(xB

i ))− ξP
i )

−
l

∑
i=1

βA
i ξ A

i −
l

∑
i=1

βB
i ξB

i . (5)
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Therefore, the dual programming of Equation (4) can be obtained by finding the partial
derivatives of the optimization parameters.

min
1
2

l

∑
i=1

l

∑
j=1

((αA
i − λB

i )yiKA(xA
i , xA

j )(α
A
j − λB

j )yj

+
1
γ
(αB

i − λA
i )yiKB(xB

i , xB
j )(α

B
j − λA

j )yj

+
1

γP
(αP

i yiKP(xP
i , xP

j )α
P
j yj))−

l

∑
i=1

(αA
i + αB

i + αP
i )

+
1
C

l

∑
i=1

(αA
i + λA

i + µA
i + βA

i − CA)(α
B
i + λB

i + µB
i + βB

i − CB),

s.t. αA
i , αB

i , λA
i , λB

i , µA
i , µB

i , βA
i , βB

i ≥ 0. (6)

where KA(xA
i , xA

j ), KB(xB
i , xB

j ), KP(xP
i , xP

j ) represents the kernel mapping mode of view A,
view B, and view P feature data, respectively. The optimization problem Equation (6) is
a quadratic convex programming problem, which can be solved by the quadratic convex
programming method. Solving the optimal parameters αA∗

i , αB∗
i , βA∗

i , βB∗
i , λA∗

i , λB∗
i , µA∗

i ,
µB∗

i , we use the Karush–Kuhn–Tucker(KKT) [29] condition to obtain the optimal result w∗A
and w∗B. The calculation results are shown in Equations (7) and (8).

w∗A =
l

∑
i=1

(αA∗
i yi − λB∗

i yi)φA(xA
i ), (7)

w∗B =
l

∑
i=1

(αB∗
i yi − λA∗

i yi)φB(xB
i ). (8)

After obtaining the optimal w∗A and w∗B, we use the following formula to predict
the labels of the new samples (xA, xB) from view A and view B. The final predictor of
multi-views can be constructed as the average prediction factor of each view and is shown
in (9).

f = sign(
1
2

fA(xA) +
1
2

fB(xB)) = sign(
1
2

w∗A
>φA(xA) +

1
2

w∗B
>φB(xB)). (9)

where fA represents the decision function of view A and fB represents the decision function
of view B. The FIMV-SVM solution process is clearly represented in Algorithm 1.

3.3. Cloud Detection Model Training and Application Process

Combined with the above contents, the cloud detection model method can be summa-
rized. The specific process is shown in Figure 2. Notably, privileged information does not
appear in the application phase.

In the model training phase, the following steps are taken: (1) The super pixels come
from simple linear iterative cluster (SLIC) method [30], which is used for super pixel
division in the original image dataset to construct the dataset with super pixel blocks as the
classification objects; (2) three different feature extraction methods are used to extract the
feature of super pixels one by one, and the feature vectors of view A, view B, and view P
are composed; (3) FIMV-SVM classifier is trained by using the extracted numerical feature
dataset and labels.
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Algorithm 1 QP Algorithm for FIMV-SVM

Require: S =
{

xA
i , xB

i , xP
i , yi

}l
y=1 =

{(
xA

i ; 1
)
,
(
xB

i ; 1
)
, (xP

i , 1)
}l

i=1, yi ∈ {+ 1,−1}
Ensure: Decision functions: f = sign( 1

2 w∗A
>φA(xA) + 1

2 w∗B
>φB(xB))

1: Grid method generates parameter sets: paraSet = {CA, CB, CP, C, γ, γP}n
i=1.

2: for each i ∈ [1, n] do
3: Set parameters CA, CB, CP, C, γ, γP = paraSet[i, :].
4: Set kernels function of view A, view B and view P: KA(xA

i , xA
j ), KB(xB

i , xB
j ), KP(xP

i , xP
j ).

5: Create and solve quadratic programming problem and Solving quadratic program-
ming and retaining optimal parameters αA∗

i ,αB∗
i ,βA∗

i ,βB∗
i ,λA∗

i , λB∗
i , µA∗

i , µB∗
i .

6: Get the optimal weight w∗A and w∗B by substituting formula:

w∗A =
l

∑
i=1

(αA∗
i yi − λB∗

i yi)φA(xA
i ), w∗B =

l

∑
i=1

(αB∗
i yi − λA∗

i yi)φB(xB
i ).

7: Decision function is solved by parameters wA and wB.
8: The accuracy of statistical validation set was calculated as ACC[i], WA[i] = wA,

WB[i] = wB.
9: end for

10: The final w∗A, w∗B:

w∗A = WA[ f ind(acc == max(ACC))], w∗B = WB[ f ind(acc == max(ACC))].

Figure 2. FIMV-SVM cloud detection model training and application process framework.
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In the model application phase, the following steps are taken: (1) The image to be
processed is divided by SLIC super pixel segmentation method, and then the super pixel
block is resized; (2) the features of view A and view B are extracted from the super pixel set
one by one to form their feature vectors; (3) super pixel classification object view A, view B,
two view feature vectors, are input through the FIMV-SVM decision function to obtain the
corresponding classification results; (4) the final segmentation cloud mask result is formed
by combining the super pixel classification results.

4. Experiment

Our experiment was carried out on a personal computer with i7-6500 CPU and 16 GB
RAM. The environment used in the experiment is Python 3.7 combined with pyTorch
framework (version 1.11.0), and the cvxopt tool [31] on MATLAB 2016b is used to solve the
convex optimization problem.

For the experiment in GF-1_WHU remote sensing images [32] and datasets of Cloud-
38 [33], the detailed description is shown in Table 1. The original high-pixel image is
divided into sub-images of 400× 400× 3, and only their visible light channels are used.

Table 1. Public dataset description.

Name Number of
Imgages Resource Acquisition Remarks

GF-1_WHU 108
http://sendimage.whu.edu.
cn/en/mfc-validation-data/

(accessed on 15 July 2022)

GF-1_WHU includes 108 GF-1
wide field of view (WFV)

level-2A scenes and its
reference cloud and cloud

shadow masks.

Cloud-38 38

https://www.kaggle.com/
datasets/sorour/38cloud-

cloud-segmentation-in-
satellite-images/download
(accessed on 15 July 2022)

There are four spectral
channels, namely, red (band 4),
green (band 3), blue (band 2),
and near-infrared (band 5).

In the process of setting the level of segmentation parameters of super pixel segmenta-
tion, considering that the super pixel object needs to have certain information inclusion
ability, in the image of 400× 400× 3, the classification levels are 1000, 1600, 2000, 2400,
and 3000, which can be divided into about 160, 100, 80, 67, and 54 pixels in the super pixel
block. In order to explore the optimal parameters of the super pixel partition level, we
construct a parameter optimization dataset from the original datasets with the size of 1000.
A total of 80% of the parameter optimization dataset is used for training, and the rest is
used for testing. The average accuracy in the test process is used as the evaluation index.
The experimental results are shown in Figure 3. The optimal result is obtained when the
super pixel level is 2000, which shows that the number of super pixels in the super pixel is
about 80, which is suitable for the smallest unit of the cloud recognition task. Therefore,
for the super pixel segmentation method using convenient and efficient SLIC method, the
segmentation level is 2000, that is, an image contains about 2000 super pixels, and each
super pixel contains about 80 pixels. By resize operation, the number of rectangular pixels
is about 256 pixels (16× 16). The resize process uses the imresize function of MATLAB
software, and imresize uses bicubic interpolation by default. The super pixel blocks with
cloud content exceeding 45% are automatically labeled as cloud super pixels, and the others
are labeled as non-cloud super pixels.

http://sendimage.whu.edu.cn/en/mfc-validation-data/
http://sendimage.whu.edu.cn/en/mfc-validation-data/
https://www.kaggle.com/datasets/sorour/38cloud-cloud-segmentation-in-satellite-images/download
https://www.kaggle.com/datasets/sorour/38cloud-cloud-segmentation-in-satellite-images/download
https://www.kaggle.com/datasets/sorour/38cloud-cloud-segmentation-in-satellite-images/download
https://www.kaggle.com/datasets/sorour/38cloud-cloud-segmentation-in-satellite-images/download
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Figure 3. Performance of different super pixel classification levels on parameter optimization dataset.

4.1. Parameter Setting

In the experiment, we set the following parameters. The values of λ1, λ2, λ3, and λ4
in CSPFE-Net of view A are 0.3, 0.3, 0.2, and 0.2. FIMV-SVM parameters are determined
by grid search method and five-fold cross validation during training. The determination
of parameters is based on the highest accuracy. C, CA, CB, and CP select their values from
the set [10−3, 10−2, 10−1, 1, 10, 102, 103]. The value set of γ and γP is [0.2, 0.4, 0.6, 0.8, 1].

Gaussian radial basis function (RBF) kernel function K(xi, xj) = exp(− ‖xi−xj‖2

2σ ) is the
kernel function of SVM method, σ for the Gaussian RBF kernel function is selected from
[10−3, 10−2, 10−1, 1, 10, 102, 103]. For the association between parameter tuning and training,
see Algorithm 1 above.

4.2. Visual Performance

We compare the proposed method with several advanced cloud detection methods.
Cloud-Net is a cloud detection method based on deep learning and is widely used as the
baseline of cloud detection experiments. Hierarchical fusion convolutional neural network
(HFCNN) [19] is a network detection method with multi-level feature extraction, and
HFCNN is a super-pixel-level judgment method. Furthermore, we added the SVM method
and the MCPK method. In the SVM method, the extracted view A data and view B data
are used as one-dimensional features for training. In MCPK, the data of view A and view B
are used. Through these two experiments, we can explore the effectiveness of multi-view
learning and privileged information addition.

Typical cloud-containing image blocks are selected from GF-1_WHU and Cloud-38
to display the detection results. These images have a variety of cloud coverage and back-
grounds. The comparison results with the proposed method are shown in Figures 4 and 5.
In the figures, from left to right, are original image, ground truth, Cloud-net, HFCNN, SVM,
MCPK, and our method. From the visual results, on the whole, the proposed method is
closer to ground truth. There are several aspects worth noting. In Figure 4, the test object in
the third line is an image with highlighted features. Cloud-Net has a certain misjudgment,
and SVM method judges a large area into a cloud. Compared with HFCNN, the proposed
method is more rigorous for thin cloud detection. SVM methods often lack large-scale
cloud areas, and MCPK will misjudge to a certain extent in continuous clouds.
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Figure 4. The performance of several methods on GF-1_WHU dataset [32] with different cloud
distribution styles.

Figure 5. The performance of several methods on Cloud-38 dataset [33] with different cloud distribu-
tion styles.

4.3. Quantitative Analysis

In the description of the overall results, the Jaccard index is used to describe the
similarity between the predicted mask and the real mask, which is widely used in the
performance evaluation of cloud detection tasks. Precision is the ratio that predicts the
number of true values to the number of cloud tags in cloud data. Recall represents how
many clouds can be predicted in all marked cloud data. Specificity index is used to measure
the integrity of error prediction, and the overall accuracy index is used to represent the
accuracy of the cloud/non-cloud binary classification. F1-score considers the relationship



Appl. Sci. 2022, 12, 7295 11 of 14

between precision and recall. The calculation method of each evaluation index is shown as
Equations (10)–(15).

We divide each data image in GF-1_WHU and Cloud-38 into 400× 400× 3 specifi-
cations, and randomly select 80% of the dataset as the training set image, which is the
test set image. Specifically, in the GF-1_WHU dataset, there are 4246 images, including
3369 training images and 850 test images. In the cloud-38 dataset, there are 15,200 im-
ages, including 12,160 training images and 3040 test images. Each index data is shown as
(mean ± variance).

JaccardIndex =
TP

TP + FN + FP
(10)

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

Speci f ictity =
TN

TN + FP
(13)

OverallAccuracy =
TP + TN

TP + TN + FP + FN
(14)

F1− Score = 2× Precision× Recall
Precision + Recall

(15)

where TP represents the number of positive samples with positive judgment results, TN
represents the number of negative samples with negative judgment results, FP represents
the number of negative samples with positive judgment results, and FN represents the
number of positive samples with negative judgment results.

As shown in Tables 2 and 3, our method achieves high scores in both groups of test
results. The Cloud-net [15] method needs a certain number of training sets to annotate
data, and cannot use the location information of pixel blocks. HFCNN also uses super
pixels as the basic unit of cloud detection, but it uses only one feature extraction method,
and cannot use the privilege information marked by super pixels, so it performs poorly
in some confusing areas. The basis of its use is 32× 32× 3 and the segmentation effect
may be rougher. By comparing the SVM, MCPK, and our methods, it is proved that the
multi-view structure has better performance than the method of directly stitching combined
features. At the same time, thanks to the feature extraction of super pixel multi-view and
the utilization of privilege information, our method is more accurate for the recognition of
the cloud area. The experimental results show that no matter whether the type of substrate
in the background is more or less, our method can obtain excellent results, and the results
of each index prove the feasibility and effectiveness of the proposed remote cloud sensing
detection method.

Table 2. Performance on GF-1_WHU test dataset (mean ± variance (%)).

Method Jaccard Index Pression Recall Specificity Overall
Accuracy F1-Score

Cloud-Net [15] 81.93 ± 7.22 87.03 ± 5.48 93.49 ± 4.36 82.86 ± 4.34 88.46 ± 3.68 91.21 ± 4.46
HFCNN [19] 87.94 ± 5.12 91.87 ± 4.05 96.02 ± 5.13 91.28 ± 3.74 92.79 ± 5.04 94.36 ± 4.76

SVM 67.12 ± 3.77 71.36 ± 5.14 92.13 ± 5.49 72.56 ± 4.87 78.85 ± 3.24 79.62 ± 3.64
MCPK 85.32 ± 4.19 87.93 ± 5.33 96.07 ± 3.96 85.77 ± 5.08 90.76 ± 4.39 92.43 ± 3.13

Our method 91.69 ± 1.34 94.67 ± 2.01 97.38 ± 1.65 93.04 ± 2.12 96.31 ± 1.46 96.03 ± 1.72
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Table 3. Performance on Cloud-38 test dataset (mean ± variance (%)).

Method Jaccard Index Pression Recall Specificity Overall
Accuracy F1-Score

Cloud-Net [15] 87.13 ± 5.14 91.22 ± 4.37 95.94 ± 3.89 89.03 ± 4.34 93.14 ± 5.36 92.87 ± 4.68
HFCNN [19] 92.04 ± 3.69 92.95 ± 3.98 98.25 ± 5.01 92.24 ± 4.36 95.86 ± 5.23 94.21 ± 3.67

SVM 79.02 ± 4.37 82.83 ± 5.04 92.87 ± 4.76 82.78 ± 3.85 86.74 ± 4.19 87.86 ± 3.92
MCPK 87.45 ± 3.94 92.32 ± 4.18 96.83 ± 5.03 88.34 ± 4.76 92.89 ± 5.14 94.03 ± 3.87

Our method 94.87 ± 1.24 95.28 ± 1.39 98.74 ± 2.07 93.48 ± 2.11 97.28 ± 1.47 97.37 ± 1.86

5. Conclusions

This paper mainly studies the three-channel remote sensing cloud detection method
based on the fusion of multi-view information at the super pixel level. Firstly, the segmented
super pixels are used to establish a super pixel remote sensing image database. Secondly, a
variety of feature extraction mechanisms are used to extract three view features of super
pixel blocks containing privileged information views. Finally, an SVM classifier that can
utilize privileged information features is constructed, and a solution strategy based on
quadratic convex optimization is proposed. The classifier is used to judge the super pixel
category organization one by one to generate the cloud mask. Experiments are carried out
on GF1_WHU and Cloud-38 datasets with different cloud content data. From the results
of qualitative and quantitative analysis, we can see that the proposed method has good
performance, and it also has good detection effect in scenarios with large differences in
cloud distribution and cloud content. In the future, we consider improving the model by
using transfer learning technology to make the model quickly adapt to the cloud recognition
of multi-style remote sensing images. The algorithm proposed in this paper is based on
the improvement of SVM binary classifiers. It is necessary to study a new strategy for
multi-classification tasks such as accurate cloud classification, which is also a direction
worthy of study in the future.
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Abbreviations
The following is a description of the abbreviations used in this paper.

SVM Support vector machine
MKL Multi-kernel learning
SMO Sequential minimum optimization
MKNPSVM Multi-kernel framework with nonparallel support vector machine
KCCA Kernel canonical correlation analysis
FCN Full convolution networks
MCPK Multi-view learning coupling privileged kernel method
CNN Convolutional neural network
CSPFE-Net Cloud super pixel feature extraction network
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FIMV-SVM Fusion information multi-view SVM
KKT Karush–Kuhn–Tucke
SLIC Simple linear iterative cluster
HFCNN Hierarchical fusion convolutional neural network
RBF Radial basis function
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