The Advances of Immersive Virtual Reality Interventions for the Enhancement of Stress Management and Relaxation among Healthy Adults: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategies
2.2. Selection Criteria
2.3. Quality Appraisal
2.4. Data Extraction
3. Results
3.1. Search Outcome
3.2. Study Results
3.2.1. Place of Study and Year
3.2.2. Sample Size and Population Characteristics
3.2.3. Main Aim and Design
3.2.4. Stressor
3.2.5. VR Task
3.2.6. Subjective and Objective Tools for Psychophysiological Responses
3.2.7. User Experience
3.2.8. Main Findings and Limitations
3.3. Methodological Quality
4. Discussion
Strengths and Limitations of the Systematic Review
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cipresso, P.; Giglioli, I.A.C.; Raya, M.A.; Riva, G. The Past, Present, and Future of Virtual and Augmented Reality Research: A Network and Cluster Analysis of the Literature. Front. Psychol. 2018, 9, 2086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, S. The Year Virtual Reality Gets Real. 2019. Available online: https://www.forbes.com/sites/solrogers/2019/06/21/2019-the-year-virtual-reality-gets-real/ (accessed on 12 September 2021).
- Sutherland, I.E. The Ultimate Display. Multimedia: From Wagner to Virtual Reality; Norton: New York, NY, USA, 1965. [Google Scholar]
- Slater, M.; Wilbur, S. A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence Teleoper. Virtual Environ. 1997, 6, 603–616. [Google Scholar] [CrossRef]
- De Carlo, A.; Carluccio, F.; Rapisarda, S.; Mora, D.; Ometto, I. Three uses of Virtual Reality in work and organizational psychology interventions—A dialogue between Virtual Reality and organizational well-being: Relaxation techniques, personal resources, and anxiety/depression treatments. TPM Test. Psychom. Methodol. Appl. Psychol. 2020, 27, 129–143. [Google Scholar] [CrossRef]
- Slater, D. Social relationships and identity online and offline. In Handbook of New Media: Social Shaping and Consequences of ICTs; SAGE Publications: Thousand Oaks, CA, USA, 2002; pp. 533–546. [Google Scholar]
- Witmer, B.G.; Singer, M.J. Measuring Presence in Virtual Environments: A Presence Questionnaire. Presence Teleoper. Virtual Environ. 1998, 7, 225–240. [Google Scholar] [CrossRef]
- Johnson-Glenberg, M.C. The necessary nine: Design principles for embodied VR and active stem education. In Learning in a Digital World; Springer: Berlin/Heidelberg, Germany, 2019; pp. 83–112. [Google Scholar]
- Schuemie, M.J.; van der Straaten, P.; Krijn, M.; van der Mast, C.A. Research on presence in virtual reality: A survey. Cyber. Psychol. Behav. 2001, 4, 183–201. [Google Scholar] [CrossRef] [PubMed]
- Kleiber, C.; Harper, D.C. Effects of distraction on children’s pain and distress during medical procedures: A meta-analysis. Nurs. Res. 1999, 48, 44–49. [Google Scholar] [CrossRef]
- McCaffery, M.; Pasero, C. Pain Clinical Manual; Mosby: St. Louis, MO, USA, 1999. [Google Scholar]
- Wiederhold, M.D.; Gao, K.; Wiederhold, B.K. Clinical use of virtual reality distraction system to reduce anxiety and pain in dental procedures. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Sharar, S.R.; Miller, W.; Teeley, A.; Soltani, M.; Hoffman, H.G.; Jensen, M.P.; Patterson, D.R. Applications of virtual reality for pain management in burn-injured patients. Expert Rev. Neurother. 2008, 8, 1667–1674. [Google Scholar] [CrossRef]
- Vázquez, J.L.M.; Wiederhold, B.K.; Miller, I.; Lara, D.M.; Wiederhold, M.D. Virtual Reality Assisted Anesthesia (VRAA) during Upper Gastrointestinal Endoscopy: Report of 115 Cases—Analysis of Physiological Responses. Surg. Res. Updates 2017. [Google Scholar] [CrossRef]
- Vasquez, J.; Vaca, V.L.; Wiederhold, B.K.; Miller, I.; Wiederhold, M.D. Virtual reality pain distraction during gynecological Surgery—A report of 44 cases. Surg. Res. Updates 2017, 5, 12–16. [Google Scholar]
- Association, A.P. Stress in America: A National Mental Health Crisis. Available online: https://www.apa.org/news/press/releases/stress/2020/report-october (accessed on 1 March 2022).
- de Sousa, G.M.; Tavares, V.D.O.; de Meiroz Grilo, M.L.P.; Coelho, M.L.G.; de Lima-Araujo, G.L.; Schuch, F.B.; Galvao-Coelho, N.L. Mental Health in COVID-19 Pandemic: A Meta-Review of Prevalence Meta-Analyses. Front. Psychol. 2021, 12, 703838. [Google Scholar] [CrossRef] [PubMed]
- Taelman, J.; Vandeput, S.; Spaepen, A.; van Huffel, S. Influence of Mental Stress on Heart Rate and Heart Rate Variability. In Proceedings of the 4th European Conference of the International Federation for Medical and Biological Engineering, Antwerp, Belgium, 23–27 November 2008; pp. 1366–1369. [Google Scholar]
- Velana, M.; Rinkenauer, G. Developing a methodology to examine psychophysiological responses during stress exposure and relaxation: An experimental paradigm. In Proceedings of the ICHPS 2021: 23th International Conference on Health Psychology and Stress, Istanbul, Turkey, 8–9 November 2021. [Google Scholar]
- McEwen, B.; Sapolsky, R. Stress and Your Health. J. Clin. Endocrinol. Metab. 2006, 91, E2. [Google Scholar] [CrossRef] [Green Version]
- Monroe, S.M.; Harkness, K.L. Life stress, the “kindling” hypothesis, and the recurrence of depression: Considerations from a life stress perspective. Psychol. Rev. 2005, 112, 417–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, L.J.; Francey, S.M.; Edwards, J.; McMurray, N. Stress and psychosis: Towards the development of new models of investigation. Clin. Psychol. Rev. 2007, 27, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Knoll, N.; Rieckmann, N.; Schwarzer, R. Coping as a mediator between personality and stress outcomes: A longitudinal study with cataract surgery patients. Eur. J. Personal. 2020, 19, 229–247. [Google Scholar] [CrossRef]
- Van der Klink, J.J.; Blonk, R.W.; Schene, A.H.; van Dijk, F.J. The benefits of interventions for work-related stress. Am. J. Public Health 2001, 91, 270–276. [Google Scholar] [CrossRef] [Green Version]
- Richardson, K.M.; Rothstein, H.R. Effects of occupational stress management intervention programs: A meta-analysis. J. Occup. Health Psychol. 2008, 13, 69–93. [Google Scholar] [CrossRef]
- Delgado, C.; Upton, D.; Ranse, K.; Furness, T.; Foster, K. Nurses’ resilience and the emotional labour of nursing work: An integrative review of empirical literature. Int. J. Nurs. Stud. 2017, 70, 71–88. [Google Scholar] [CrossRef]
- Ghawadra, S.F.; Abdullah, K.L.; Choo, W.Y.; Phang, C.K. Mindfulness-based stress reduction for psychological distress among nurses: A systematic review. J. Clin. Nurs. 2019, 28, 3747–3758. [Google Scholar] [CrossRef]
- Cavanagh, K.; Strauss, C.; Cicconi, F.; Griffiths, N.; Wyper, A.; Jones, F. A randomised controlled trial of a brief online mindfulness-based intervention. Behav. Res. Ther. 2013, 51, 573–578. [Google Scholar] [CrossRef]
- Heber, E.; Ebert, D.D.; Lehr, D.; Cuijpers, P.; Berking, M.; Nobis, S.; Riper, H. The Benefit of Web- and Computer-Based Interventions for Stress: A Systematic Review and Meta-Analysis. J. Med. Internet Res. 2017, 19, e32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beukeboom, C.J.; Langeveld, D.; Tanja-Dijkstra, K. Stress-reducing effects of real and artificial nature in a hospital waiting room. J. Altern. Complement. Med. 2012, 18, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Annerstedt, M.; Jonsson, P.; Wallergard, M.; Johansson, G.; Karlson, B.; Grahn, P.; Hansen, A.M.; Wahrborg, P. Inducing physiological stress recovery with sounds of nature in a virtual reality forest—Results from a pilot study. Physiol. Behav. 2013, 118, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Riva, G.; Bernardelli, L.; Browning, M.; Castelnuovo, G.; Cavedoni, S.; Chirico, A.; Cipresso, P.; de Paula, D.M.B.; Di Lernia, D.; Fernandez-Alvarez, J.; et al. COVID Feel Good-An Easy Self-Help Virtual Reality Protocol to Overcome the Psychological Burden of Coronavirus. Front. Psychiatry 2020, 11, 563319. [Google Scholar] [CrossRef] [PubMed]
- Riva, G.; Bernardelli, L.; Castelnuovo, G.; Di Lernia, D.; Tuena, C.; Clementi, A.; Pedroli, E.; Malighetti, C.; Sforza, F.; Wiederhold, B.K.; et al. A Virtual Reality-Based Self-Help Intervention for Dealing with the Psychological Distress Associated with the COVID-19 Lockdown: An Effectiveness Study with a Two-Week Follow-Up. Int. J. Environ. Res. Public Health 2021, 18, 8188. [Google Scholar] [CrossRef]
- Beverly, E.; Hommema, L.; Coates, K.; Duncan, G.; Gable, B.; Gutman, T.; Love, M.; Love, C.; Pershing, M.; Stevens, N. A tranquil virtual reality experience to reduce subjective stress among COVID-19 frontline healthcare workers. PLoS ONE 2022, 17, e0262703. [Google Scholar] [CrossRef]
- Villani, D.; Riva, G. Does interactive media enhance the management of stress? Suggestions from a controlled study. Cyberpsychol. Behav. Soc. Netw. 2012, 15, 24–30. [Google Scholar] [CrossRef]
- Velana, M.; Rinkenauer, G. The Role of Modern Technology for the Prevention of Job-Related Stress and the Enhancement of Coping Strategies Among Nurses. In Proceedings of the 2nd International Conference on Future of Preventive Medicine and Public Health, Virtual, 24–25 March 2022. [Google Scholar]
- Wind, T.R.; Rijkeboer, M.; Andersson, G.; Riper, H. The COVID-19 pandemic: The ‘black swan’ for mental health care and a turning point for e-health. Internet Interv. 2020, 20, 100317. [Google Scholar] [CrossRef] [PubMed]
- Velana, M.; Rinkenauer, G. Individual-Level Interventions for Decreasing Job-Related Stress and Enhancing Coping Strategies Among Nurses: A Systematic Review. Front. Psychol. 2021, 12, 708696. [Google Scholar] [CrossRef] [PubMed]
- Kanehira, R.; Ito, Y.; Suzuki, M.; Hideo, F. Enhanced relaxation effect of music therapy with VR. In Proceedings of the 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Huangshan, China, 28–30 July 2018; pp. 1374–1378. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index for non—Randomized studies (MINORS): Development and validation of a new instrument. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Boutris, N.; Byrne, R.A.; Delgado, D.A.; Hewett, T.E.; McCulloch, P.C.; Lintner, D.M.; Harris, J.D. Is There an Association Between Noncontact Anterior Cruciate Ligament Injuries and Decreased Hip Internal Rotation or Radiographic Femoroacetabular Impingement? A Systematic Review. Arthroscopy 2018, 34, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Montana, J.I.; Matamala-Gomez, M.; Maisto, M.; Mavrodiev, P.A.; Cavalera, C.M.; Diana, B.; Mantovani, F.; Realdon, O. The benefits of emotion regulation interventions in virtual reality for the improvement of wellbeing in adults and older adults: A systematic review. J. Clin. Med. 2020, 9, 500. [Google Scholar]
- Edwards, D.; Burnard, P. A systematic review of stress and stress management interventions for mental health nurses. J. Adv. Nurs. 2003, 42, 169–200. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.; Taieb, O.; Xavier, S.; Baubet, T.; Reyre, A. The benefits of mindfulness-based interventions on burnout among health professionals: A systematic review. Explore 2020, 16, 35–43. [Google Scholar] [CrossRef]
- Anderson, A.P.; Mayer, M.D.; Fellows, A.M.; Cowan, D.R.; Hegel, M.T.; Buckey, J.C. Relaxation with Immersive Natural Scenes Presented Using Virtual Reality. Aerosp. Med. Hum. Perform 2017, 88, 520–526. [Google Scholar] [CrossRef]
- Blum, J.; Rockstroh, C.; Goritz, A.S. Heart Rate Variability Biofeedback Based on Slow-Paced Breathing With Immersive Virtual Reality Nature Scenery. Front. Psychol. 2019, 10, 2172. [Google Scholar] [CrossRef] [Green Version]
- Gao, T.; Zhang, T.; Zhu, L.; Gao, Y.; Qiu, L. Exploring Psychophysiological Restoration and Individual Preference in the Different Environments Based on Virtual Reality. Int. J. Environ. Res. Public Health 2019, 16, 3102. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Yang, M.; Jane, H.-A.; Li, S.; Bauer, N. Trees, grass, or concrete? The effects of different types of environments on stress reduction. Landsc. Urban Plan. 2020, 193, 103654. [Google Scholar] [CrossRef]
- Kim, H.; Kim, D.J.; Kim, S.; Chung, W.H.; Park, K.A.; Kim, J.D.K.; Kim, D.; Kim, M.J.; Kim, K.; Jeon, H.J. Effect of Virtual Reality on Stress Reduction and Change of Physiological Parameters Including Heart Rate Variability in People With High Stress: An Open Randomized Crossover Trial. Front. Psychiatry 2021, 12, 614539. [Google Scholar] [CrossRef]
- Mostajeran, F.; Krzikawski, J.; Steinicke, F.; Kuhn, S. Effects of exposure to immersive videos and photo slideshows of forest and urban environments. Sci. Rep. 2021, 11, 3994. [Google Scholar] [CrossRef] [PubMed]
- Pretsch, J.; Pretsch, E.; Saretzki, J.; Kraus, H.; Grossmann, G. Improving employee well-being by means of virtual reality–REALEX: An empirical case study. Eur. J. Econ. Bus. Stud. 2020, 6, 95–105. [Google Scholar]
- Tinga, A.M.; Nyklicek, I.; Jansen, M.P.; de Back, T.T.; Louwerse, M.M. Respiratory Biofeedback Does Not Facilitate Lowering Arousal in Meditation Through Virtual Reality. Appl. Psychophysiol. Biofeedback 2019, 44, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaquero-Blasco, M.A.; Perez-Valero, E.; Lopez-Gordo, M.A.; Morillas, C. Virtual Reality as a Portable Alternative to Chromotherapy Rooms for Stress Relief: A Preliminary Study. Sensors 2020, 20, 6211. [Google Scholar] [CrossRef]
- Vaquero-Blasco, M.A.; Perez-Valero, E.; Morillas, C.; Lopez-Gordo, M.A. Virtual Reality Customized 360-Degree Experiences for Stress Relief. Sensors 2021, 21, 2219. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shi, Y.; Zhang, B.; Chiang, Y. The Influence of Forest Resting Environments on Stress Using Virtual Reality. Int. J. Environ. Res. Public Health 2019, 16, 3263. [Google Scholar] [CrossRef] [Green Version]
- Yeom, S.; Kim, H.; Hong, T. Psychological and physiological effects of a green wall on occupants: A cross-over study in virtual reality. Build. Environ. 2021, 204, 108134. [Google Scholar] [CrossRef]
- Yin, J.; Arfaei, N.; MacNaughton, P.; Catalano, P.J.; Allen, J.G.; Spengler, J.D. Effects of biophilic interventions in office on stress reaction and cognitive function: A randomized crossover study in virtual reality. Indoor Air 2019, 29, 1028–1039. [Google Scholar] [CrossRef]
- Yin, J.; Yuan, J.; Arfaei, N.; Catalano, P.J.; Allen, J.G.; Spengler, J.D. Effects of biophilic indoor environment on stress and anxiety recovery: A between-subjects experiment in virtual reality. Environ. Int. 2020, 136, 105427. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Kirschbaum, C.; Pirke, K.M.; Hellhammer, D.H. The ‘Trier Social Stress Test’—A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 1993, 28, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.L.; Godaert, G.L.; Ballieux, R.E.; van Vliet, M.; Willemsen, J.J.; Sweep, F.C.; Heijnen, C.J. Cardiovascular and endocrine responses to experimental stress: Effects of mental effort and controllability. Psychoneuroendocrinology 1998, 23, 1–17. [Google Scholar] [CrossRef]
- Dedovic, K.; Renwick, R.; Mahani, N.K.; Engert, V.; Lupien, S.J.; Pruessner, J.C. The Montreal Imaging Stress Task: Using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain. J. Psychiatry Neurosci. JPN 2005, 30, 319–325. [Google Scholar]
- Tulen, J.H.; Moleman, P.; van Steenis, H.G.; Boomsma, F. Characterization of stress reactions to the Stroop Color Word Test. Pharm. Biochem. Behav 1989, 32, 9–15. [Google Scholar] [CrossRef]
- Li, H.; Zhao, M.; Shi, Y.; Xing, Z.; Li, Y.; Wang, S.; Ying, J.; Zhang, M.; Sun, J. The effectiveness of aromatherapy and massage on stress management in nurses: A systematic review. J. Clin. Nurs. 2019, 28, 372–385. [Google Scholar] [CrossRef] [PubMed]
- Spielberger, C.; Gorsuch, R.; Lushemne, R.; Vagg, P.; Jacobs, G. Manual for the State-Trait Anxiety Inventory, 2nd ed.; Consulting Psychologists Press: Palo Alto, CA, USA, 1983. [Google Scholar]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A global measure of perceived stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Bergner-Köther, R. Zur Differenzierung von Angst und Depression: Ein Beitrag zur Konstruktvalidierung des State-Trait-Angst-Depressions-Inventars (Vol. 18); University of Bamberg Press: Bamberg, Germany, 2014. [Google Scholar]
- Helton, W.S.; Näswall, K. Short Stress State Questionnaire. Eur. J. Psychol. Assess. 2014, 31, 20–30. [Google Scholar] [CrossRef]
- Lovibond, S.H.; Lovibond, P.F. Manual for the Depression Anxiety Stress Scales; Psychology Foundation: Sydney, Australia, 1995. [Google Scholar]
- Tessier, R.; Lemure, L.; Fillion, L. Mesure du Stress Psychologique MSP; The Aviora: Tettnang, Germany, 1990. [Google Scholar]
- McCraty, R.; Shaffer, F. Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Self-regulatory Capacity, and Health risk. Glob. Adv. Health Med. 2015, 4, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, R.S.; Simons, R.F.; Losito, B.D.; Fiorito, E.; Miles, M.A.; Zelson, M. Stress recovery during exposure to natural and urban environments. J. Environ. Psychol. 1991, 11, 201–230. [Google Scholar] [CrossRef]
- Hassan, A.; Qibing, C.; Tao, J. Physiological and psychological effects of gardening activity in older adults. Geriatr. Gerontol. Int. 2018, 18, 1147–1152. [Google Scholar] [CrossRef]
- Ngampramuan, S.; Tungtong, P.; Mukda, S.; Jariyavilas, A.; Sakulisariyaporn, C. Evaluation of Autonomic Nervous System, Saliva Cortisol Levels, and Cognitive Function in Major Depressive Disorder Patients. Depress. Res. Treat. 2018, 2018, 7343592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baños, R.M.; Botella, C.; Garcia-Palacios, A.; Villa, H.; Perpiña, C.; Alcañiz, M. Presence and Reality Judgment in Virtual Environments: A Unitary Construct? Cyber. Psychol. Behav. 2000, 3, 327–335. [Google Scholar] [CrossRef]
- Schubert, T.; Friedmann, F.; Regenbrecht, H. The Experience of Presence: Factor Analytic Insights. Presence Teleoper. Virtual Environ. 2001, 10, 266–281. [Google Scholar] [CrossRef]
- Kennedy, R.S.; Lane, N.E.; Berbaum, K.S.; Lilienthal, M.G. Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. Int. J. Aviat. Psychol. 1993, 3, 203–220. [Google Scholar] [CrossRef]
- Slater, M.; Usoh, M.; Steed, A. Depth of Presence in Virtual Environments. Presence Teleoper. Virtual Environ. 1994, 3, 130–144. [Google Scholar] [CrossRef]
- Realdon, O.; Rossetto, F.; Nalin, M.; Baroni, I.; Cabinio, M.; Fioravanti, R.; Saibene, F.L.; Alberoni, M.; Mantovani, F.; Romano, M.; et al. Technology-enhanced multi-domain at home continuum of care program with respect to usual care for people with cognitive impairment: The Ability-TelerehABILITation study protocol for a randomized controlled trial. BMC Psychiatry 2016, 16, 425. [Google Scholar] [CrossRef] [Green Version]
- Naylor, M.; Ridout, B.; Campbell, A. A Scoping Review Identifying the Need for Quality Research on the Use of Virtual Reality in Workplace Settings for Stress Management. Cyber. Psychol. Behav. Soc. Netw. 2020, 23, 506–518. [Google Scholar] [CrossRef]
- Endler, N.S.; Parker, J.D. Stress and anxiety: Conceptual and assessment issues. Stress Med. 1990, 6, 243–248. [Google Scholar] [CrossRef]
- Jones, T.L. Definition of Stress. In Eating Disorders in Women and Children: Prevention, Stress Management, and Treatment; Goodheart, K., Clopton, J.R., McComb, J.J., Eds.; CRC Press: Boca Raton, FL, USA, 2001; pp. 89–100. [Google Scholar]
- Alberdi, A.; Aztiria, A.; Basarab, A. Towards an automatic early stress recognition system for office environments based on multimodal measurements: A review. J. Biomed. Inform. 2016, 59, 49–75. [Google Scholar] [CrossRef]
- Cohen, M.Z.; Thompson, C.B.; Yates, B.; Zimmerman, L.; Pullen, C.H. Implementing common data elements across studies to advance research. Nurs. Outlook 2015, 63, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Hansmann, R.; Hug, S.-M.; Seeland, K. Restoration and stress relief through physical activities in forests and parks. Urban For. Urban Green. 2007, 6, 213–225. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.M.; Knight, T.M.; Pullin, A.S. A systematic review of evidence for the added benefits to health of exposure to natural environments. BMC Public Health 2010, 10, 456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barton, J.; Pretty, J. What is the best dose of nature and green exercise for improving mental health? A multi-study analysis. Environ. Sci. Technol. 2010, 44, 3947–3955. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, S. The restorative benefits of nature: Toward an integrative framework. J. Environ. Psychol. 1995, 15, 169–182. [Google Scholar] [CrossRef]
- Weerdmeester, J.; van Rooij, M.; Harris, O.; Smit, N.; Engels, R.C.M.E.; Granic, I. Exploring the Role of Self-efficacy in Biofeedback Video Games. In Proceedings of the Extended Abstracts Publication of the Annual Symposium on Computer-Human Interaction in Play, Virtual, 2–4 November 2020; pp. 453–461. [Google Scholar]
- Bernaerts, S.; Bonroy, B.; Daems, J.; Sels, R.; Struyf, D.; Gies, I.; van de Veerdonk, W. Virtual Reality for Distraction and Relaxation in a Pediatric Hospital Setting: An Interventional Study With a Mixed-Methods Design. Front. Digit. Health 2022, 4, 866119. [Google Scholar] [CrossRef]
- Fernández-Aranda, F.; Jiménez-Murcia, S.; Santamaría, J.J.; Gunnard, K.; Soto, A.; Kalapanidas, E.; Bults, R.G.; Davarakis, C.; Ganchev, T.; Granero, R. Video games as a complementary therapy tool in mental disorders: PlayMancer, a European multicentre study. J. Ment. Health 2012, 21, 364–374. [Google Scholar] [CrossRef]
- Bingham, P.M.; Bates, J.H.; Thompson-Figueroa, J.; Lahiri, T. A breath biofeedback computer game for children with cystic fibrosis. Clin. Pediatr. 2010, 49, 337–342. [Google Scholar] [CrossRef]
- Bellarosa, C.; Chen, P.Y. The effectiveness and practicality of occupational stress management interventions: A survey of subject matter expert opinions. J. Occup. Health Psychol. 1997, 2, 247–262. [Google Scholar] [CrossRef]
- Lebois, L.A.; Papies, E.K.; Gopinath, K.; Cabanban, R.; Quigley, K.S.; Krishnamurthy, V.; Barrett, L.F.; Barsalou, L.W. A shift in perspective: Decentering through mindful attention to imagined stressful events. Neuropsychologia 2015, 75, 505–524. [Google Scholar] [CrossRef] [Green Version]
- Bishop, S.R.; Lau, M.; Shapiro, S.; Carlson, L.; Anderson, N.D.; Carmody, J.; Segal, Z.V.; Abbey, S.; Speca, M.; Velting, D. Mindfulness: A proposed operational definition. Clin. Psychol. Sci. Pract. 2004, 11, 230. [Google Scholar] [CrossRef]
- Musiat, P.; Johnson, C.; Atkinson, M.; Wilksch, S.; Wade, T. Impact of guidance on intervention adherence in computerised interventions for mental health problems: A meta-analysis. Psychol. Med. 2022, 52, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Servotte, J.-C.; Goosse, M.; Campbell, S.H.; Dardenne, N.; Pilote, B.; Simoneau, I.L.; Guillaume, M.; Bragard, I.; Ghuysen, A. Virtual Reality Experience: Immersion, Sense of Presence, and Cybersickness. Clin. Simul. Nurs. 2020, 38, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Weech, S.; Kenny, S.; Barnett-Cowan, M. Presence and cybersickness in virtual reality are negatively related: A review. Front. Psychol. 2019, 10, 158. [Google Scholar] [CrossRef] [Green Version]
- Weibel, D.; Wissmath, B.; Mast, F.W. Immersion in mediated environments: The role of personality traits. Cyberpsychol. Behav. Soc. Netw. 2010, 13, 251–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsons, T.D. Virtual Reality for Enhanced Ecological Validity and Experimental Control in the Clinical, Affective and Social Neurosciences. Front. Hum. Neurosci. 2015, 9, 660. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Jeon, C.; Kim, J. A Study on Immersion and Presence of a Portable Hand Haptic System for Immersive Virtual Reality. Sensors 2017, 17, 1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slater, M.; Lotto, B.; Arnold, M.M.; Sánchez-Vives, M.V. How we experience immersive virtual environments: The concept of presence and its measurement. Anu. Psicol. 2009, 40, 193–210. [Google Scholar]
- Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
Author and Place | Sample Size | Design | Stressor | VR Task | Subjective Tools | Objective Tools | Main Findings |
---|---|---|---|---|---|---|---|
1. Anderson et al. [46], USA | Total (N = 18): Dream Beach, Ireland, indoor control | Within-subjects experiment | Arithmetic test | Videos of landscapes | PANAS MRJPQ VVR | SCR HRV: LF, HF, LF/HF | ↓SCR in Dream Beach (p = 0.001) ↑HF (p = 0.05) and ↓ LF/HF (p = 0.02) in Dream Beach ↑VR experience (p < 0.001) ↑Benefit and value (p < 0.05) |
2. Annerstedt et al. [31], Sweden | Total (N = 30): VR with sound (n = 10), VR no sound (n = 10), control (n = 10) | Between-subjects experiment | Virtual TSST | Videos of forest landscapes | Modified STAI-S Single item on stress | Cortisol TWA HRV: HF, HF ln, HF nu, LF, LF ln, LF nu, LF/HF TOT, TOT ln HR | ↓Cortisol in VR cond. (p < 0.001, ε = 0.71) ↑HF in VR sound and in control (p = 0.008, ε = 0.89) |
3. Blum et al. [47], Germany | Total (N = 60): Standard HRV-BF (n = 29); VR HRV-BF (n = 31) | Double-blind, between-subjects experiment | Modified Stroop test | Video of beach scenery at sunset | STAI-S CIQ SMS VAS for relaxation self-efficacy and BF experience | HR HRV: Cardiac coherence, RMSSD Stroop test | ↓Anxiety in VR-BF (p = 0.02, ηp2 = 0.08) ↑Self-efficacy in VR-BF (p = 0.03, ηp2 = 0.07) ↑Mind (p = 0.002, ηp2 = 0.15) and body mindfulness (p = 0.002, ηp2 = 0.14) in VF-BF ↓Scores in task-related (p = 0.02, ηp2 = 0.08) and -irrelevant subscales (p = 0.01, ηp2 = 0.10) in VR-BF ↑Stroop test performance in VR-BF (p = 0.005, ηp2 = 0.12) ↑Experience with VR-BF (p = 0.01, ηp2 = 0.10) |
4. Gao et al. [48], China | Total (N = 120): GrS (n = 20), BS (n = 20), OG (n = 20), POG (n = 20), PCG (n = 20), CG (n = 20) | Between-subjects experiment | − | Photos with landscapes | POMS-SF Evaluation of VR preference | EEG: alpha power Stroop test | ↓Negative mood in POG (p = 0.03, ηp2 = 0.11) ↑Recreational preferences for BS (p < 0.01) |
5. Huang et al. [49], China | Total (N = 89): courtyard (n = 29); courtyard with trees (n = 30); courtyard with grass (n = 30) | Between-subjects experiment | Abbreviated MPA | Scenery | PANAS Evaluation of VR quality | SCL | ↓SCL in grass and tree cond. (p = 0.03, ηp2 = 0.06) ↑PA in grass and tree cond. (p = 0.03, ηp2 = 0.07) ↑VR Quality |
6. Kim et al. [50], South Korea | Total (N = 74): VR relaxation; biofeedback | Crossover design | VR serial subtraction task | Video of natural scenes with relaxing soundtrack | Korean version of STAI NRS for discomfort PANAS SDS EQ-5D-5L SSQ | EMG SCL ST HR/BVP RSP: amplitude HRV: IBI, VLF, LF, HF, LF/HF, NN50, pNN50, RMSSD, SDNN | ↓EMG in biofeedback (p = 0.01) ↓LF/HF (p = 0.02) in VR ↑NN50 (p = 0.02) and pNN50 (p = 0.01) in VR |
7. Mostajeran et al. [51], Germany | Total (N = 34): VR urban and forest; indoor control | Within-subjects experiment | Arithmetic task | Urban or forest environment (slideshows or 360° videos) | STADI-S POMS SSSQ PSS IPQ SSQ | HR SCL | ↑NA in video urban cond. (p = 0.03, ηp2 = 13) ↑Sense of presence in video (p < 0.001, ηp2 = 0.70) and in forest cond. (p < 0.001, ηp2 = 0.29) ↑Simulator sickness scores (p < 0.001, d = 0.63) ↓SCL in photo slideshow (p < 0.01, ηp2 = 0.21) ↓Cognitive test errors (p = 0.004, ηp2 = 0.22) and ↑correct answers in forest cond. (p < 0.001, ηp2 = 0.29) |
8. Pretsch et al. [52], Austria | Total (N = 52): REALEX (n = 31), Video streaming (n = 21) | Between-subjects experiment | − | Videos of landscapes | VAS for emotion and relaxation PANAS DASS-21 UCL Presence Questionnaire | − | ↑Relaxation (p = 0.002, d = 0.62) and ↓DASS (p < 0.001, d = 0.84) in REALAX |
9. Tinga et al. [53], Netherlands | Total (N = 60): VR-BF (n = 20), control VR-BF-placebo (n = 20), control no-BF (n = 20) | Experiment | Arithmetic task | Meditation task based on Buddhist practices | VAS for tension VAS for pleasantness and relaxation | HR HRV: RMSSD EEG: alpha and theta power, theta to alpha ratio | ↓Subjective and objective arousal (HR, RMSSD and theta to alpha ratio) in control VR-BF-placebo (p = 0.04, ηp2 = 0.28) |
10. Vaquero-Blasco et al. [54], Spain | Total (N = 20): VR test group (n = 10); control group (n = 10) | Experiment | Computerized MIST | Chromotherapy room | One-item PSS Evaluation of VR experience | EEG: RG | ↓Stress for all groups (p < 0.05) ↑VR experience |
11. Vaquero-Blasco et al. [55], Spain | Total (N = 23): Aurora borealis, space, beach, cascade cave | Experiment | Computerized MIST | 4 landscapes | One-item PSS Evaluation of VR experience | EEG: RG | ↓Stress for all groups (p < 0.001) ↑VR experience |
12. Villani and Riva [35], Italy | Total (N = 36): VR (n = 12), AU (n = 12), video (n = 12) | Between-subjects design | − | “ESCAPE” park with therapy approaches | MSP STAI-S | HR | ↓HR in VR (p < 0.05) ↓Anxiety in Video guided sessions (p < 0.001) |
13. Wang et al. [56], China | Total (N = 96): GR1 (n = 15), GR2 (n = 13), GR3 (n = 12), GR4 (n = 14); GR5 (n = 12); GR6 (n = 15); GR7 (n = 15); | Between-subjects experiment | TSST | Forest environments | BPOMS | DBP and SBP HR Salivary Amylase | ↓TMD (p < 0.05) except GR 3 ↓DBP and SBP in GR 5 and 6 (p < 0.05) ↓DBP in GR 3 and 4 (p < 0.05) ↑Amylase in GR 4 (p < 0.05) |
14. Yeom et al. [57], South Korea | Total (N = 27): non-green wall, small and large green wall | Crossover experiment | − | Residential space with a green wall | STAI-S | HRV: SDNN, RMSSD SCL EEG:RA, RHB, Mental stress and fatigue | ↓Anxiety in small green wall (p < 0.01) ↑RA in P7, O1 (p < 0.05), P8 (p < 0.01) in small green wall ↓Mental stress and fatigue in small green wall (p < 0.05) ↓SCL in small green wall (p < 0.01) |
15. Yin et al. [58], USA | Total (N = 30): 4 types (3 biophilic and 1 control non-biophilic cond.) | Crossover design | − | Indoor biophilic environments | Likert scale for stress and connection | DBP and SBP HR HRV: RMSSD SCL Stroop test AU test for creativity Eye tracking | ↓SBP and DBP in biophilic cond. ↓HR in biophilic cond. ↑Creativity scores in AU test in biophilic cond. ↑Stroop test performance in biophilic cond. ↑Time spent at biophilic elements (eye tracking) ↑Connection with nature |
16. Yin et al. [59], USA | Total (N = 100): Non-biophilic (n = 25), indoor Green (n = 25), outdoor View (n = 25), combination (n = 25) | Between-subjects experiment | VR memory and arithmetic tasks | Offices with different biophilic elements | STAI-6 Likert scale for stress | HRV: RMSSD, LF/HF HR SCL DBP and SBP | ↓STAI in all four cond. ↓SBR and DBP in biophilic cond. ↑RMSSD in biophilic cond. ↑Chance of HR and RMSSD recovery in biophilic cond. |
Author (Year) | MINORS Score (Raw) | Overall MINORS (%) |
---|---|---|
Anderson et al. [46] | 16/24 | 66.6 |
Annerstedt et al. [31] | 18/24 | 75 |
Blum et al. [47] | 19/24 | 79.1 |
Gao et al. [48] | 20/24 | 83.3 |
Huang et al. [49] | 18/24 | 75 |
Kim et al. [50] | 14/24 | 58.3 |
Mostajeran et al. [51] | 18/24 | 75 |
Pretsch et al. [52] | 19/24 | 79.1 |
Tinga et al. [53] | 17/24 | 70.8 |
Vaquero-Blasco et al. [54] | 16/24 | 66.6 |
Vaquero-Blasco et al. [55] | 17/24 | 70.8 |
Villani and Riva [35] | 16/24 | 66.6 |
Wang et al. [56] | 18/24 | 75 |
Yeom et al. [57] | 18/24 | 75 |
Yin et al. [58] | 18/24 | 75 |
Yin et al. [59] | 18/24 | 75 |
Mean Scores | 17.5/24 | 75% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velana, M.; Sobieraj, S.; Digutsch, J.; Rinkenauer, G. The Advances of Immersive Virtual Reality Interventions for the Enhancement of Stress Management and Relaxation among Healthy Adults: A Systematic Review. Appl. Sci. 2022, 12, 7309. https://doi.org/10.3390/app12147309
Velana M, Sobieraj S, Digutsch J, Rinkenauer G. The Advances of Immersive Virtual Reality Interventions for the Enhancement of Stress Management and Relaxation among Healthy Adults: A Systematic Review. Applied Sciences. 2022; 12(14):7309. https://doi.org/10.3390/app12147309
Chicago/Turabian StyleVelana, Maria, Sabrina Sobieraj, Jan Digutsch, and Gerhard Rinkenauer. 2022. "The Advances of Immersive Virtual Reality Interventions for the Enhancement of Stress Management and Relaxation among Healthy Adults: A Systematic Review" Applied Sciences 12, no. 14: 7309. https://doi.org/10.3390/app12147309
APA StyleVelana, M., Sobieraj, S., Digutsch, J., & Rinkenauer, G. (2022). The Advances of Immersive Virtual Reality Interventions for the Enhancement of Stress Management and Relaxation among Healthy Adults: A Systematic Review. Applied Sciences, 12(14), 7309. https://doi.org/10.3390/app12147309