
Citation: Špetlík, M.; Březina, J.

Groundwater Contaminant Transport

Solved by Monte Carlo Methods

Accelerated by Deep Learning

Meta-Model. Appl. Sci. 2022, 12, 7382.

https://doi.org/10.3390/app12157382

Academic Editors: Davide Bianco,

Maria Quarto and Filomena Loffredo

Received: 19 June 2022

Accepted: 15 July 2022

Published: 22 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Groundwater Contaminant Transport Solved by Monte Carlo
Methods Accelerated by Deep Learning Meta-Model
Martin Špetlík * and Jan Březina

Institute of New Technologies and Applied Informatics, Faculty of Mechatronics, Informatics and
Interdisciplinary Studies, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic;
jan.brezina@tul.cz
* Correspondence: martin.spetlik@tul.cz

Abstract: Groundwater contaminant transport modeling is a vitally important topic. Since modeled
processes include uncertainties, Monte Carlo methods are adopted to obtain some statistics. However,
accurate models have a substantial computational cost. This drawback can be overcome by employing
the multilevel Monte Carlo method (MLMC) or approximating the original model using a meta-
model. We combined both of these approaches. A stochastic model is substituted with a deep learning
meta-model that consists of a graph convolutional neural network and a feed-forward neural network.
This meta-model can approximate models solved on unstructured meshes. The meta-model within
the standard Monte Carlo method can bring significant computational cost savings. Nevertheless,
the meta-model must be highly accurate to obtain similar errors as when using the original model.
Proposed MLMC with the new lowest-accurate level of meta-models can reduce total computational
costs, and the accuracy of the meta-model does not have to be so high. The size of the computational
cost savings depends on the cost distribution across MLMC levels. Our approach is especially
efficacious when the dominant computational cost is on the lowest-accuracy MLMC level. Depending
on the number of estimated moments, we can reduce computational costs by up to ca. 25% while
maintaining the accuracy of estimates.

Keywords: Monte Carlo method; multilevel Monte Carlo method; meta-model; graph convolutional
neural network; groundwater contaminant transport; deep learning

1. Introduction

Groundwater quality might be affected by many natural and industrial processes. There
are many sources of groundwater contamination, for instance, polluted precipitation, runoff
from roadways, leaking barrels of waste chemicals, etc. [1] (p. 500). High concentrations of
dissolved substances can result in water being unfit for drinking or irrigation. Our research
focuses on observing groundwater processes in the vicinity of a deep geological repository
(DGR) of radioactive waste. Despite all the protective layers, radioactive material will be
exposed to the geosphere in the distant future. As a result, groundwater may become con-
taminated. Since it is not feasible to measure these processes directly, we model and simulate
them numerically. Taking the uncertainties into account, we consider bedrock properties
as random variables, specifically, spatially correlated random fields (SRF). Consequently,
a quantity of interest (QoI) is also a random variable. We investigate statistical moments of a
QoI in the first place and a probability density function (PDF) afterward.

Models can be process-based or data-driven [2] (p. 4). Our research takes advantage
of both approaches. First, we run a stochastic process-based contaminant transport model.
A physical process is numerically solved by the finite element method on an unstructured
mesh with prescribed SRF. To estimate the expectation of QoI, the model run (=simulation)
is performed multiple times in accordance with the Monte Carlo method (MC); for some
applications, see [3–5]. However, MC suffers from high computational costs. Many highly

Appl. Sci. 2022, 12, 7382. https://doi.org/10.3390/app12157382 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12157382
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5310-2663
https://doi.org/10.3390/app12157382
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12157382?type=check_update&version=2

Appl. Sci. 2022, 12, 7382 2 of 14

accurate simulations must be performed to obtain statistical estimates with reasonably
low variance, see [6] (p. 2). To save the cost, it is beneficial to construct a hierarchical
system of less accurate but cheaper models that approximate the same QoI; for details,
see [7] (p. 552). In the field of numerical modeling, the accuracy of a model is given by
the number of mesh elements. Thus, we consider the hierarchy of models with gradually
coarsened computational meshes, see [7] (p. 555). For this purpose, we adopt the multilevel
Monte Carlo method (MLMC) [6] described in more detail in Section 4. For some MLMC
applications, see [8–11].

A meta-modeling approach is another option for decreasing the total computational
cost of MC. A function of inputs and parameters of a complex and expensive model is
approximated by a simpler and faster meta-model, also called a surrogate model. Meta-
modeling techniques are widely used across scientific fields (see [12]), and groundwater
modeling is no exception [13–16]. In terms of the classification of meta-models by Robin-
son [17] and Asher et al. [13], we concentrate our effort on data-driven meta-models. In our
case, the input of the model is a 2D SRF, and the output is some scalar QoI. Asher et al. [13]
(p. 5958) also provides a list of popular data-driven meta-modeling techniques, such as
radial basis functions, Gaussian processes, support vector regression (SVR), and neural
networks (NN). For their brief description, see [18,19]. We have focused on meta-models
based on neural networks, the applicability of which to hydrological processes was dis-
cussed in [20,21]. The latter article also provides the basics of deep learning and briefly
introduces some popular DNN architectures. Neural networks and deep learning have
already been utilized in groundwater modeling to predict its: level [22], quality [23,24],
flow [25,26], or contaminant transport [27]. With regard to the nature of input data of our
model, it would be felicitous to use a convolutional neural network (CNN) as a meta-model.
CNNs excel in learning spatial relationships within data on a regular grid such as an image.
Since we use unstructured meshes, we cannot adopt a CNN directly (see [28]). We briefly
discussed some ways to overcome this difficulty in [29]. Representing the structure of SRF
as a graph (for graph theory, see [30]) and then using a graph convolutional neural network
(GCNN) [31] is the option we selected.

The general objective of the presented article is to reduce the computational cost of
Monte Carlo methods by incorporating a meta-model. In this regard, we build on the
findings of our initial article [29], which addressed the same objective with a GCNN meta-
model of a groundwater flow problem. In this article, we specifically focus on improving
the accuracy of the meta-model and its applicability for groundwater contaminant transport
problems. To the best of our knowledge, no previous research in groundwater modeling has
investigated the computational cost reduction in Monte Carlo methods using a meta-model.

The article is organized as follows. First, the contaminant transport model is described.
Next, its deep learning meta-model is presented in Section 3. The multilevel Monte
Carlo method is briefly introduced, and the proposed incorporation of the meta-model is
delineated in Sections 4 and 5. Section 6 is devoted to numerical experiments, meta-models
are assessed, and their usage is put into the context of MC and MLMC. The article is
concluded with a summary and discussion of the important findings.

2. Groundwater Contaminant Transport Model

We consider a conceptual 2D model of the transport of contaminants from DGR, see
Figure 1. The Darcy flux of groundwater q [ms−1] is described by the equations:

div(q) = 0, q = κ(x)∇p, (1)

where p is the pressure head [m], and κ is the hydraulic conductivity considered to be
smaller at a stripe near the surface. The Darcy flow is driven by the seepage face condition:

(q ⋅ n)p = 0, q ⋅ n ≥ q0, p ≥ 0 (2)

Appl. Sci. 2022, 12, 7382 3 of 14

on the top boundary, with q0 denoting a precipitation flux. No flow is prescribed on the
remaining boundaries. The surface geometry is intentionally overscaled to pronounce its
impact on the groundwater flow.

The advection equation is used as the contaminant transport model:

∂t(ϑc) +div(qc) = 0, (3)

where ϑ is the porosity and c is the concentration [kg m−3] of a contaminant in terms of
mass in the unit volume of water. The equation is solved for the unknown concentration
with the initial condition c0 = 1 in the repository and 0 elsewhere. Zero concentration is
prescribed at the inflow part of the boundary.

The ϑ is given as a correlated random field. Then, the random field of hydraulic
conductivity κ is determined from ϑ using the Kozeny–Carman equation and slight random
scaling given by an independent random field. Figure 1 displays the geometry of the model,
the random conductivity field (conductivity in the figure), and the concentration field
(X_conc in the figure) at the time t = 3 of the total simulation time T = 20. The simulation is
performed using the Flow123d software [32].

Figure 1. Contaminant transport problem. A high concentration (X_conc) of a contaminant is
spreading from the DGR to the surface. Its course is influenced by the depicted hydraulic conductivity
(conductivity) of the rock environment.

3. Deep Learning Meta-Model
3.1. Graph Convolutional Neural Network Meta-Model

Graph neural networks (GNNs) are deep-learning-based models that operate on
graph data [31]. They are adopted in many areas, including natural language processing,
computer vision, bioinformatics, and physics. Similar to standard neural networks [33],
they are categorized into several groups, such as graph convolutional neural networks
(GCNN), graph attention networks, graph recurrent networks, etc. We employ GCNNs,
which have a variety of different architectures. They can differ in many ways, such as the
representation of a convolution operation, the size of a convolutional filter, the number
of graph vertices taken into account, and many others. For a comprehensive survey on
GCNNs, see [31,34].

In order to use GCNNs, the dual graph G = (V, E) of the computational mesh is
considered with the vertices V corresponding to mesh elements and associated with the

Appl. Sci. 2022, 12, 7382 4 of 14

values of the input random fields. The edges correspond to the adjacent mesh elements.
Figure 2 illustrates the graph representation of the SRF prescribed on an unstructured mesh.

Figure 2. An illustrative example of a random field on an unstructured mesh with the corresponding
graph representation.

3.2. ChebNet GCNN

After testing several architectures of GCNN, we ascertain that GCNN with the Cheby-
shev convolutional layer (ChebNet GCNN) [35] provides the best results in our case. It
pertains to spectral GCNNs, which represent the graph convolution in terms of polynomials
of a graph Laplacian matrix L.

For a brief general description, let ∗G be the graph convolutional operator, x ∈ R∣V∣ be a
vector of input values associated with graph vertices, and gθ ∈ R

K×Ch be the convolutional
kernel. The variable K stands for the maximal polynomial degree, and Ch represents the
number of channels of the kernel [33] (ch. 9). Then, the graph convolution of x and gθ is:

x ∗G gθ = pK
θ (L)x, (4)

where p is a polynomial of eigenvalues of L and has maximum degree K. When using
ChebNet GCNN, pK(L) is defined via Chebyshev polynomials Tk:

x ∗G gθ = (
K−1
∑
k=0

θkTk(L))x, (5)

where θk ∈ RCh represents the learnable parameters of the kernel that are adjusted during
the neural network learning procedure. The kernel is K-localized, i.e., the filtered signal at

Appl. Sci. 2022, 12, 7382 5 of 14

a particular vertex depends on information from vertices in its K-hop neighborhood. For a
comprehensive explanation of GCNN, see [31] (p. 81).

3.3. Architecture of Meta-Model

Our deep learning meta-model consists of ChebNet GCNN followed by a deep feed-
forward neural network (FNN) [33] (ch. 6). As depicted in Figure 3, the input graph
enters the ChebNet GCNN with K = 4 and Ch = 8. The following global summation pool
sums up information of all vertices for each channel. This flattened output of ChebNet
GCNN forms the input to the deep FNN with two hidden layers of 64 and 32 neurons.
To provide complete information about the neural networks employed, it is necessary
to specify hyperparameters (generally about hyperparameters, see [33] (p. 120)). Our
settings: Adam optimizer with learning rate 0.001; hidden layer activation function: ReLU;
output activation function: identity; loss function: MSE; maximum number of epochs: 2000;
and patience: 1000.

Ch

1 x Ch

1 x 64

1 x 32

1 x 1

sum

pool

ChebNet GCNN deep FNN

Figure 3. Diagram of the architecture of the used deep learning meta-model. The ChebNet graph
convolutional neural network is followed by the global summation pool and the deep feed-forward
neural network with hidden layers of 64 and 32 neurons. The convolutional kernel has Ch channels.

3.4. Assessment of Meta-Model

The following procedure was employed to assess different meta-models. Let
D = {(xi, ci)}

D
i=1 denote all available i.i.d. samples, xi ∈ R∣V∣ be an input vector of the

hydraulic conductivity values of an SRF, and ci ∈ R be the corresponding simulated con-
centration on the surface (see Section 2). Since we conduct supervised learning [33], D is
divided into learning (=training) samples L and test samples T . Then, L is evenly divided
into Ls, s = 1, . . . , S to repeat the whole meta-model learning procedure S times. For each
repetition, data are pre-processed to facilitate learning: cLs = (cLs − ⟨c⟩Ls)/ std2

(cLs), where
std denotes the sample standard deviation.

Given Ls, a meta-model learns a function fs(x) ∶ R∣x∣ → R. The quality of the ap-
proximation is generally evaluated by a loss function, in our case, the mean squared error
(MSE): λ(M, fs) =

1
∣M∣∥cM − fs(xM)∥2

2, whereM⊆ D. Namely, the training loss λ(Ls, fs)

and test loss λ(T , fs) are observed. For the sake of comparing the accuracy of different
meta-models, we use the normalized root mean squared error (NRMSE =

√
MSE/ std).

The training NRMSE JL = 1
S ∑

S
s=1

√
λ(Ls , fs)

std(cLs)
and test NRMSE JT = 1

S ∑
S
s=1

√
λ(T , fs)

std(cT)
are calcu-

lated. This metric allows us to draw a comparison among models on different mesh sizes.
The lower the NRMSE, the better. Moreover, if the NRMSE is above 1, we can use a simple
random generator instead of a complex meta-model.

Appl. Sci. 2022, 12, 7382 6 of 14

4. Multilevel Monte Carlo Method

The multilevel Monte Carlo method [6] (MLMC) is based on the variance reduction
principle [6] (p. 3). Many simulation samples are collected at low levels, with less accurate
but inexpensive approximations of the model available. While much fewer samples are
collected at high levels, there are differences between approximations of the model that
are more accurate but computationally expensive. If these differences have a significantly
smaller variance, we obtain estimates with the same accuracy but at a fraction of the cost
compared to the standard Monte Carlo method.

Let P be a random variable and P1, . . . , PL be a sequence of its approximations, where
Pl−1 ≈ Pl . The approximations are becoming more accurate from P1 to PL. Then, the expected
value of PL satisfies the identity:

E[PL] = E[P1] +
L
∑
l=2

E[Pl − Pl−1]. (6)

The MLMC estimates an individual expectation as follows:

P̂ = ⟨P1(x1
n)⟩N1 +

L
∑
l=2

⟨Pl(xl
n) − Pl−1(xl

n)⟩Nl , (7)

where L is the total number of levels, Nl stands for the number of simulation samples on
level l, ⟨⟩Nl denotes the average over Nl samples. Pairs of random inputs (xl

i , xl−1
i) are both

discrete evaluations of a single realization of a random field x(ωl,i), while the random
states ωl,i are independent and come from a given probability space (Ω, Σ,P).

When using estimator (7), we are particularly interested in its total computational cost
C and estimated variance V̂:

C =
L
∑
l=1

NlCl , (8)

V̂ =
L
∑
l=1

V̂l
Nl

, (9)

where C1, V̂1 denote the cost and the estimated variance of P1. Meanwhile, for l > 1, Cl , V̂l
represent the cost and the estimated variance of differences Pl − Pl−1. For a comprehensive
MLMC theory, see [6].

In the presented way, it is feasible to estimate the expectations of quantities derived
from the original QoI. In particular, we utilize the so-called generalized statistical moments
of QoI. In our study, the moments’ functions φ(x) are Legendre polynomials, as they are
suitable for the PDF approximation (see [36]).

4.1. Optimal Number of Samples

As previously mentioned, the principal motivation of our research is to reduce C.
However, it is also essential to keep the variance of the estimator sufficiently low. To achieve
this, we prescribe the target variance Vt of the estimator. Then, the optimal Nl is found by
minimizing function (8) under the constraint

Vt =
L
∑
l=1

V̂l
Nl

. (10)

After some calculus:

Nr
l =

¿
Á
ÁÀ V̂r

l
Cl

∑
L
i=1

√

V̂r
i Ci

Vt
, r = 1, . . . , R, (11)

Appl. Sci. 2022, 12, 7382 7 of 14

where V̂r
l is an estimated variance of φr

l (x) − φr
l−1(x) for r-th moment function on level l,

φr
0 = 0. Finally, Nl = max

r=1,...,R
Nr

l . This procedure is crucial in our study and determines the

results presented.
The Python library MLMC [37], developed by the authors of this article, is used to

schedule simulation samples and post-process the results. The software also implements
the maximal entropy method (MEM) to determine the PDF from moments estimated by
MLMC. The description of MEM is beyond the scope of this article. The interested reader
is advised to read [36,38] for a comprehensive study or [29] for a brief introduction.

5. Monte Carlo Methods with a Meta-Model

In this section, we propose combining Monte Carlo methods with a meta-model. We
investigate two scenarios. The first one, MC-M, uses a meta-model within the standard MC.
The latter, denoted as MLMC-M, extends the MLMC by a level of meta-model approximations.

5.1. MC-M

A meta-model fully replaces an original model within the standard Monte Carlo
method. Let P̃L denote a meta-model approximation of PL, which is the most accurate
approximation of P used in MC. Thus, the MC-M estimator has this form:

P̂MC−M = ⟨P̃L(xL
n)⟩N . (12)

This approach is strictly dependent on the approximation quality of the meta-model.
The calculation of variance (Formula (9)) is unchanged, whereas the computational cost
(Formula (8)) takes this form:

CM = Csim
1 ∣Ls∣ +C1N1 +Cml(L, ψ), (13)

where Csim
1 ∣Ls∣ represents the cost of PL runs needed for learning procedure of the meta-

model. The cost of a meta-model sample C1 includes the necessary preprocessing and the
cost of prediction. In this case, it comprises the costs needed for generating a random field
and its adjustment to the form of the input of the GCNN. The learning cost of the meta-
model Cml(Ls, ψ) depends not only on learning samples in Ls but also on hyperparameters
ψ, especially the number of epochs, batch size, and the number of learnable parameters.

5.2. MLMC-M

The meta-model approximations form the new lowest-accuracy level of MLMC, which
we denote as the meta-level. Let P̃1 be a meta-model approximation of P1, and the difference
between P1 and P̃1 forms the subsequent first level. Thus, the MLMC estimator is extended
by a single level:

P̂MLMC−M = ⟨P̃1(x1
n)⟩N1 + ⟨P1(x2

n) − P̃1(x2
n)⟩N2 +

L
∑
l=3

⟨Pl(xl
n) − Pl−1(xl

n)⟩Nl
. (14)

Again, the total computational cost (Formula (8)) is affected:

CM = C1N1 + (Csim
2 +Cmeta

2)N2 +Cml(L, ψ) +
L
∑
l=3

NlCl , (15)

where Csim
2 is the cost of P1, and Cmeta

2 represents the cost of preprocessing an SRF, which
was already generated for the corresponding simulation. It also includes the cost of the
meta-model prediction, which, however, is negligible.

The distribution of the computational cost across levels affects the possible savings
in C. Considering the MLMC estimator theorem (M. Giles [6] (Theorem 1)), there are
bounds of Vl ≤ c12−βl and Cl ≤ c22γl , where β, γ, c1, c2 are positive constants. Our approach
is especially effective in the case of β > γ, when the dominant computational cost is at low

Appl. Sci. 2022, 12, 7382 8 of 14

accuracy levels. At the same time, adding another coarse level brings no savings, which is
a case of unsatisfactorily scaling computational cost for models on low levels, often due to
the overhead of the numerical solver. If β = γ, then the computational cost is spread evenly
across levels, and the amount of savings depends on the total number of levels L. If the
dominant computational cost is on high-accuracy levels (β < γ), then we cannot expect
significant savings at all.

6. Results
6.1. Analysis of Meta-Models

In order to evaluate the meta-model in accordance with our assessment procedure
described in Section 3.4, the contaminant transport model was run on meshes of different
sizes, and obtained data are used as D. From the Monte Carlo method’s point of view, we
generally set Vt ≤ 10−5 to obtain sufficiently accurate estimates of moments to decently
approximate PDF by MEM. Consequently, we have at least 2000 samples at the lowest
Monte Carlo level. Thus, from now on, we undertake all meta-model learnings with
∣Ls∣ = 2000, and 400 samples out of Ls account for validation samples, ∣T ∣ = 50,000, S = 12.

Table 1 shows the accuracy of meta-model approximations of models on different
mesh sizes. Two architectures of meta-models are compared. The Deep meta-model is
the one proposed in this article, whereas the Shallow meta-model was propounded in our
previous study [29]. The accuracy is characterized by NRMSE (see Section 3.4). Apparently,
the Deep meta-model outperforms the Shallow meta-model in all observed cases. Since JL
stays almost steady and JL/JT ≈ 1, our approach can be used regardless of the mesh size,
at least up to the ca. 20,000 elements, larger meshes were not tested. Considering JL is just
slightly below 0.8, we believe there is still some room for improvement in future research.

All meta-models were trained on GeForce GTX 1660 Ti Mobile graphics card with
16 Gb RAM. The time of meta-model learning ranges from around 400 s for a model on
53 mesh elements to about 3000 s for a model on 18,397 mesh elements.

Table 1. Comparison of accuracy of meta-models for models on different mesh sizes.

Mesh Size
Accuracy of Meta-Model (JL)

Deep Meta-Model Shallow Meta-Model

53 0.779 0.945
115 0.799 0.949
474 0.763 0.885

2714 0.773 0.896
10,481 0.799 0.898
18,397 0.792 0.954

6.2. Comparison of MC-M and MLMC-M

Once we have a promising meta-model, it can be utilized by Monte Carlo methods.
Based on the approach proposed in Section 5, we provide MC-M and two-level MLMC-M
in comparison with the standard MC. Both are compared in terms of computational cost
and the quality of estimations of moments. The number of samples Nl were calculated by
formulas presented in Section 4.1 with Vt = 10−5, R = 25. The efficiency of Monte Carlo
methods with a meta-model compared to Monte Carlo methods without a meta-model is
expressed as computational cost savings CS[%] calculated as CS = 100(1− CM

C).
Figure 4 shows the computational cost (Cost(sec)) and moments error (J(µ̂, µ̃)). The cost

is measured as the CPU time of simulations, including auxiliary processing and time needed
for meta-model learning. The moments error has the form of MSE: J(µ̂, µ̃) = 1

S ∑
S
s=1 ∣∣µ̂

s − µ̃s∣∣22,
where µ̂ represents the moments estimated by the standard MC, whereas µ̃ are moments
calculated by either MC-M or MLMC-M. As expected, the computational cost increases
with the precision of a model expressed as a number of mesh elements. As you can see,
the cost can be greatly reduced (CS ≈ 87%) by using MC-M instead of MC. However,

Appl. Sci. 2022, 12, 7382 9 of 14

the meta-model error causes poor estimates of moments: J(µ̂, µ̃) ≈ 10−3. On the contrary,
MLMC-M suppresses the effect of the meta-model error, and estimates of moments are
obtained with J(µ̂, µ̃) ≈ 10−5. The cost savings are not so substantial but still significant:
CS ≈ 25%. Generally, using MC-M can be reasonable if we have an exceptionally accurate
meta-model or we intend to obtain just a basic idea of the moments and PDF in a short
time. Otherwise, using the MLMC-M is recommended.

102 103 104

mesh elements

104

105

106

107

Co
st

(s
ec

)

MC
MC-M
MLMC-M

10 5

10 4

10 3

J(
,

)

Figure 4. Cost (blue) and moments error (red) of Monte Carlo methods on six different model
mesh sizes. MC (square)—standard Monte Carlo method; MC-M (circle)—standard Monte Carlo
using meta-model samples; MLMC-M (triangle)—MC extended by a meta-level. J(µ̂, µ̃) denote error
between MC moments (µ̂) and MC-M or MLMC-M moments (µ̃).

6.3. Multilevel Case

In this section, we investigate an MLMC-M with more than two levels. In order to
demonstrate some properties and limitations of our approach, we introduce the following
three pairs of Monte Carlo methods:

• 1LMC and 1LMC-M: standard MC of models on 18,397 mesh elements and its exten-
sion by meta-level;

• 2LMC and 2LMC-M: 2-level MLMC on models with 18,397 and 2714 mesh elements,
and its extension by meta-level trained on the model of 2714 mesh elements;

• 3LMC and 3LMC-M: 3 level MLMC with models on 18,397, 2714, and 474 mesh
elements and its extension by meta-level trained on the model of 474 mesh elements

Figure 5 shows the computational costs of these Monte Carlo methods for a different
number of estimated moments R. We see that 1LMC and 1LMC-M have a much higher
cost than methods with more levels. This is the crucial observation that demonstrates the
limitations of the standard MC.

Let us focus on the course of the costs depending on R. In all the cases, the lowest
cost was obtained for R = 2. However, as R increases, the behaviors of the methods differ.
For 1LMC, 1LMC-M, 2LMC, and 2LMC-M, we observe a similar course that is steady for
R ⪆ 15. It means we can add more moments without affecting computational cost. On the
other hand, for 3LMC and 3LMC-M, we observe a gradual increase in cost up to R = 35
and R = 75, respectively.

Regarding computational cost savings, in cases of 1LMC and 2LMC, there is CS ≈ 25%
utilizing 1LMC-M and 2LMC-M, whereas 3LMC provides us with savings, from around
CS ≈ 25% for R = 2 to just CS ≈ 2% for R = 100. As mentioned in Section 5.2, the computa-

Appl. Sci. 2022, 12, 7382 10 of 14

tional cost distribution across levels can be described using β and γ variables. Since for
1LMC and 2LMC, β > γ, the dominant computational cost is on the lowest-accuracy levels.
Therefore, adding the meta-level results in a much higher CS (for R > 4) than for β < γ,
which is the case with 3LMC. Thus, the behavior of our experiments corresponds to the
theoretical properties of the MLMC.

101 102

R

107

Co
st

 (s
ec

)
1LMC
1LMC-M
2LMC
2LMC-M
3LMC
3LMC-M

Figure 5. Computational costs of different Monte Carlo methods and number of moments R. XLMC
denotes MLMC of X levels, whereas XLMC-M has an additional meta-level.

A closer look at the variances of moments across levels V̂r
l (Figure 6) provides a

rationale for the claims already presented. For clarity, we display only the first five
moments (R = 5), which capture the behavior observed also in cases with more mo-
ments. To recall, we employ Legendre polynomials as φ(x); therefore, V̂1

l = 0. The to-
tal computational cost (see Formula (8)) depends on the number of simulation sam-
ples Nl that are determined by V̂MAX

l = max{V̂r
l }

R
r=1 (see Section 4.1) and Cl , which is

also displayed in the figure. To meet Vt = 10−5, the pictured variances are calculated
based on the following numbers of samples: [N1 = 54, 063, N2 = 2550, N3 = 1426] for 3LMC
and [N1 = 53, 342, N2 = 36, 638, N3 = 3038, N4 = 1218] for 3LMC-M.

We can see that V̂MAX
l increases with increasing r for some l, leading to the observed

growth of C and CM with R to the point where V̂MAX
l is stable. When it comes to different

CS, we need to focus on the course of V̂r
l across levels. We observe increasing V̂MAX

2 of
3LMC-M, whereas the corresponding V̂MAX

1 of 3LMC remains constant. This trend is
accentuated for R > 5 and causes a decrease in CS. The distinguishable increase in V̂MAX

1
for 3LMC-M has just a slight impact on CM due to the minor C1 = 0.338 compared to Cl ,
for l > 1. A more accurate meta-model could prevent V̂MAX

2 from increasing for 3LMC-M.
We faced a similar behavior for the groundwater flow problem investigated in our

previous research [29]. It is good to be aware of this behavior, although the distribu-
tion of variances of moments across MLMC levels would deserve a much more detailed
explanation, which is beyond the scope of this article.

Appl. Sci. 2022, 12, 7382 11 of 14

102 103 104 105

mesh elements

10 5

10 3

10 1

101

Vr l
0.338 29.7

223 2320

3LMC
3LMC-M

2

3

4

5

r

Figure 6. Variances of moments across levels for 3LMC (circle) and 3LMC-M (triangle). For legibility,
the values are slightly shifted on the x-axis. The leftmost triangles correspond to the meta-level
values. The numbers added represent Cl[sec] of 3LMC-M.

6.4. Approximation of Probability Density Function

Finally, we use moments estimated by the cheapest Monte Carlo methods presented
(3LMC and 3LMC-M) to approximate the PDF of the contaminant concentration c[kgm−3]
on the surface, Vt = 10−5, R = 25. Let ρ3LMC, ρ3LMC−M, ρMC be the PDFs approximated
based on the moments estimated by 3LMC, 3LMC-M, and reference MC. We run N = 50, 000
model samples on a mesh with 18,397 elements to obtain the reference MC.

Figure 7 depicts the approximated PDFs, as well as the Kullback–Leibler (KL) divergence
(for details, see [39]) used for the accuracy assessment of PDFs: D3LMC = KL(ρre f ∣∣ρ3LMC)

and D3LMC−M = KL(ρre f ∣∣ρ3LMC−M). Considering the values of Vt and R, we have decent
PDF approximations. Both 3LMC and 3LMC-M provide almost the same results in terms
of KL divergence. It means µ̃ are sufficiently accurate, in particular J(µ̂, µ̃) ≈ 8.6× 10−6.
Moreover, µ̃ are obtained with CS ≈ 8%. If we are interested just in the expected value and
the variance, which is very common, we have CS ≈ 25%. Importantly, we can decrease Vt to
obtain a better PDF approximation; in this case, the computational cost naturally increases,
but CS does not change.

0 1 2 3 4 5
c[kgm 3] 1e 9

0.00

0.25

0.50

0.75

1.00

1.25

1.50

PD
F

1e9
D3LMC : 0.01112
D3LMC M : 0.01063
MC ref

Figure 7. PDFs approximated by moments estimated via 3LMC (blue) and 3LMC-M (red dashed).
Both compared to the reference MC (black dotted) by the Kullback–Leibler divergence D.

Appl. Sci. 2022, 12, 7382 12 of 14

7. Discussion and Conclusions

This study presented the deep learning meta-model to reduce the computational costs
of Monte Carlo methods. We followed up on our previous research [29] and improved the
meta-model, which now consists of a graph convolutional neural network connected to
the feed-forward neural network. This meta-model can better approximate models such as
the tested groundwater contaminant transport problem. We showed that our meta-model
could be trained with comparable accuracy for models solved on unstructured meshes
from 53 to 18,397 mesh elements.

We adopted Monte Carlo methods to obtain generalized statistical moments that are
utilized to approximate the probability density function of the contaminant concentration
on the surface above a future deep geological repository of radioactive waste. In order to
reduce the computational cost of MC, two approaches were propounded. MC-M, a meta-
model instead of a model within the standard Monte Carlo method, brings substantial
cost savings (CS ≈ 87%). However, the accuracy of moments J was severely affected by
the meta-model error and was just around J ≈ 10−3. Under the described experiment
setting, it is tough to obtain minor meta-model errors for such a complex model such as
the one we have. Thus, this procedure has limited usability. What is favorable, though, is
the second approach. A meta-level is employed as the lowest-accuracy level of MLMC,
denoted MLMC-M. Generally, this approach reduces the computational cost and keeps
the error of moments low, J ≈ 10−5, which is sufficient for PDF approximations. We
presented three pairs of MLMCs and MLMC-Ms to demonstrate the impact of a different
distribution of computational cost across levels. In accordance with theory, the most
significant cost savings (CS ≈ 25%) was achieved when the dominant computational cost
was on the lowest-accuracy level. On the contrary, if the prevailing computational cost
is on the highest-accuracy level, we have CS ≈ 2% in the worst case. Importantly, the
computational cost and savings are affected by the number of moments R we estimate.
In many applications, we are interested in the first few moments, such as the expected
value or the variance. For that, we have CS ≈ 25% in all the cases. Intending to approximate
PDF, we need at least around R = 25, then CS ≈ 8% in the worst-case scenario.

In our future research, we shall try to improve the accuracy of the current meta-model
further and investigate the applicability of standard convolutional neural networks as a
meta-model. We shall also rigorously describe the causes of the different course of variances
of moments across MLMC levels. We shall deal with other applications in groundwater
modeling, especially in connection with fractured porous media.

Author Contributions: Conceptualization, M.Š. and J.B.; software, M.Š.; data curation, M.Š.; writing—
original draft preparation, M.Š.; writing—review and editing, J.B.; visualization, M.Š.; supervision,
J.B.; All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Student Grant Scheme at the Technical University of
Liberec through project nr. SGS-2022-3016 .

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All of the data supporting the findings of the presented study are
available from the corresponding author on request.

Acknowledgments: Computational resources were supplied by the project “e-Infrastruktura CZ” (e-INFRA
CZ LM2018140) supported by the Ministry of Education, Youth and Sports of the Czech Republic.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2022, 12, 7382 13 of 14

Abbreviations
The following abbreviations are used in this manuscript:

DGR deep geological repository
DNN deep neural networks
GCNN graph convolutional neural network
MC Monte Carlo method
MEM Maximum entropy method
MLMC multilevel Monte Carlo method
NRMSE normalized mean squared error
PDF probability density function

References
1. Fitts, C.R. Groundwater Science, 2nd ed.; Academic Press: Amsterdam, The Netherlands, 2012.
2. Anderson, M.P.; Woessner, W.W.; Hunt, R.J. Applied Groundwater Modeling: Simulation of Flow and Advective Transport, 2nd ed.;

Academic Press: Amsterdam, The Netherlands, 2015. [CrossRef]
3. Juckem, P.F.; Fienen, M.N. Simulation of The Probabilistic Plume Extent for a Potential Replacement Wastewater-Infiltration Lagoon, and

Probabilistic Contributing Areas for Supply Wells for the Town of Lac Du Flambeau, Vilas County, Wisconsin; Open-File Report; U.S.
Geological Survey: Reston, VA, USA, 2020. [CrossRef]

4. Yoon, H.; Hart, D.B.; McKenna, S.A. Parameter estimation and predictive uncertainty in stochastic inverse modeling of
groundwater flow: Comparing null-space Monte Carlo and multiple starting point methods. Water Resour. Res. 2013, 49, 536–553.
[CrossRef]

5. Baalousha, H.M. Using Monte Carlo simulation to estimate natural groundwater recharge in Qatar. Model. Earth Syst. Environ.
2016, 2, 1–7. [CrossRef]

6. Giles, M.B. Multilevel Monte Carlo Methods. Acta Numer. 2015, 24, 259–328. [CrossRef]
7. Peherstorfer, B.; Willcox, K.; Gunzburger, M. Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and

Optimization. SIAM Rev. 2018, 60, 550–591. [CrossRef]
8. Mohring, J.; Milk, R.; Ngo, A.; Klein, O.; Iliev, O.; Ohlberger, M.; Bastian, P. Uncertainty Quantification for Porous Media Flow

Using Multilevel Monte Carlo. In Proceedings of the Large-Scale Scientific Computing, Sozopol, Bulgaria, 8–12 June 2015; Lirkov,
I., Margenov, S.D., Waśniewski, J., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 145–152.

9. Iliev, O.; Shegunov, N.; Armyanov, P.; Semerdzhiev, A.; Christov, I. On Parallel MLMC for Stationary Single Phase Flow Problem.
In Proceedings of the Large-Scale Scientific Computing, Sozopol, Bulgaria, 7–11 June 2021; Springer International Publishing:
Cham, Switzerland, 2022; pp. 464–471.

10. Cliffe, K.A.; Giles, M.B.; Scheichl, R.; Teckentrup, A.L. Multilevel Monte Carlo methods and applications to elliptic PDEs with
random coefficients. Comput. Vis. Sci. 2011, 14, 3–15. [CrossRef]

11. Müller, F.; Jenny, P.; Meyer, D.W. Multilevel Monte Carlo for Two Phase Flow and Buckley-Leverett Transport in Random
Heterogeneous Porous Media. J. Comput. Phys. 2013, 250, 685–702. [CrossRef]

12. Koziel, S.; Leifsson, L. Surrogate-Based Modeling and Optimization; Springer: New York, NY, USA, 2013. [CrossRef]
13. Asher, M.J.; Croke, B.F.W.; Jakeman, A.J.; Peeters, L.J.M. A review of surrogate models and their application to groundwater

modeling. Water Resour. Res. 2015, 51, 5957–5973. [CrossRef]
14. Razavi, S.; Tolson, B.A.; Burn, D.H. Review of surrogate modeling in water resources. Water Resour. Res. 2012, 48, W07401.

[CrossRef]
15. Fienen, M.N.; Nolan, B.T.; Feinstein, D.T. Evaluating the sources of water to wells: Three techniques for metamodeling of a

groundwater flow model. Environ. Model. Softw. 2016, 77, 95–107. [CrossRef]
16. Hussein, E.A.; Thron, C.; Ghaziasgar, M.; Bagula, A.B.; Vaccari, M. Groundwater Prediction Using Machine-Learning Tools.

Algorithms 2020, 13, 300. [CrossRef]
17. Robinson, T.D.; Eldred, M.S.; Willcox, K.E.; Haimes, R. Surrogate-Based Optimization Using Multifidelity Models with Variable

Parameterization and Corrected Space Mapping. AIAA J. 2008, 46, 2814–2822. [CrossRef]
18. Jiang, P.; Zhou, Q.; Shao, X. Surrogate Model-Based Engineering Design and Optimization; Springer: Singapore, 2020. [CrossRef]
19. Remesan, R.; Mathew, J. Hydrological Data Driven Modelling; Springer International Publishing: Cham, Switzerland, 2015.

[CrossRef]
20. Marçais, J.; de Dreuzy, J.R. Prospective Interest of Deep Learning for Hydrological Inference. Groundwater 2017, 55, 688–692.

[CrossRef] [PubMed]
21. Shen, C. A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists. Water Resour.

Res. 2018, 54, 8558–8593. [CrossRef]
22. Yoon, H.; Jun, S.C.; Hyun, Y.; Bae, G.O.; Lee, K.K. A comparative study of artificial neural networks and support vector machines

for predicting groundwater levels in a coastal aquifer. J. Hydrol. 2011, 396, 128–138. [CrossRef]
23. Hanoon, M.S.; Ahmed, A.N.; Fai, C.M.; Birima, A.H.; Razzaq, A.; Sherif, M.; Sefelnasr, A.; El-Shafie, A. Application of Artificial

Intelligence Models for modeling Water Quality in Groundwater. Water Air Soil Pollut. 2021, 232, 411. [CrossRef]

http://doi.org/10.1016/C2009-0-21563-7
http://dx.doi.org/10.3133/ofr20201032
http://dx.doi.org/10.1002/wrcr.20064
http://dx.doi.org/10.1007/s40808-016-0140-8
http://dx.doi.org/10.1017/S096249291500001X
http://dx.doi.org/10.1137/16M1082469
http://dx.doi.org/10.1007/s00791-011-0160-x
http://dx.doi.org/10.1016/j.jcp.2013.03.023
http://dx.doi.org/10.1007/978-1-4614-7551-4
http://dx.doi.org/10.1002/2015WR016967
http://dx.doi.org/10.1029/2011WR011527
http://dx.doi.org/10.1016/j.envsoft.2015.11.023
http://dx.doi.org/10.3390/a13110300
http://dx.doi.org/10.2514/1.36043
http://dx.doi.org/10.1007/978-981-15-0731-1
http://dx.doi.org/10.1007/978-3-319-09235-5
http://dx.doi.org/10.1111/gwat.12557
http://www.ncbi.nlm.nih.gov/pubmed/28732108
http://dx.doi.org/10.1029/2018WR022643
http://dx.doi.org/10.1016/j.jhydrol.2010.11.002
http://dx.doi.org/10.1007/s11270-021-05311-z

Appl. Sci. 2022, 12, 7382 14 of 14

24. Chen, Y.; Song, L.; Liu, Y.; Yang, L.; Li, D. A Review of the Artificial Neural Network Models for Water Quality Prediction. Appl.
Sci. 2020, 10, 5776. [CrossRef]

25. Guezgouz, N.; Boutoutaou, D.; Hani, A. Prediction of groundwater flow in shallow aquifers using artificial neural networks in
the northern basins of Algeria. J. Water Clim. Chang. 2020, 12, 1220–1228. [CrossRef]

26. Santos, J.E.; Xu, D.; Jo, H.; Landry, C.; Prodanović, M.; Pyrcz, M.J. PoreFlow-Net: A 3D convolutional neural network to predict
fluid flow through porous media. Adv. Water Resour. 2020, 138, 103539. [CrossRef]

27. Yu, X.; Cui, T.; Sreekanth, J.; Mangeon, S.; Doble, R.; Xin, P.; Rassam, D.; Gilfedder, M. Deep learning emulators for groundwater
contaminant transport modelling. J. Hydrol. 2020, 590, 125351. [CrossRef]

28. Xu, M.; Song, S.; Sun, X.; Zhang, W. UCNN: A Convolutional Strategy on Unstructured Mesh. arXiv 2021, arXiv:2101.05207.
29. Špetlík, M.; Březina, J. Groundwater flow meta-model for multilevel Monte Carlo methods. In Proceedings of the CEUR

Workshop Proceedings, Odesa, Ukraine, 13–19 September 2021; Volume 2962, pp. 104–113.
30. Trudeau, R.J. Introduction to Graph Theory, 1st ed.; Dover Publications: New York, NY, USA, 1993.
31. Hamilton, W.L. Graph Representation Learning. Synth. Lect. Artif. Intell. Mach. Learn. 2020, 14, 1–159.
32. Březina, J.; Stebel, J.; Exner, P.; Hybš, J. Flow123d. 2011–2021. Available online: http://flow123d.github.com (accessed on 19 June 2022).
33. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online: http:

//www.deeplearningbook.org (accessed on 19 June 2022).
34. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural

Netw. Learn. Syst. 2021, 32, 4–24. [CrossRef] [PubMed]
35. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering.

In Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; Lee, D.,
Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2016; Volume 29.

36. Barron, A.R.; Sheu, C.H. Approximation of Density Functions by Sequences of Exponential Families. Ann. Stat. 1991,
19, 1347–1369. [CrossRef]

37. Březina, J.; Špetlík, M. MLMC Python Library. 2021. Available online: http://github.com/GeoMop/MLMC (accessed on 19 June 2022).
38. Bierig, C.; Chernov, A. Approximation of probability density functions by the Multilevel Monte Carlo Maximum Entropy method.

J. Comput. Phys. 2016, 314, 661–681. [CrossRef]
39. Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [CrossRef]

http://dx.doi.org/10.3390/app10175776
http://dx.doi.org/10.2166/wcc.2020.067
http://dx.doi.org/10.1016/j.advwatres.2020.103539
http://dx.doi.org/10.1016/j.jhydrol.2020.125351
http://flow123d.github.com
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://www.ncbi.nlm.nih.gov/pubmed/32217482
http://dx.doi.org/10.1214/aos/1176348252
http://github.com/GeoMop/MLMC
http://dx.doi.org/10.1016/j.jcp.2016.03.027
http://dx.doi.org/10.1214/aoms/1177729694

	Introduction
	Groundwater Contaminant Transport Model
	Deep Learning Meta-Model
	Graph Convolutional Neural Network Meta-Model
	ChebNet GCNN
	Architecture of Meta-Model
	Assessment of Meta-Model

	Multilevel Monte Carlo Method
	Optimal Number of Samples

	Monte Carlo Methods with a Meta-Model
	MC-M
	MLMC-M

	Results
	Analysis of Meta-Models
	Comparison of MC-M and MLMC-M
	Multilevel Case
	Approximation of Probability Density Function

	Discussion and Conclusions
	References

