The Effects of a Combined Pre- and Post-Operative Anterior Cruciate Ligament Reconstruction Rehabilitation Program on Lower Extremity Muscle Imbalance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Rehabilitation Procedures
2.3. Before Surgery
2.4. Surgery
2.5. Post-Surgery
2.6. Supplementary Functional Body-Weight Stabilization Training
2.7. Electromyographic Measurements Procedure
2.8. Statistical Analysis
3. Results
3.1. Between Group Differences
3.2. Within Control Group Differences
3.3. Within Treatment Group Differences
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ardern, C.L.; Taylor, N.F.; Feller, J.A.; Whitehead, T.S.; Webster, K.E. Psychological Responses Matter in Returning to Preinjury Level of Sport After Anterior Cruciate Ligament Reconstruction Surgery. Am. J. Sports Med. 2013, 41, 1549–1558. [Google Scholar] [CrossRef] [PubMed]
- Grassi, A.; MacChiarola, L.; Filippini, M.; Lucidi, G.A.; Della Villa, F.; Zaffagnini, S. Epidemiology of Anterior Cruciate Ligament Injury in Italian First Division Soccer Players. Sports Health 2020, 12, 279–288. [Google Scholar] [CrossRef]
- Zaffagnini, S.; Grassi, A.; Marcheggiani Muccioli, G.M.; Tsapralis, K.; Ricci, M.; Bragonzoni, L.; Della Villa, S.; Marcacci, M. Return to sport after anterior cruciate ligament reconstruction in professional soccer players. Knee 2014, 21, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Niederer, D.; Engeroff, T.; Wilke, J.; Vogt, L.; Banzer, W. Return to play, performance, and career duration after anterior cruciate ligament rupture: A case-control study in the five biggest football nations in Europe. Scand. J. Med. Sci. Sports 2018, 28, 2226–2233. [Google Scholar] [CrossRef] [PubMed]
- Cascio, B.M.; Culp, L.; Cosgarea, A.J. Return to play after anterior cruciate ligament reconstruction. Clin. Sports Med. 2004, 23, 395–408. [Google Scholar] [CrossRef] [PubMed]
- Salmon, L.J.; Refshauge, K.M.; Russell, V.J.; Roe, J.P.; Linklater, J.; Pinczewski, L. Gender Differences in Outcome after Anterior Cruciate Ligament Reconstruction with Hamstring Tendon Autograft. Am. J. Sports Med. 2006, 34, 621–629. [Google Scholar] [CrossRef]
- Eitzen, I.; Holm, I.; Risberg, M.A. Preoperative quadriceps strength is a significant predictor of knee function two years after anterior cruciate ligament reconstruction. Br. J. Sports Med. 2009, 43, 371–376. [Google Scholar] [CrossRef]
- Grindem, H.; Granan, L.-P.; Risberg, M.A.; Engebretsen, L.; Snyder-Mackler, L.; Eitzen, I. How does a combined preoperative and postoperative rehabilitation programme influence the outcome of ACL reconstruction 2 years after surgery? A comparison between patients in the Delaware-Oslo ACL Cohort and the Norwegian National Knee Ligament Registry. Br. J. Sports Med. 2015, 49, 385–389. [Google Scholar] [CrossRef]
- de Jong, S.N.; van Caspel, D.R.; van Haeff, M.J.; Saris, D.B.F. Functional Assessment and Muscle Strength Before and After Reconstruction of Chronic Anterior Cruciate Ligament Lesions. Arthrosc. J. Arthrosc. Relat. Surg. 2007, 23, 21.e1–21.e11. [Google Scholar] [CrossRef]
- Eitzen, I.; Moksnes, H.; Snyder-Mackler, L.; Risberg, M.A. A Progressive 5-Week Exercise Therapy Program Leads to Significant Improvement in Knee Function Early After Anterior Cruciate Ligament Injury. J. Orthop. Sports Phys. Ther. 2010, 40, 705–721. [Google Scholar] [CrossRef] [Green Version]
- Failla, M.J.; Logerstedt, D.S.; Grindem, H.; Axe, M.J.; Risberg, M.A.; Engebretsen, L.; Huston, L.J.; Spindler, K.P.; Snyder-Mackler, L. Does Extended Preoperative Rehabilitation Influence Outcomes 2 Years After ACL Reconstruction? A Comparative Effectiveness Study Between the MOON and Delaware-Oslo ACL Cohorts. Am. J. Sports Med. 2016, 44, 2608–2614. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.K.; Hwang, J.H.; Park, W.H. Effects of 4 weeks preoperative exercise on knee extensor strength after anterior cruciate ligament reconstruction. J. Phys. Ther. Sci. 2015, 27, 2693–2696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aspari, A.R.; Lakshman, K. Effects of Pre-Operative Psychological Status on Post-operative Recovery: A Prospective Study. World J. Surg. 2017, 42, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Sonesson, S.; Kvist, J.; Ardern, C.; Österberg, A.; Silbernagel, K.G. Psychological factors are important to return to pre-injury sport activity after anterior cruciate ligament reconstruction: Expect and motivate to satisfy. Knee Surgery Sports Traumatol. Arthrosc. 2017, 25, 1375–1384. [Google Scholar] [CrossRef] [PubMed]
- Carter, H.M.; Littlewood, C.; Webster, K.E.; Smith, B.E. The effectiveness of preoperative rehabilitation programmes on postoperative outcomes following anterior cruciate ligament (ACL) reconstruction: A systematic review. BMC Musculoskelet. Disord. 2020, 21, 647. [Google Scholar] [CrossRef] [PubMed]
- Pope, G.D. Introduction to Surface Electromyography. Physiotherapy 1998, 84, 405. [Google Scholar] [CrossRef]
- Tikkanen, O.; Kärkkäinen, S.; Haakana, P.; Kallinen, M.; Pullinen, T.; Finni, T. EMG, Heart Rate, and Accelerometer as Estimators of Energy Expenditure in Locomotion. Med. Sci. Sports Exerc. 2014, 46, 1831–1839. [Google Scholar] [CrossRef]
- Serner, A.; Jakobsen, M.D.; Andersen, L.L.; Hölmich, P.; Sundstrup, E.; Thorborg, K. EMG evaluation of hip adduction exercises for soccer players: Implications for exercise selection in prevention and treatment of groin injuries. Br. J. Sports Med. 2013, 48, 1108–1114. [Google Scholar] [CrossRef] [Green Version]
- Stastny, P.; Tufano, J.J.; Golas, A.; Petr, M. Strengthening the Gluteus Medius Using Various Bodyweight and Resistance Exercises. Strength Cond. J. 2016, 38, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Krzysztofik, M.; Jarosz, J.; Matykiewicz, P.; Wilk, M.; Bialas, M.; Zajac, A.; Golas, A. A comparison of muscle activity of the dominant and non-dominant side of the body during low versus high loaded bench press exercise performed to muscular failure. J. Electromyogr. Kinesiol. 2021, 56, 102513. [Google Scholar] [CrossRef]
- Krzysztofik, M.; Golas, A.; Wilk, M.; Stastny, P.; Lockie, R.G.; Zajac, A. A Comparison of Muscle Activity Between the Cambered and Standard Bar During the Bench Press Exercise. Front. Physiol. 2020, 11, 875. [Google Scholar] [CrossRef] [PubMed]
- Stastny, P.; Lehnert, M.; Tufano, J.J. Muscle Imbalances: Testing and Training Functional Eccentric Hamstring Strength in Athletic Populations. J. Vis. Exp. 2018, e57508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimny, M.L.; Schutte, M.; Dabezies, E. Mechanoreceptors in the human anterior cruciate ligament. Anat. Rec. 1986, 214, 204–209. [Google Scholar] [CrossRef]
- Stergiou, N.; Decker, L.M. Human movement variability, nonlinear dynamics, and pathology: Is there a connection? Hum. Mov. Sci. 2011, 30, 869–888. [Google Scholar] [CrossRef] [Green Version]
- Rajca, J.; Gzik, M.; Ficek, K. The Influence of Bone Bruises on Bone Tunnel Enlargement Regarding ACL Rupture. Appl. Sci. 2021, 11, 2482. [Google Scholar] [CrossRef]
- Colyer, S.L.; McGuigan, P.M. Textile Electrodes Embedded in Clothing: A Practical Alternative to Traditional Surface Electromyography when Assessing Muscle Excitation during Functional Movements. J. Sports Sci. Med. 2018, 17, 101–109. [Google Scholar] [PubMed]
- Finni, T.; Hu, M.; Kettunen, P.; Vilavuo, T.; Cheng, S. Measurement of EMG activity with textile electrodes embedded into clothing. Physiol. Meas. 2007, 28, 1405–1419. [Google Scholar] [CrossRef]
- Besomi, M.; Hodges, P.W.; Clancy, E.A.; Van Dieën, J.; Hug, F.; Lowery, M.; Merletti, R.; Søgaard, K.; Wrigley, T.; Besier, T.; et al. Consensus for experimental design in electromyography (CEDE) project: Amplitude normalization matrix. J. Electromyogr. Kinesiol. 2020, 53, 102438. [Google Scholar] [CrossRef] [PubMed]
- Paterno, M.V.; Schmitt, L.C.; Ford, K.R.; Rauh, M.J.; Myer, G.D.; Huang, B.; Hewett, T.E. Biomechanical Measures during Landing and Postural Stability Predict Second Anterior Cruciate Ligament Injury after Anterior Cruciate Ligament Reconstruction and Return to Sport. Am. J. Sports Med. 2010, 38, 1968–1978. [Google Scholar] [CrossRef] [PubMed]
- Pinczewski, L.A.; Lyman, J.; Salmon, L.J.; Russell, V.J.; Roe, J.; Linklater, J. A 10-Year Comparison of Anterior Cruciate Ligament Reconstructions with Hamstring Tendon and Patellar Tendon Autograft: A Controlled, Prospective Trial. Am. J. Sports Med. 2007, 35, 564–574. [Google Scholar] [CrossRef]
- Schmitt, L.C.; Paterno, M.V.; Ford, K.R.; Myer, G.D.; Hewett, T.E. Strength Asymmetry and Landing Mechanics at Return to Sport after Anterior Cruciate Ligament Reconstruction. Med. Sci. Sports Exerc. 2015, 47, 1426–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaarani, S.R.; O’Hare, C.; Quinn, A.; Moyna, N.; Moran, R.; O’Byrne, J.M. Effect of Prehabilitation on the Outcome of Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2013, 41, 2117–2127. [Google Scholar] [CrossRef] [PubMed]
- Mrzygłód, S.; Pietraszewski, P.; Golas, A.; Jarosz, J.; Matusiński, A.; Krzysztofik, M. Changes in Muscle Activity Imbalance of the Lower Limbs Following 3 Weeks of Supplementary Body-Weight Unilateral Training. Appl. Sci. 2021, 11, 1494. [Google Scholar] [CrossRef]
- Seaborne, R.A.; Strauss, J.; Cocks, M.; Shepherd, S.; O’Brien, T.D.; van Someren, K.A.; Bell, P.G.; Murgatroyd, C.; Morton, J.P.; Stewart, C.E.; et al. Human Skeletal Muscle Possesses an Epigenetic Memory of Hypertrophy. Sci. Rep. 2018, 8, 1898. [Google Scholar] [CrossRef] [PubMed]
- Staron, R.S.; Leonardi, M.J.; Karapondo, D.L.; Malicky, E.S.; Falkel, J.E.; Hagerman, F.C.; Hikida, R.S. Strength and skeletal muscle adaptations in heavy-resistance-trained women after detraining and retraining. J. Appl. Physiol. Bethesda Md 1985 1991, 70, 631–640. [Google Scholar] [CrossRef]
- Taaffe, D.R.; Marcus, R. Dynamic muscle strength alterations to detraining and retraining in elderly men. Clin. Physiol. Oxf. Engl. 1997, 17, 311–324. [Google Scholar] [CrossRef]
Exercise | Description |
---|---|
Single Leg Stance with Knee Raise | Start position: Stand tall and wide. Movement: Lift knee up toa 90-degree angle in the hip while simultaneously raising the arms above the head. |
Single Leg Stance with Knee Raise and Lateral Quick Step | Same as the single leg stance with knee raise but with a quick lateral step between each repetition. |
Single Leg Stance with Knee Raise and Linear Quick Step | Same as the single leg stance with knee raise but with a quick linear step between each repetition. |
Single Leg Romanian Deadlift | Start position: Stand tall and wide. Movement: Lift leg and reach back behind towards a wall. Feel the weight going back towards your heel as your body tilts forward as if bowing forward, until parallel to the floor. Simultaneously raise the arms above the head. The opposite knee is slightly bent at the same degree during the whole movement. |
Single Leg Romanian Deadlift with Lateral Quick Step | Same as the single leg Romanian deadlift but with a quick lateral step between each repetition. |
Muscle Group | Description |
---|---|
Quadriceps | In a sitting position with a knee and hip joint angle flexed at 90° with hands kept across the chest. Participants placed their feet on the pad and performed a maximum bilateral voluntary isometric contraction. Participant started the contraction via a visual cue. During the maximum isometric effort, a chair with a non-movable back supported the trunk. The contraction was held for 3 s. |
Hamstrings | In a prone position with knees flexed to 45°. Manual resistance was provided by the two instructors at the distal portion of the leg towards extension, while the third instructor stabilized the hip and the pelvis. The participants then performed a maximum bilateral voluntary isometric contraction for 3 s. |
Gluteal | In a prone position, with the knee flexed to 90°. Manual resistance was provided by the two instructors in the downward direction through the ventral foot and distal posterior thigh while the pelvis was stabilized by the third instructor. The participants then performed a maximum bilateral voluntary isometric contraction by lifting their thighs and leg off the table as hard as possible. The contraction was held for 3 s. |
Pre-Operative Phase | Post-Operative Phase | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Week | 5 | 4 | 3 | 2 | 1 | 1 | 2 | 3 | 4 | 5 | |
Muscle Imbalance ([%]; Mean ± SD; 95%CI) | p (Muscle × Time | ||||||||||
Treatment Group | |||||||||||
Q | 60 ± 6 (54 to 67) | 54 ± 7 (46 to 61) | 47 ± 5 (42 to 52) | 40 ± 4 (35 to 44) | 30 ± 3 * (27 to 33) | 71 ± 4 *# (66 to 75) | 62 ± 2 *# (60 to 64) | 54 ± 3 *# (50 to 57) | 45 ± 3 *# (41 to 48) | 35 ± 3 * (32 to 38) | <0.001 |
H | 33 ± 4 (29 to 37) | 29 ± 3 (26 to 32) | 23 ± 3 (20 to 27) | 19 ± 2 (16 to 22) | 16 ± 2 * (14 to 17) | 57 ± 4 *# (53 to 61) | 44 ± 3 *# (40 to 47) | 32 ± 4 *# (27 to 36) | 26 ± 2 *# (24 to 29) | 19 ± 3 *# (16 to 22) | |
G | 27 ± 2 (25 to 29) | 22 ± 2 (19 to 24) | 18 ± 2 (15 to 20) | 17 ± 2 (14 to 19) | 11 ± 1 * (10 to 12) | 58 ± 4 *# (53 to 62) | 45 ± 5 *# (40 to 50) | 32 ± 4 *# (27 to 36) | 19 ± 3 *# (16 to 23) | 14 ± 2 *# (11 to 16) | |
Control Group | |||||||||||
Q | 44 ± 6 | 78 ± 3 # | 70 ± 2 # | 66 ± 2 # | 59 ± 2 # | 51 ± 2 | <0.001 | ||||
H | 33 ± 4 | 70 ± 3 # | 62 ± 3 # | 54 ± 3 # | 48 ± 2 # | 42 ± 2 | |||||
G | 19 ± 3 | 64 ± 2 # | 54 ± 2 # | 48 ± 4 # | 44 ± 3 # | 38 ± 3 # |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ficek, K.; Gołaś, A.; Pietraszewski, P.; Strózik, M.; Krzysztofik, M. The Effects of a Combined Pre- and Post-Operative Anterior Cruciate Ligament Reconstruction Rehabilitation Program on Lower Extremity Muscle Imbalance. Appl. Sci. 2022, 12, 7411. https://doi.org/10.3390/app12157411
Ficek K, Gołaś A, Pietraszewski P, Strózik M, Krzysztofik M. The Effects of a Combined Pre- and Post-Operative Anterior Cruciate Ligament Reconstruction Rehabilitation Program on Lower Extremity Muscle Imbalance. Applied Sciences. 2022; 12(15):7411. https://doi.org/10.3390/app12157411
Chicago/Turabian StyleFicek, Krzysztof, Artur Gołaś, Przemysław Pietraszewski, Magdalena Strózik, and Michał Krzysztofik. 2022. "The Effects of a Combined Pre- and Post-Operative Anterior Cruciate Ligament Reconstruction Rehabilitation Program on Lower Extremity Muscle Imbalance" Applied Sciences 12, no. 15: 7411. https://doi.org/10.3390/app12157411
APA StyleFicek, K., Gołaś, A., Pietraszewski, P., Strózik, M., & Krzysztofik, M. (2022). The Effects of a Combined Pre- and Post-Operative Anterior Cruciate Ligament Reconstruction Rehabilitation Program on Lower Extremity Muscle Imbalance. Applied Sciences, 12(15), 7411. https://doi.org/10.3390/app12157411