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Abstract: Remote sensing estimation of crop nitrogen content allows real-time monitoring of growth
to develop scientific methods. However, most of the current remote sensing estimates of crop nitrogen
contents have limitations in accurately reflecting the vertical distribution of nutrients in plants.
Firstly, the original hyperspectrum is first-order differential (FD), second-order differential (SD),
and continuous removal (CR), and the corresponding sensitive bands were screened by correlation
analysis in this paper. Then, the spectral reflectance, vegetation indices, and wavelet coefficients were
used as input features to construct models for estimating nitrogen content of flag leaf, upper 1 leaf,
upper 2 leaf, upper 3 leaf, and upper 4 leaf based on partial least squares regression (PLSR), support
vector machine (SVM), random forest (RF), and multiple linear regression (MLR), respectively. The
results showed that the accuracy of nitrogen content prediction based on wavelet coefficients was
the highest. The combination of MLR and SVM with wavelet coefficients had high accuracy and
robustness in the prediction of nitrogen content at different leaf positions. Additionally, the prediction
accuracy of nitrogen gradually increased as the leaf position of winter wheat increased. The study can
provide technical support for remote sensing estimation of nutrient elements at vertical leaf position
of crops. The study can provide a reference for prediction of other crops.

Keywords: hyperspectral remote sensing; machine learning; nitrogen; wheat

1. Introduction

Wheat is one of the most widely cultivated food crops in the world, with China ranking
first in terms of its production and sales [1]. Nitrogen is the most significant nutrient for
wheat growth, high grain yield, and quality [2]. Therefore, precise assessment of both
nitrogen content in wheat plants is important for monitoring growth and development and
early prediction of grain yield. The traditional method of estimating N content in wheat
mainly relies on destructive sampling in the field and is obtained using chemical analysis.
This method is inefficient, costly, and cannot obtain spatially continuous distribution of N
content, which makes it difficult to meet the demand for rapid, real-time, and large area
monitoring. In recent years, with the development of remote sensing technology, research
and applications in crop nutrition diagnosis have been gradually promoted. Currently,
most of the relevant studies on remote sensing estimation of crop phenotypic parameters
are based on the canopy scale. The study showed that both the spectral reflectance of crop
canopy and its derivative spectra were highly correlated with N content, which proved
the feasibility of using spectral reflectance to estimate the N content of crops [3]. This
indicates that spectral information is a good non-destructive surrogate to the above crop
traits. Han et al. [4] have reported a significant influence of changes in center wavelength,
band density, and signal-to-noise ratio, and sensitivity and effectiveness of spectral indices
in assessing the chlorophyll content. Some studies have also applied principal component
analysis to extract and reduce the dimension of the original spectral data and used support
vector machine (SVM) and multiple linear regression (MLR) algorithms to predict leaf
nitrogen content in citrus and other fruit trees [5,6].
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During the growth of winter wheat, the population exhibits different canopy spatial
structures, and there are characteristics of vertical distribution of nitrogen in the crop and
corresponding changes in chlorophyll, etc., in the middle and lower leaves of winter wheat
as the reproductive period progresses [7]. Therefore, the study of vertical heterogeneity
of biochemical parameters of winter wheat leaves is important for monitoring various
growth conditions such as the growth potential of winter wheat. Previously, some studies
have reported the vertical estimation of nitrogen and chlorophyll level using hyperspectral
information at different leaf positions in wheat. Dang et al. [8] have studied the vertical
distribution of nitrogen and chlorophyll in winter wheat leaves under different nitrogen ap-
plication levels through field experiments. Luo et al. [9] showed that there were differences
in nitrogen and chlorophyll in cotton leaves in various leaf positions. The above results
demonstrated that increment in nitrogen fertilizer application rate could enhance nitrogen
content across the leaves for better photosynthesis activity in plants [10]. However, most
of the existing studies mainly focus on the estimation of nitrogen in crop canopy, as well
as the difference patterns and spectral characteristics of nitrogen distribution in different
leaf positions. To our knowledge, there are few studies using remote sensing technology to
monitor the growth parameters of crops at different leaf positions.

The main objectives of this study are as follows: (1) to analyze the differences in
spectral variation characteristics of physiological parameters at different leaf positions
in winter wheat; (2) to evaluate the ability of spectral reflectance, vegetation index, and
wavelet transform coefficients for estimating N content at different leaf positions; and (3) to
screen optimal estimation models for N content at different leaf positions based on four
machine learning algorithms. This paper can provide theoretical and technical references
for studying the vertical variation characteristics of other crop growth parameters using
remote sensing technology.

2. Materials and Methods
2.1. Experiment Location and Research Material

The study was conducted in the Chang Ping District, Beijing (Figure 1). The base is flat
and fertile. The mass fractions of nitrate nitrogen, quickly available potassium, and available
phosphorus in 0–0.3 m soil layer of the experimental field were 3.16–14.82, 86.83–120.62, and
3.14–21.18 mg·kg−1, respectively. The soil organic matter content was 15.8–20.0 g·kg−1. Its
average elevation is approximately 36 m, and the soil type is tidal soil. The average annual
temperature is approximately 13 ◦C. The average annual rainfall is approximately 510 mm. In
order to increase the difference in crop nitrogen content in each experimental plot, the study
was carried out by using two types of wheat: Zhong Mai 175 and the Jing 9843 type. Four
different nitrogen levels were set up for nitrogen treatment: N1: 0 kg·hm−2; N2: 195 kg·hm−2;
N3: 390 kg·hm−2; and N4: 585 kg·hm−2. The nitrogen fertilizer was urea. Base and elongation
fertilizers were applied to the soil at 1/2 of the total amount of fertilizer applied. Wheat
planting was undertaken on 29 September 2017. The size of each experimental plot was
1.2 × 1.5 m, with 16 plots and 3 replications, totaling 48 plots.

2.2. Data Collection and Processing

The spectra of wheat leaves from different layers were measured using ASDFieldSpec
FR2500 (spectral range 350–2500 nm, interval 1 nm, Malvern Panalytical, Westborough,
MA, USA). During measurement of the spectral data, the probe height was maintained at
40 cm away from the leaf with field of view of 25◦. Ten spectral curves of each sample were
measured and processed using ViewSpecPro software (https://www.xiazaila.com/soft/26
270.html, accessed on 7 June 2022, V5.6.8, China) to obtain the dimensionless reflectance.

Three samples of wheat plants with uniform growth were randomly selected in the
experimental plot and quickly brought back to the laboratory in fresh bags. Then, each
layer of leaves was separated and the nitrogen content of the leaves was measured using
the Kjeldahl method.

https://www.xiazaila.com/soft/26270.html
https://www.xiazaila.com/soft/26270.html


Appl. Sci. 2022, 12, 7427 3 of 15
Appl. Sci. 2022, 6, x FOR PAPER 3 of 16 
 

 

 
Figure 1. Geographical location of study area. 

2.2. Data Collection and Processing 
The spectra of wheat leaves from different layers were measured using ASDField-

Spec FR2500 (spectral range 350–2500 nm, interval 1 nm, Malvern Panalytical, 
Westborough, MA, USA). During measurement of the spectral data, the probe height was 
maintained at 40 cm away from the leaf with field of view of 25°. Ten spectral curves of 
each sample were measured and processed using ViewSpecPro software 
(https://www.xiazaila.com/soft/26270.html, accessed on 7 June 2022, V5.6.8, China) to 
obtain the dimensionless reflectance. 

Three samples of wheat plants with uniform growth were randomly selected in the 
experimental plot and quickly brought back to the laboratory in fresh bags. Then, each 
layer of leaves was separated and the nitrogen content of the leaves was measured using 
the Kjeldahl method. 

2.3. Method 
2.3.1. Continuous Wavelet Transform 

Continuous wavelet transform (CWT) is a linear transformation method that de-
composes hyperspectral data into a series of wavelet coefficients with different scales by 
using wavelet basis functions [11]. The transformation formula is (Equation (1)): 

,( , ) ( ) ( )a bf a b f dλ ϕ λ λ
+∞

−∞
=   

(1)

where ( )f λ  is the spectral reflectance, λ  is the spectral band in the range of 350–2500 

nm, ,a bϕ
 is the wavelet basis function, a is the scale factor, and b is the translation factor. 

In this study, a Meyer function with fast convergence speed was selected as the wavelet 
basis function, and CWT was performed based on MATLAB software (MATLAB 2021, 
MathWorks Company, Natick, MA, USA). In order to reduce the redundancy of data, the 
scale of the continuous wavelet transform was decomposed into 21, 22, 23, …, 210, cor-
responding to scale 1, 2, 3, …, 10. 

2.3.2. Spectral Differential Transformation 
The Grünwald–Letnikov differential form was used to differentiate the hyperspec-

tral data [12]. The form is as follows (Equation (2)): 

( ) ( )( 1) ( 1)
( ) ( ) ( 1) ( 2) ( )2 ! ( 1)

ad f a a a
f a f f f na n ad

λ
λ λ λ λ

λ
− − + Γ − +

≈ + − − + − + + −Γ − +
 

(2)

Figure 1. Geographical location of study area.

2.3. Method
2.3.1. Continuous Wavelet Transform

Continuous wavelet transform (CWT) is a linear transformation method that decom-
poses hyperspectral data into a series of wavelet coefficients with different scales by using
wavelet basis functions [11]. The transformation formula is (Equation (1)):

f (a, b) =
∫ +∞

−∞
f (λ)ϕa,b(λ)dλ (1)

where f (λ) is the spectral reflectance, λ is the spectral band in the range of 350–2500 nm,
ϕa,b is the wavelet basis function, a is the scale factor, and b is the translation factor. In
this study, a Meyer function with fast convergence speed was selected as the wavelet
basis function, and CWT was performed based on MATLAB software (MATLAB 2021,
MathWorks Company, Natick, MA, USA). In order to reduce the redundancy of data,
the scale of the continuous wavelet transform was decomposed into 21, 22, 23, . . . , 210,
corresponding to scale 1, 2, 3, . . . , 10.

2.3.2. Spectral Differential Transformation

The Grünwald–Letnikov differential form was used to differentiate the hyperspectral
data [12]. The form is as follows (Equation (2)):

da f (λ)
dλa ≈ f (λ) + (−a) f (λ− 1) +

(−a)(−a + 1)
2

f (λ− 2) + · · ·+ Γ(−a + 1)
n!Γ(−a + 1)

f (λ− n) (2)

where Γ represents the Gamma function, λ represents the corresponding wavelength,
n represents the difference between the upper and lower limits of the differential, and
α represents any order. When α = 0, 1, and 2, it indicates the original spectrum, the FD
spectrum, and the SD spectrum, respectively.

2.3.3. Construction of Vegetation Indices

Many studies have shown that vegetation indices can improve vegetation information
and are widely used for crop monitoring. In this study, 20 vegetation indices [13–15] were
screened for estimating the nitrogen content levels in different leaf positions of wheat. The
formulas are shown in Table 1.
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Table 1. Description of vegetation indices.

Name Formula

Normalized Difference Vegetation Index (NDVI) (Rnir − Rred)/(Rnir + Rred)
Ratio Vegetation Index (RVI) Rnir/Rred

Difference Vegetation Index (DVI) Rnir-Rred
Optimized Soil-Adjusted Vegetation Index (OSAVI) 1.16 × (Rnir − Rred)/(Rnir + Rred + 0.16)

Optimal Vegetation Index (VIOPT) 1.45 × (RniR2 + 1) × (Rred + 0.45)
Normalized Difference Water Index (NDWI) (R860 − R1240)/(R860 + R1240)

Water Index (WI) R900/R970
Transformed Chlorophyll Absorption Ratio (TCARI) 3× ((R700 − R670) − 0.2 × (R700 − R550) × (R700/R670))

Chlorophyll Index Red Edge (CI red edge) (Rnir/Rred edge) − 1
Red-Green Vegetation Index (RGVI) Rred/Rgreen
Red-Blue Vegetation Index (RBVI) Rred/Rblue

Green-Blue Vegetation Index (GBVI) Rgreen/Rblue
Misra Green-Red Vegetation Index (MGRVI) (R2green − R2red)/(R2green + R2red)

Relative Green-Blue Vegetation Index (RGBVI) (R2green − Rblue × Rred)/(R2green +Rblue × Rred)
Green Leaf Area (GLA) (2 × Rgreen – Rred − Rblue)/(2 × Rgreen + Rred − Rblue)

Excess Red (EXR) 1.4 × Rred − Rgreen
Excess Green (EXG) 2 × Rgreen – Rred − Rblue

Excess Green Minus Excess Red (EXGR) 2 × (Rgreen – Rred − Rblue) − 1.4 × (Rred + green)
Color Index of Vegetation (CIVE) 0.441 × Rred − 0.881 × Rgreen + 0.3856 × Rblue + 18.79

Visible Atmospherically Resistant Indices (VARI) (Rgreen − Rred)/(Rgreen + Rred − Rblue)

Note: R represents the spectral reflectance of the band.

2.3.4. Machine Learning Methods

Partial least-square regression (PLSR) is a data modeling method that draws on
concepts from multiple linear regression analysis, canonical correlation analysis, and
principal component analysis. This method focuses on the linear relationship between the
independent and dependent variables, and hence can solve the multicollinearity problem
and guarantee model stability [16].

Support vector machines (SVMs) [17] can find the optimal hyperplane which can max-
imally separate multidimensional samples of two different classes. For two-dimensional
and three-dimensional sample spaces, the optimal hyperplane is a straight line and a plane,
respectively, while for the higher dimensional n-dimensional sample space, the optimal
hyperplane is abstractly defined as an (n − 1)-dimensional space. For linearly separable
problems, finding the optimal hyperplane can be transformed into solving a quadratic
programming problem. For nonlinearly separable problems, the kernel trick can be applied
to project the input features into a higher dimensional space where the problem becomes
linearly separable.

Random forests (RF) use random resampling to generate multiple sample sets from
the original sample set. A tree classifier is generated based on each sample set, and then
the final classification output is made according to an ensemble of multiple tree classifiers.
Each sample set is used to train a single classification tree [18]. At the nodes of the tree, M
features are randomly selected from m features (where m > M). According to the minimum
node impurity principle, one of the m features is selected for branch growth, and the tree is
grown to minimize the impurity of each node.

Multiple linear regression (MLR) is a statistical regression method, with advantages of
simplicity, low computational complexity, and high fitting accuracy [19]. Assuming that
the dependent random variable y is affected by k independent variables x1, x2, · · · , xk, it
can be expressed as (Equation (3)):

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε (3)

where β0, β1, β2, · · · , βk are the model regression coefficients and ε is a random error. The
regression coefficient can be obtained using the least-square method.
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2.3.5. Correlation Analysis

Correlation analysis was completed to estimate the correlations between hyperspectral
traits and nitrogen and chlorophyll contents. The calculation method is as shown in formula
(Equation (4)):

ρX,Y =
cov(X, Y)

σXσY
=

E(XY)− E(X)E(Y)√
E(X2)− E2(X)

√
E(Y2)− E2(Y)

(4)

where ρX,Y represents the correlation coefficient and cov(X, Y) and σ represent the covari-
ance and standard deviation, respectively.

2.3.6. Model Accuracy Evaluation Indicators

The coefficient of determination (R2), root mean squared error (RMSE), and normalized
root mean squared error (nRMSE) were selected as the model accuracy evaluation indicators.
The calculation methods are as shown in formulas (Equations (5)–(7)).

R2 =
(∑n

i=1 yi − y)2

(∑n
i=1 xi − y)2 (5)

RMSE =

√
∑n

i=1,j=1 (xi − yi)
2

n
(6)

nRMSE =

√
∑n

i=1,j=1 (xi − yj)
2

n

/
y (7)

where xi is the measured value; yi is the estimated value; y is the mean value; and n is the
number of samples.

3. Results
3.1. Spectral Response Characteristics of Wheat Leaves at Different Positions

The original spectra were processed using first-order differential, second-order differ-
ential, and continuous removal methods, and the spectral curves were plotted for different
positions of different leaves. Figure 2 showed the spectral curves of one of the key growth
periods (flag-raising stage).

There are differences in the original spectral reflectance of leaves at different leaf
positions. The spectral reflectance of leaves increased with the increased number of leaf
positions, and was obviously different between 750–1300 nm and 1400–1900 nm. In other
band ranges, the spectral reflectance of leaves at different positions was similar. The
reflectivity of FD of leaves at different leaf positions showed no difference, and there was a
clear reflection peak near 743 nm. There was no difference in reflectivity of SD of leaves at
different leaf positions. The SD fluctuated in the range of 550–1000 nm and 1700–1950 nm,
with the maximum value near 940 nm. There was no difference in reflectance of the CR
spectrum of different leaf positions; the reflectance was peaked in the visible–near infrared
region of 750–1300 nm.

3.2. Construction of Nitrogen Content Model Based on the Spectral Reflectance

The original spectra of different leaf positions of winter wheat were FD, SD, and CR
transformed. The correlation between spectral reflectance and nitrogen content of leaves at
different leaf positions was analyzed, and the bands with strong correlations were selected
as sensitive bands, and the results are shown in Table 2.
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Table 2. Correlation analysis of different transform spectra and leaf nitrogen content in different leaf
positions and the results of screening sensitive bands.

Sort
Flag Leaf Upper 1 Leaf Upper 2 Leaf Upper 3 Leaf Upper 4 Leaf

(λ) |r| (λ) |r| (λ) |r| (λ) |r| (λ) |r|

1 FD (649) 0.89 FD (929) 0.84 FD (1232) 0.76 FD (727) 0.75 FD (1421) 0.67
2 FD (659) 0.89 FD (950) 0.82 FD (1234) 0.76 FD (621) 0.74 FD (1610) 0.59
3 SD (685) 0.89 FD (926) 0.83 FD (1229) 0.75 SD (543) 0.74 FD (1418) 0.59
4 SD (748) 0.88 FD (927) 0.83 FD (1233) 0.74 SD (589) 0.73 FD (1598) 0.57
5 SD (780) 0.87 SD (925) 0.83 FD (1231) 0.74 SD (542) 0.73 FD (1618) 0.57

Note: the |r| represents the absolute value of the correlation coefficient and the λ indicates the band position.

Overall, the correlation between nitrogen content and transformed spectra increased
with leaf position, with high correlation in leaves of all positions. The sensitive bands of the
flag leaf were concentrated in the visible light–near infrared bands between the 640–790 nm
band. The spectral bands with the highest correlation (|r| = 0.89) with flag leaf nitrogen
content were FD (649), FD (659), and SD (685). The sensitive bands of the upper 1 leaf were
concentrated in the near–infrared bands of the FD and SD between 900 and 1000 nm. The
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spectral band with the highest correlation (|r| = 0.84) with the nitrogen content of the
upper 1 leaf was FD (929). The sensitive bands of the upper 2 leaf were concentrated in the
FD near–infrared bands between 1200 and 1250 nm. The spectral bands with the highest
correlation (|r| = 0.76) with the nitrogen content of the upper 2 leaf were FD (1232) and
FD (1234). The sensitive bands of the upper 3 leaf were concentrated in the visible light
bands with the FD and SD between 540 and 730 nm. The spectral band with the highest
correlation (|r| = 0.75) with the nitrogen content of the upper 3 leaf was FD (727). The
sensitive bands of the upper 4 leaf were concentrated in the mid-infrared bands of the FD,
between 1400 and 1620 nm. The spectral band with the highest correlation (|r| = 0.67) with
the nitrogen content of the upper 4 leaf was FD (1421).

Using the spectral sensitive bands selected in Table 2, the prediction models of leaf
nitrogen content at different leaf positions of wheat were constructed based on PLSR, SVM,
RF, and MLR, respectively. In this study, the nitrogen content estimation models were
established using 2/3 of the sample data, and the accuracy of the models was validated
using the remaining 1/3 of sample data, and the results are shown in Table 3.

Table 3. Model accuracy of estimating leaf nitrogen content based on sensitive bands.

Leaf
Position Model

Modeling Accuracy Verification Accuracy

R2 RMSE NRMSE R2 RMSE NRMSE

Flag leaf

PLSR 0.61 ** 0.08 0.06 0.58 ** 0.19 0.14
SVM 0.47 ** 0.09 0.08 0.42 0.23 0.21
RF 0.26 ** 0.12 0.09 0.23 0.22 0.16

MLR 0.55 ** 0.08 0.06 0.55 ** 0.19 0.13

Upper 1 leaf

PLSR 0.47 ** 0.16 0.09 0.55 ** 0.16 0.09
SVM 0.37 ** 0.16 0.18 0.36 0.20 0.22
RF 0.28 ** 0.18 0.11 0.30 * 0.20 0.12

MLR 0.55 ** 0.14 0.08 0.57 ** 0.16 0.10

Upper 2 leaf

PLSR 0.43 ** 0.09 0.08 0.52 ** 0.11 0.09
SVM 0.32 ** 0.10 0.20 0.35 0.11 0.21
RF 0.32 ** 0.10 0.08 0.38 * 0.11 0.09

MLR 0.39 ** 0.09 0.08 0.47 ** 0.11 0.10

Upper 3 leaf

PLSR 0.13 ** 0.13 0.12 0.11 0.13 0.12
SVM 0.42 ** 0.13 0.22 0.45 ** 0.15 0.26
RF 0.12 0.10 0.10 0.21 0.16 0.14

MLR 0.15 * 0.13 0.12 0.17 0.12 0.11

Upper 4 leaf

PLSR 0.17 * 0.11 0.14 0.20 0.14 0.18
SVM 0.40 ** 0.12 0.19 0.42 ** 0.13 0.20
RF 0.11 0.11 0.14 0.15 0.15 0.18

MLR 0.17 * 0.09 0.11 0.14 0.14 0.18

Note: * indicates a significant correlation at the 0.05 level and ** indicates a significant correlation at the 0.01 level.

The results showed that the best model for nitrogen content estimation for flag leaves
was PLSR with 0.61 and 0.58 R2 values for modeling and validation. The optimal model for
the upper 1 leaf was MLR with R2 values 0.55 and 0.57 for modeling and validation. The
PLSR was the best model for the upper 2 leaf with R2 values 0.43 and 0.52 for modeling and
validation. The optimal model for the upper 3 leaf was SVM with 0.42 and 0.45 R2 values for
modeling and validation. The optimal model for nitrogen content estimation in the upper
4 leaf was SVM with R2 values for modeling and validation of 0.40 and 0.42, respectively.

3.3. Construction of the Nitrogen Content Model Based on Vegetation Indices

The correlation analysis between vegetation indices constructed in Table 1 and leaf
nitrogen content at different leaf positions was carried out, and the correlation coefficient
matrices were drawn. The results are shown in Figure 3.
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Based on the results of the correlation analysis between the nitrogen content of leaves at
different leaf positions and vegetation indices, the vegetation indices with high correlation
were screened and the results are shown in Table 4.

The results showed that the correlations between the nitrogen content of leaves at
different leaf positions and vegetation indices improved with increasing leaf positions.
The vegetation indexes with the highest correlation with the nitrogen content of flag leaf
were EXR and GLA (|r| = 0.78). The vegetation indices with the highest correlation with
nitrogen content at different leaf positions in the upper 1, upper 2, upper 3, and upper 4
were GBVI, WI, NDWI, and TCARI (|r| = 0.75, 0.70, 0.66, and 0.48), respectively.
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Table 4. Correlation between vegetation indices and nitrogen content from different leaf positions in
winter wheat.

Sort
Flag Leaf Upper 1 Leaf Upper 2 Leaf Upper 3 Leaf Upper 4 Leaf

(λ) |r| (λ) |r| (λ) |r| (λ) |r| (λ) |r|

1 EXR (red green) 0.78 GBVI (green blue) 0.75 WI (900 970) 0.70 NDWI (860 1240) 0.66 TCARI (700 670 550) 0.48
2 GLA (red green blue) 0.78 MGRVI (green red) 0.74 NDWI (860 1240) 0.58 WI (900 970) 0.64 GIVE (red green blue) 0.47
3 RGBVI (red green blue) 0.77 RGVI (red green) 0.74 NDVI (nir red) 0.39 VIOPT (nir red) 0.35 VIOPT (nir red) 0.44
4 GBVI (green red) 0.77 GLA (green blue red) 0.74 OSAVI (nir red) 0.38 DVI (nir red) 0.36 WI (900 970) 0.37
5 MGRVI (green red) 0.77 EXR (red green) 0.74 RVI (nir red) 0.39 TCARI (670 700) 0.33 Red Edge 0.36

Note: |r| represents the absolute value of the correlation coefficient and λ indicates the band position.

Based on the results of correlation analysis between leaf nitrogen content and vegeta-
tion indices, the top five vegetation indices with high correlation at different leaf positions
were screened for model construction, and the results are shown in Table 5.

Table 5. Model accuracy of estimating nitrogen content based on vegetation indices.

Leaf
Position Model

Modeling Accuracy Verification Accuracy

R2 RMSE NRMSE R2 RMSE NRMSE

Flag leaf

PLSR 0.68 ** 0.07 0.06 0.58 ** 0.10 0.09
SVM 0.51 ** 0.08 0.16 0.58 ** 0.12 0.22
RF 0.49 ** 009 0.07 0.45 ** 0.12 0.10

MLR 0.64 ** 0.08 0.06 0.54 ** 0.09 0.08

Upper 1 leaf

PLSR 0.60 ** 0.14 0.08 0.57 ** 0.18 0.11
SVM 0.59 ** 0.13 0.15 0.52 ** 0.17 0.19
RF 0.45 ** 0.15 0.09 0.43 ** 0.19 0.11

MLR 0.55 ** 0.13 0.08 0.51 ** 0.17 0.10

Upper 2 leaf

PLSR 0.33 ** 0.16 0.12 0.28 * 0.12 0.09
SVM 0.53 ** 0.09 0.08 0.49 ** 0.21 0.19
RF 0.38 ** 0.10 0.07 0.48 ** 0.23 0.17

MLR 0.54 ** 0.14 0.10 0.53 ** 0.11 0.09

Upper 3 leaf

PLSR 0.44 ** 0.10 0.10 0.52 ** 0.10 0.10
SVM 0.42 ** 0.11 0.16 0.32 * 0.13 0.22
RF 0.24 ** 0.10 0.10 0.44 ** 0.15 0.14

MLR 0.50 ** 0.09 0.08 0.52 ** 0.11 0.11

Upper 4 leaf

PLSR 0.31 ** 0.08 0.10 0.28 * 0.13 0.17
SVM 0.33 ** 0.10 0.16 0.31 * 0.11 0.16
RF 0.16 * 0.10 0.12 0.12 0.13 0.16

MLR 0.37 ** 0.08 0.10 0.35 * 0.13 0.16
Note: * indicates a significant correlation at the 0.05 level and ** indicates a significant correlation at the 0.01 level.

Overall, the accuracy of leaf nitrogen content estimation gradually improved with
the increase in leaf position. The results showed that the best model for flag leaf nitrogen
content estimation was PLSR with modeling and validation R2 of 0.68 and 0.58; the best
model for upper 1 nitrogen content estimation was PLSR with modeling and validation
R2 of 0.60 and 0.57; the optimal model for upper 2 nitrogen content estimation was MLR
with modeling and validation R2 of 0.54 and 0.53; the highest accuracy model for upper
3 nitrogen content estimation was MLR with modeling and validation R2 of 0.50 and 0.52;
the optimal model for upper 4 nitrogen content estimation was MLR with modeling and
validation R2 of 0.37 and 0.35, respectively.

3.4. Construction of the Nitrogen Content Model Based on the Wavelet Coefficients

The original spectral reflectance was converted into wavelet coefficients corresponding
to 10 scales using CWT. Sensitivity analysis was conducted on the wavelet coefficient and
nitrogen content of leaves at different leaf positions, and the correlation matrix diagrams
were drawn. The results are shown in Figure 4.
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Based on the wavelet coefficients obtained by the CWT, the sensitive wavelet energy
coefficients were screened, and the results are shown in Table 6.
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Table 6. Correlations of different leaf position wavelet coefficients and leaf nitrogen content in winter
wheat.

Sort
Flag Leaf Upper 1 Leaf Upper 2 Leaf Upper 3 Leaf Upper 4 Leaf

(λ) |r| (λ) |r| (λ) |r| (λ) |r| (λ) |r|

1 C4 (2173) 0.87 C3 (1701) 0.87 C3 (1695) 0.79 C8 (1367) 0.76 C5 (1745) 0.63
2 C4 (2172) 0.87 C3 (1703) 0.87 C3 (1694) 0.79 C8 (1366) 0.76 C5 (1746) 0.63
3 C4 (2174) 0.87 C3 (1700) 0.87 C3 (1696) 0.78 C8 (1370) 0.76 C5 (1744) 0.63
4 C4 (2171) 0.87 C3 (1704) 0.87 C3 (1693) 0.78 C8 (1369) 0.76 C5 (1747) 0.63
5 C4 (2175) 0.87 C3 (2168) 0.87 C3 (1697) 0.78 C8 (1368) 0.76 C5 (1743) 0.63

Note: |r| represents the absolute value of the correlation coefficient and the λ in the bracket represents the number
of bands.

The overall correlations between leaf nitrogen content and wavelet coefficients at
different leaf positions improved with the increasing leaf positions. The correlations
between the nitrogen content of the flag leaf and upper 1 leaf were the highest, with the
correlation coefficient up to 0.87, but the corresponding wavelet transform scale differed.
For the band range of 1500–2500 nm, the flag leaf had the highest global sensitivity index
and the corresponding scales were 3, 4, 5, 8, and 9. The coefficient with the highest
correlation between the nitrogen content of the flag leaf and the wavelet coefficient was
concentrated in the band between 2170 and 2180 nm with a correlation coefficient of 0.87
and the corresponding scale of 4. The global sensitivity index of the flag leaf was the highest
in the band range between 1500 and 2500 nm, and the corresponding scales were 2, 3, 4, 5,
and 6. The coefficient with the highest correlation between the nitrogen content of the upper
1 leaf and wavelet coefficient was concentrated between the 1700–2200 nm band, while the
correlation coefficient was 0.87, and the corresponding scale was 3. The global sensitivity
index of the upper 2 leaf was the highest between the 1500–2000 nm band range, and the
corresponding scales were 3, 4, and 5. The coefficient with the highest correlation between
the nitrogen content of the upper 2 leaf and wavelet coefficient was concentrated between
the 1690–1700 nm band, with the correlation coefficient of 0.79, while the corresponding
scale was 3. The band range between 1300 and 2500 nm showed best global sensitivity
index for the upper 3 leaf with corresponding scales 3, 4, and 8. The positions of the
wavelet coefficients with the highest correlation between the nitrogen content and wavelet
coefficients in the upper 3 leaves were mainly concentrated in 1360~1370 nm, with a
correlation coefficient of 0.76 and a corresponding scale of 8. The global sensitivity index of
the upper 4 leaf was highest between the 1700–2500 nm band range, and the corresponding
scales were 3, 4, 5, and 9. The correlation between the nitrogen content of the upper 4 leaf
and the wavelet coefficient was concentrated between the 1740–1750 nm band, with a
correlation coefficient of 0.63 and a corresponding scale of 5.

Based on the screened sensitive wavelet coefficients, PLSR, SVM, RF, and MLR meth-
ods were used to construct models for the estimation of leaf nitrogen content at different
leaf positions and to validate the model accuracy, and the results are shown in Table 7.

Overall, the accuracy of estimation of leaf nitrogen was improved with the increasing
leaf positions. The results showed that the best model for estimating the nitrogen content of
flag leaf was MLR with modeling and validation R2 of 0.84 and 0.89, respectively. The best
model for upper 1 leaf nitrogen content estimation was SVM with modeling and validation R2

of 0.74 and 0.78, respectively. The best model for the upper 2 leaf nitrogen content estimation
was MLR with the modeling and validation R2 of 0.73 and 0.74, respectively. The best model
for nitrogen content estimation in the upper 3 leaf was MLR with modeling and validation
R2 of 0.58 and 0.73, respectively; the best model for nitrogen content estimation in the upper
4 leaf was MLR with modeling and validation R2 of 0.51 and 0.57, respectively.
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Table 7. Model accuracy of estimating nitrogen content based on sensitive wavelet.

Leaf
Position Model

Modeling Accuracy Verification Accuracy

R2 RMSE NRMSE R2 RMSE NRMSE

Flag leaf

PLSR 0.79 ** 0.06 0.05 0.71 ** 0.08 0.07
SVM 0.66 ** 0.07 0.14 0.65 ** 0.05 0.10
RF 0.74 ** 0.06 0.04 0.65 ** 0.09 0.08

MLR 0.84 ** 0.06 0.05 0.89 ** 0.07 0.06

Upper 1 leaf

PLSR 0.76 ** 0.10 0.06 0.79 ** 0.11 0.06
SVM 0.74 ** 0.08 0.09 0.78 0.12 0.13
RF 0.72 ** 0.13 0.08 0.64 ** 0.09 0.05

MLR 0.77 ** 0.12 0.07 0.80 ** 0.08 0.05

Upper 2 leaf

PLSR 0.60 ** 0.13 0.10 0.78 ** 0.08 0.06
SVM 0.67 ** 0.07 0.06 0.42 ** 0.19 0.17
RF 0.64 ** 0.07 0.05 0.59 * 0.18 0.13

MLR 0.73 ** 0.12 0.09 0.74 ** 0.09 0.07

Upper 3 leaf

PLSR 0.53 ** 0.10 0.09 0.70 ** 0.07 0.07
SVM 0.52 ** 0.09 0.15 0.50 ** 0.08 0.14
RF 0.54 ** 0.09 0.08 0.47 ** 0.11 0.10

MLR 0.58 ** 0.09 0.08 0.73 ** 0.09 0.09

Upper 4 leaf

PLSR 0.33 ** 0.10 0.13 0.55 ** 0.07 0.09
SVM 0.29 ** 0.10 0.16 0.42 ** 0.08 0.12
RF 0.47 ** 0.09 0.11 0.35 * 0.14 0.17

MLR 0.51 ** 0.06 0.08 0.57 ** 0.07 0.09
Note: * indicates a significant correlation at the 0.05 level and ** indicates a significant correlation at the 0.01 level.

4. Discussion

Nowadays, the development of remote sensing technology has provided an effective
way to obtain crop phenotype information in a large area and quickly without loss, and the
use of remote sensing technology to monitor the changes in crop phenotype parameters
is the future development trend. In this study, the quantitative inversion of the vertical
distribution of nitrogen content based on the remote sensing platform was carried out from
the demand of nitrogen content monitoring. It was found that the correlation between
spectral reflectance and nitrogen content of different leaf positions was significantly en-
hanced after FD and SD processing of the original spectrum, and the correlation coefficients
could reach up to 0.89. This was mainly because the spectral information is affected by
atmospheric effects and environmental factors during hyperspectral data acquisition, re-
sulting in noise interference in the original spectrum, which can affect the extraction of
sensitive information. Spectral differentiation technology could partially eliminate the in-
fluence of atmospheric effects and environmental factors, reflecting the nature of vegetation
characteristics, which is consistent with the previous conclusions of Li et al. [20].

In recent years, wavelet transform, as an emerging discipline applied in remote sensing
science, is one of the very promising techniques in hyperspectral information extraction, and
reflects more and more advantages in data dimensionality reduction, crop identification,
and inversion of crop physical and chemical parameters [21]. Our study obtained the
highest prediction accuracy by constructing a nitrogen content prediction model using
wavelet coefficients. This was because wavelet variations can extract the weak information
hidden in the spectral signal and effectively use the overall structural characteristics of the
spectral information.

It has been found that nitrogen is easily transported within the plant, resulting in
significant differences in the nitrogen content of leaves at different leaf positions [22].
Therefore, studying the vertical distribution of nitrogen content within the plant is of great
significance for growth monitoring, making fertilization decisions, guiding agricultural
production, and monitoring pests and diseases. In this study, nitrogen content prediction
models for different leaf positions were constructed based on machine learning algorithms,
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and all of them obtained high prediction accuracy. Among them, the flag leaf and the
upper 1 leaf showed higher prediction accuracy, and MLR and SVM showed better overall
prediction performance. The results can be ascribed to the fact that the upper leaves con-
tribute the most to the canopy spectra, and as the leaf position decreases, the corresponding
contribution to the canopy spectra gradually decreases. This conclusion is highly consistent
with that of Xiao [23]. Machine learning has been widely used in the field of remote sensing
in recent years, and our study successfully constructed nitrogen content inversion models
using four algorithms, all of which achieved high prediction accuracy. However, due to
the small amount of sample data used in the paper, the model may be overfitted when
modeling using machine learning methods, so further increase in sample data is needed to
improve the robustness of the model. The research results can provide reference for other
crops in field phenotype research.

5. Conclusions

The paper used hyperspectral reflectance and nitrogen content data of winter wheat
leaves to construct leaf nitrogen content prediction models for different leaf positions
based on PLSR, SVM, RF, and MLR algorithms, respectively. Our study found that the
original spectra were pre-processed by spectral variation, which could effectively eliminate
the influence of atmospheric effects and environmental factors to improve the prediction
accuracy. In recent years, machine learning methods have been widely used in the field
of agricultural remote sensing. Our study successfully used various machine learning
algorithms to complete the inversion of biochemical parameters and achieved better es-
timation results. The research results provide theoretical and technical references for the
monitoring of vertical distribution of crop nutrients and early nutrient diagnosis based on
remote sensing technology.
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Abbreviations

FD First-order Differential
SD Second-order Differential
CR Continuous Removal
PLSR Partial Least Squares Regression
SVM Support Vector Machine
RF Random Forest
MLR Multiple Linear Regression
CWT Continuous Wavelet Transform
R2 Coefficient of Determination
RMSE Root Mean Squared Error
NRMSE Normalized Root Mean Squared Error
NDVI Normalized Difference Vegetation Index
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RVI Ratio Vegetation Index
DVI Difference Vegetation Index
OSAVI Optimized Soil-Adjusted Vegetation Index
VIOPT Optimal Vegetation Index
NDWI Normalized Difference Water Index
WI Water Index
TCARI Transformed Chlorophyll Absorption Ratio
CI red edge Chlorophyll Index Red Edge
RGVI Red-Green Vegetation Index
RBVI Red-Blue Vegetation Index
GBVI Green-Blue Vegetation Index
MGRVI Misra Green-Red Vegetation Index
RGBVI Relative Green-Blue Vegetation Index
GLA Green Leaf Area
EXR Excess Red
EXG Excess Green
EXGR Excess Green Minus Excess Red
CIVE Color Index of Vegetation
VARI Visible Atmospherically Resistant Indices
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