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Abstract: A smart city is a sustainable and effectual urban center which offers a maximal quality
of life to its inhabitants with the optimal management of their resources. Energy management is
the most difficult problem in such urban centers because of the difficulty of energy models and
their important role. The recent developments of machine learning (ML) and deep learning (DL)
models pave the way to design effective energy management schemes. In this respect, this study
introduces an artificial jellyfish optimization with deep learning-driven decision support system
(AJODL-DSSEM) model for energy management in smart cities. The proposed AJODL-DSSEM
model predicts the energy in the smart city environment. To do so, the proposed AJODL-DSSEM
model primarily performs data preprocessing at the initial stage to normalize the data. Besides, the
AJODL-DSSEM model involves the attention-based convolutional neural network-bidirectional long
short-term memory (CNN-ABLSTM) model for the prediction of energy. For the hyperparameter
tuning of the CNN-ABLSTM model, the AJO algorithm was applied. The experimental validation of
the proposed AJODL-DSSEM model was tested using two open-access datasets, namely the IHEPC
and ISO-NE datasets. The comparative study reported the improved outcomes of the AJODL-DSSEM
model over recent approaches.

Keywords: smart cities; energy management; decision support systems; deep learning; prediction
models; hyperparameter optimization

1. Introduction

The word “smart city” means an urban system targeting satisfying efficacy and sta-
bility phenomena [1] inside crucial fields and implementation zones, such as energy and
environmental management, mobility, administrative services, etc. A smart city is com-
prised of various distinct functional environments, substructures, and networks that can be
optimized and enhanced via the application of developed solutions [2]. There is a demand
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to assess the present conditions of the city (via data arising from sensor networks located
in the metropolitan regions), and decisions should be made in accordance with particular
goals and targets. This means the advancement of intensely linked substructures, emerging
alongside the smart city atmosphere [3,4]. Based on these methods, there exist decision
support systems (DSSs) and computational methodologies. A DSS, broadly implemented in
numerous sectors and fields to guide the automation of decisional functions, understands
and interprets the diverse necessities to be encountered, considering the relative merits
and demerits of the constituting components [5]. DSSs have been broadly researched and
employed in a wide range of application zones, starting from clinical DSSs to management
and business, including smart cities [6].

Figure 1 illustrates the process of energy management in smart cities. The energy in the
smart city environment can be optimally managed to satisfy resource availability, system
cost, geolocation characteristics, energy prices, regulatory constraints, environmental bene-
fits, etc. The power deployment and impact of smart technologies, regarding the dynamic
optimization of grid operations and resources, automation, analytics, and information
exchange, are major difficulties for industrial units to understand the prerequisites for
computational intelligence (CI) patterns in brilliant decision-support techniques [7,8]. CI
has several branches which are unconstrained to neural networks, such as expert systems,
fuzzy systems, artificial immune systems, swarm intelligence [9], evolutionary computing,
and numerous hybrid models, which are compositions of two or more branches. Addi-
tionally, CI is a successor of artificial intelligence (AI), and by means of future computing,
approaches smart grid functions in energy management. Energy management is a global
problem with significant consequences [10]. High power surges and environmental factors
necessitate the transition of electric power grids and smart grids towards the direction of
higher rational energy consumption (ECM).

Figure 1. Process of energy management in smart cities.

The suitable regulation of power generation and utilization promises its effective
exploitation, which requires a smart grid to maintain consistent power transmission among
users and producers for balancing the respective energy status [11]. In this regard, load
estimation approaches are necessary for allowing the estimation of effective power uti-
lization to neglect extra expenses and hikes from the loss ratio, since a million pounds
vanish annually because of energy wastage [11]. Subsequently, the precise and dependable
load forecasting (LF) method is necessary for perfect energy management. An intelligent
data-driven LF method frequently compiled numerous real-life IoT-application-like smart
constructions in the day ahead of estimations, developing suitable energy needs in smart
grids that decrease the likelihood of serious energy shortfalls and endorse optimal utiliza-
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tion. Such techniques can be classified into two categories: they are machine learning (ML)
or statistical techniques, and deep learning (DL) techniques.

This study introduced an artificial jellyfish optimization with deep-learning-driven
decision support system (AJODL-DSSEM) model for energy management in smart cities.
The proposed AJODL-DSSEM model initially performed data preprocessing at the initial
stage to normalize the data. Additionally, the AJODL-DSSEM model involved an attention-
based convolutional neural network bidirectional long short-term memory (CNN-ABLSTM)
model for the prediction of energy. Moreover, the AJO algorithm was applied for the
hyperparameter adjustment of the CNN-ABLSTM model. The experimental validation of
the proposed AJODL-DSSEM model was tested using two open access datasets, namely
the IHEPC and ISO-NE datasets.

The rest of the paper is arranged as follows: Section 2 offers the related work and
Section 3 introduces the proposed model. Next, Section 4 provides experimental validation
and Section 5 reports the conclusions.

2. Related Works

This section offers a detailed survey of energy management schemes in the smart city
environment. Shreenidhi et al. [12] presented an effective load-scheduling model called the
two-stage deep dilated multi-kernel convolutional network (DDMKC)-modified elephant
herd optimization algorithm (MEHOA) model for managing and shoring the load, and
reducing the electricity bill. Here, the proposed model exploited demand response (DR)
pricing information to precisely predict the future pricing signal to make optimal decisions
and achieve the minimal degree of discomfort. Lotfi et al. [13] analyzed the coordination
among home energy management systems (HEMSs), and EV parking lot management
systems (PLEMSs). The EMS coordinated the partial sharing of individual EV schedules
with no communication of private data.

Elsisi et al. [14] projected a DL-based person recognition scheme using YOLOv3 archi-
tecture to calculate the number of people in a certain region. Consequently, the function of
air conditioners was optimally accomplished in a smart building. The presented algorithm
improved the decision making regarding the consumption of energy. For confirming the
efficiency and efficacy of the suggested manner, intensive test scenarios were inspired
by a smart building by considering the existence of air conditioners. Vázquez-Canteli
et al. [15] projected a combined simulation environment which incorporated TensorFlow,
CitySim, and a faster constructing energy simulator, a platform for efficiently implementing
innovative ML algorithms.

In [16], the role of IoT in fusing green energy resources into a smart electrical grid
was presented using a multiobjective-distributed dispatching algorithm (MODDA). Ef-
fectual energy management involved a trade-off of the cost connected to ECM and the
utility function. Therefore, the changes amongst ECM and the utility function should be
recognized. Ullah et al. [17] scheduled new appliances for university campuses to decrease
the cost of ECM and the possible peak-to-average-power ratio. The study presented two
nature-inspired approaches, such as the sine-cosine algorithm (SCA) and the multi-verse
optimization (MVO) technique, to resolve the optimization issue.

In [18], the authors proposed a multi-scale LSTM-based DL technique which was able
to forecast short-term PVGF for effective management. The algorithm concentrated on
two dissimilarly scaled LSTM models for overcoming the shortcomings devised from the
irregular factor. In [19], a special edition of an RNN, for example, the LSTM, was briefly
discussed. We presented ANNdotNET that provided a user-friendly ML architecture with
the ability to import information from the smart grid of smart cities. The ANNdotNET
is a cloud solution that is interconnected by other IoT devices for information providing,
gathering, and feeding effective methods for energy management for smart city cloud
solutions. Li et al. [20] conducted a big data analysis (BDA) on the large volumes of
data produced in the smart city IoT, constructing the smart city alteration to efficient and
safe data processing to the direction of fine governance. Directing the multiple source
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information gathered from the smart city, the DL approach, utilizing BDA, was developed
and offered the distributed parallelism approach of CNNs.

After reviewing the existing studies, we noticed that the energy management perfor-
mance for smart cities has yet to be increased. Though DL models are available in the
literature for energy prediction, the predictive results need to be improved. At the same
time, the parameters related to the DL models increased due to the incessant deepening of
the model, which resulted in model overfitting. In addition, various hyperparameters had
a significant impact on the efficiency of the CNN model, particularly the learning rate. The
learning rate parameter for obtaining better performances must be modified. Hence, we
applied the AJO algorithm for the hyperparameter tuning of the CNN-ABLSTM model.

3. The Proposed Model

In this study, a novel AJODL-DSSEM algorithm was established for the prediction of
energy in the smart city environment. At the initial stage, the proposed AJODL-DSSEM
model mainly accomplished data preprocessing at the initial stage to normalize the data.
Apart from data preprocessing, the AJODL-DSSEM model involved the CNN-ABLSTM
model for the prediction of energy. Finally, the AJO algorithm was applied for the hyper-
parameter adjustment of the CNN-ABLSTM model, which in turn helped in achieving
improved prediction performance.

3.1. Design of CNN-ABLSTM-Based Predictive Model

For the effective prediction of ECM in smart cities, the pre-processed data was passed
into the CNN-ABLSTM model. The CNN had pooling, convolution, and fully connected
(FC) layers. The CNN captured hidden features in the input data by implementing convo-
lution as well as pooling functions. Afterward, the extracting features were combined and
fed into the FC layer. Lastly, several activation functions were employed for introducing
non-linearity to the resultant neurons. The convolutional layer was a vital part of the CNN.
All the convolution layers maintained several convolution kernels that were convolved
with the input data to capture hidden features and develop feature maps. The feature map
endured a nonlinear activation function for generating the results of the convolution layer.
The convolution layer is formulated as:

ci = f (wi ∗ xi + bi) (1)

where xi signifies the input of the convolutional layer, ci represents the ith resultant feature
map, wi denotes the weighted matrix, ′t implies the dot products, bi represents the bias vec-
tor, and f (·) stands for the activation function. The ReLU function has been widely selected
as the activation function of CNNs. In the mathematical process, ReLU is determined as:

ci = f (hi) = max (0, hi) (2)

where hi denotes the element of feature maps attained in the convolution functions. Max
pooling is the most utilized pooling approach. It can be understood by computing the
maximal value of the allocated region from the feature maps based on Equations (3) and (4):

γ(ci, ci−1) = max (ci, ci−1) (3)

pi = γ(ci, ci−1) + βi (4)

where γ(·) signifies the max-pooling sub-sampling function, βi indicates the bias, and
pi stands for the result of the max-pooling layer. Lastly, the feature maps attained with
convolution and pooling functions were fed into the FC layer; then, the layer computed the
last resultant vector, as demonstrated under:

yj = f (ti pi + δi) (5)
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where yi denotes the last resultant vector, δi represents the bias, and ri implies the weighted
matrix.

The proposed architecture is a structure of two branches. One branch used a CNN to
capture the spatial properties of the data, and the other conducted the feature selections by
utilizing a two-layer BiLSTM model with an attention mechanism.

LSTM NNs are variants of RNNs and solve the gradient vanishing problems of RNNs.
LSTM adds a memory cell structure from the neural node of the hidden state of RNNs
for storing the previous data and adds a three-gate infrastructure: forget, output, and
input gates, to control the utilization of the previous data. By forgetting the unused
data and memorizing the original data from the cell state, LSTM transfers valuable data
from the subsequent computation time [21]. The computation equation is shown in the
subsequent formulae:

iτ = o(Wi · [hτ−12xτ ] + bi) (6)

fT = o
(

W f · [hτ−12xτ ] + b f

)
(7)

oτ = o(Wo · [hτ−12xτ ] + bo) (8)

hτ = 0τ � tanh(cτ) (9)

cτ = fT � ct−1 + it � c̃ (10)

c̃ = tanh(Wc · [hτ−1, xt] + bc) (11)

o(x) =
1

1 + e−χ
(12)

tanh (x) =
eχ − e−χ

eχ + e−χ
(13)

where c̃t refers to the temporary state and ct denotes the present state. it, ft, and 0t signify
output, input, and forget gates, respectively, xτ signifies the present input, and hτ−1
denotes the hidden state of the earlier time. Wi, W f , and Wo characterize the connection
weight of the three gates, b specifies the offset, and σ and tan h symbolize the activation
functions. Because LSTM only learns the abovementioned dataset of sequential time,
BiLSTM makes further progress to LSTM; for example, it reverses and forwards LSTM
networks and presents the contextual dataset of sequential time. At this point, χ1, χ2, . . . χt

signifies the series of inputs,
→
h t and

←
ht symbolize the forward and reverse output calculated

at each moment, respectively, and they were evaluated for attaining the concluding output

yt. Assuming the forward output
→
h t at t time, the computational equation of forward and

reverse directions was consistent with LSTM. The forward and backward temporary cell

states,
→
c̃t and

←
c̃t ,
→
lt and

←
lt input gates,

→
ft and

←
ft forget gates, and

→
ot and

←
ot output gates

were evaluated. Figure 2 depicts the framework of the BiLSTM technique.

Figure 2. Structure of BiLSTM model.
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The final output yt at t time was:

yt =

[→
ht,
←
ht

]
(14)

With Equation (14), we evaluated the output at every moment, as well as accomplished
the concluding output Y = [h0, h1, ht]. In an ABLSTM network with an attention process,
the attention technique proceeded to benefit the final cell state of BiLSTM and produced
a position with the cell state of input utilizing the hidden layer of BiLSTM. Next, the
correlation among the resultant layer and these candidate in-between states were calculated.
In the learning procedure, the connected data were noted, and the irrelevant data were
suppressed for enhancing the accuracy and efficacy of the forecast [22]. The resultant
A of the attention layer from the attentive BiLSTM network was created, based on the
subsequent Equations (15)–(17):

M = tanh (Y) (15)

α = so f tmax
(

wT
a M
)

(16)

A = YαT (17)

where y represents the matrix and signifies the features captured with the BiLSTM technique
as the aforementioned matrix y = [y1, y2, . . . , yt]. α signifies the vector and denotes the
attention weighted to the feature y. wa implies the weighted co-efficient matrix of the
attention layer. T demonstrates the transpose function.

3.2. Hyperparameter Optimization

In this study, the hyperparameters of the CNN-ABLSTM model, such as learning
rate, batch size, and the number of epochs, were optimally chosen for the use of the AJO
algorithm. The AJO algorithm was simulated for the performance of jellyfish (JF) in the
ocean. The AJO behavior of searching for food in the ocean consisted of movement inside
the swarm or following the ocean current and utilizing a time-control model for switching
between these movements [23].

Primarily, we observed a chaotic map with a random method to discover the optimal
initialized method that precisely distributed the solution in the searching space to prevent
getting stuck in local minima and to speed up the convergence. After observation, the JF
were implemented in the logistic map, arithmetically defined as the following:

→
Xi+1 = η

→
Xi(1− Xi), 0 ≤

→
Xo ≤ 1 (18)

where
→
Xi refers to a vector that comprised the logistic chaotic values of ith JF.

→
X0 indicates

a primary vector of JF 0, randomly created within [0, 1]. This vector was an initial point
that was dependent upon creating the logistic chaotic value to the remainder of JF. η was
allocated to a value of four. After being initialized, every solution was observed and

the one with optimal fitness values was selected as the position with food
→
X. Then, the

present location of every jellyfish was updated towards either the ocean current or motion
inside the swarm, depending upon the time-control strategy for switching between the two
movements. Mathematically, the ocean current can be defined as follows [24]:

→
Xi(t + 1) =

→
Xi(t) +

→
r ∗
(→

X′ − β ∗ r1 ∗ µ

)
(19)

where
→
X′ represents the jellyfish having the current best position among the whole popula-

tion,
→
r represents a vector randomly generated within [0, 1], ∗ indicates the element-wise

vector multiplication, β > 0 denotes the distribution co-efficient that depends on the sensi-
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tivity analysis, β = 3 µ represents the mean of the population, and r1 indicates an arbitrary
value within [0, 1]. Figure 3 illustrates the behaviors involved in jellyfish.

Figure 3. Behaviors of jellyfish.

The movement inside the JF swarm is classified into active and passive motions. In the
passive motion, the JF moves nearby the location, and the novel position is given as follows:

→
Xi(t + 1) =

→
Xi(t) + r3 ∗ γ ∗ (Ub − Lb) (20)

where r3 indicates an arbitrary value within [0, 1], and γ > 0 denotes the length of
motion near the present position. ub and Lb characterize the upper as well as lower limits
of searching space o, respectively. The mathematical expression of the active motion is
given as:

→
Xi(t + 1) =

→
Xi(t) +

→
r ∗
→
D (21)

where
→
r denotes a vector that comprises arbitrary values lying within [0, 1].

→
D was utilized

for determining the way of motion of the present JF with the following generation, and the
motion was often toward the position of optimal food and given as follows:

→
D =


→
Xi(t)−

→
X j(t) , i f f

(→
Xi

)
< f

(→
X j

)
→
X j(t)−

→
Xi(t) , otherwise

(22)
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where j represents the index of JF designated in a random fashion, and f designates the
fitness function. The time-control model was utilized for switching between the ocean cur-
rent, passive and active motions, and comprised a constant c0. A mathematical expression
of the time-control mechanism is given as:

c(t) =
(

1− t
t max

)
∗ (2 ∗ r− 1) (23)

where t refers to the present evaluation, t max indicates the maximal evaluation, and r
represents an arbitrary value lying within [0, 1] as illustrated in Algorithm 1.

Algorithm 1: Pseudocode of AJO algorithm

Begin
Determine the objective function f (X), X = (x1, . . . , xd)

T

Fix the searching space, population size (nPop,) and maximal iteration (Maxint)
Initialize the population of JF, Xi

(
i = 1, 2, . . . , npop

)
, utilizing a logistic chaotic

map
Compute the quantity of food at all Xi, f (Xi)
Define the JF at place presently with most food (X∗)
Initializing time: t = l
Repeat

For i = 1 : nPop do
Compute the time control c(t) utilization
If c(t) ≥ 0.5: the JF follows the ocean current

(1) Define the ocean current
(2) Novel place of JF was determined

Else: the JF moves inside a swarm
If rand(0,1) > (l − c(t)): the JF displays type A motion (passive motion)

(1) Novel place of JF was determined
Else: JF displays type B motion (active motion)

(2) Define the direction of JF
(3) Novel place of JF was determined

End if
End if
Verify the boundary condition and compute the quantity of food at novel place
Upgrade the place of JF (Xi) and place of JF presently with the food (X∗)
End for i
Upgrade the time: t = t + 1
Still end condition was met (e.g., t > (Maxint))
Output the optimal outcomes and visualize (JF bloom)

End

This study established an AJO technique for a suitable selection of network weights
from the CNN-ABLSTM method with a minimized mean square error (MSE). The MSE
mathematical model is determined as:

MSE =
1
T

L

∑
j=1

M

∑
i=1

(
yi

j − di
j

)2
, (24)

where M and L represent the resultant values of layers and data, respectively, and yi
j and di

j

signify the attained and the appropriate magnitudes to the jth unit from the resultant layer
of networks from the time t.
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4. Results and Analysis

The proposed model was simulated using a Python 3.6.5 tool with packages, namely
tensorflow-gpu==2.2.0, scikit-learn, matplotlib, seaborn, pyqt5, prettytable, numpy, pandas,
and openpyxl.

4.1. Dataset Details

In this section, the experimental validation of the AJODL-DSSEM model was tested
using two open access datasets, namely the IHEPC [25] and ISO-NE datasets [26]. The
IHEPC dataset encompasses 2,075,259 readings collected in a house located in Sceaux,
Paris. The dataset collected power consumption for four years (from 16 December 2006
to 26 November 2010) in a home in France. The dataset holds nine attributes, such as
data, time, global active power, global reactive power, voltage, global intensity, and sub
metering one, two, and three. Next, the ISO-NE dataset collected hourly time-series data
from 2012 to 2016, for a total of five years (43,915 samples), and was employed for model
training. Similarly, one year (2017) of hourly data (8783 samples) was used for testing
purposes. The dataset comprises a total of 14 features, where a feature called “SYSLOAD”
was undertaken as the target label, and the dry bulb column represented the temperature
in degrees Fahrenheit, among other data-time features.

4.2. Result Analysis

Table 1 offers a comprehensive predictive outcome of the AJODL-DSSEM model on
two datasets. Figure 4 reports a brief result analysis of the AJODL-DSSEM model under
different cases of the IHEPC dataset. The figure implied that the AJODL-DSSEM model
attained enhanced performance in all aspects. For instance, with the autumn season, the
AJODL-DSSEM model obtained an RMSE, MAE, and MAPE of 0.291, 0.270, and 0.349,
respectively. Furthermore, with the spring season, the AJODL-DSSEM technique reached
an RMSE, MAE, and MAPE of 0.271, 0.218, and 0.330, respectively. In addition, with winter
the season, the AJODL-DSSEM methodology obtained an RMSE, MAE, and MAPE of 0.319,
0.280, and 0.302, respectively.

Table 1. Result analysis of AJODL-DSSEM technique with various measures under two datasets.

Label RMSE MAE MAPE

IHEPC Dataset

Autumn 0.291 0.270 0.349

Summer 0.330 0.281 0.335

Spring 0.271 0.218 0.330

Winter 0.319 0.280 0.302

Average 0.303 0.262 0.329

ISO-NE Dataset

Autumn 0.413 0.333 0.256

Summer 0.453 0.364 0.241

Spring 0.480 0.422 0.218

Winter 0.479 0.416 0.231

Average 0.456 0.384 0.237

Figure 5 demonstrates a detailed result analysis of the AJODL-DSSEM approach under
distinct cases of the ISO-NE dataset. The figure exposed that the AJODL-DSSEM technique
attained improved performance under all aspects. For instance, with the autumn season,
the AJODL-DSSEM model achieved an RMSE, MAE, and MAPE of 0.413, 0.333, and 0.256,
respectively. Moreover, with the spring season, the AJODL-DSSEM algorithm obtained
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an RMSE, MAE, and MAPE of 0.480, 0.422, and 0.218, respectively. Furthermore, with the
winter season, the AJODL-DSSEM methodology reached an RMSE, MAE, and MAPE of
0.479, 0.416, and 0.231, respectively.

Figure 4. Result analysis of AJODL-DSSEM technique under IHEPC dataset.

Figure 5. Result analysis of AJODL-DSSEM technique under ISO-NE dataset.
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Table 2 and Figure 6 illustrate the actual vs. predicted global active power of the
AJODL-DSSEM model under distinct time steps on the IHEPC dataset. The results indicated
that the AJODL-DSSEM model predicted the values much closer to the actual values. For
instance, with a time step of 20 h and actual value of 4.308, the IHEPC dataset obtained a
predicted value of 4.383. Furthermore, with a time step of 80 h and actual value of 1.532,
the IHEPC dataset reached a predicted value of 1.387. In addition, with a time step of
160 h and actual value of 0.182, the IHEPC dataset attained a predicted value of 0.222. In
addition, with a time step of 200 h and actual value of 0.478, the IHEPC dataset obtained a
predicted value of 0.415.

Table 2. Global active power analysis of AJODL-DSSEM technique under distinct time steps on
IHEPC dataset.

Global Active Power—IHEPC Dataset

Time Steps (h) Actual Predicted

0 1.053 0.890

20 4.308 4.383

40 0.334 0.223

60 0.422 0.580

80 1.532 1.387

100 0.321 0.302

120 0.283 0.187

140 1.368 1.309

160 0.182 0.222

180 1.961 1.762

200 0.478 0.415

Figure 6. Global active power analysis of AJODL-DSSEM technique under IHEPC dataset.
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Table 3 and Figure 7 demonstrate the actual vs. predicted system load of the AJODL-
DSSEM algorithm under distinct time steps on the ISO-NE dataset. The outcomes showed
that the AJODL-DSSEM methodology predicted the values much closer to the actual values.
For instance, with a time step of 20 h and actual value of 0.401, the IHEPC dataset achieved
a predicted value of 0.394. Furthermore, with a time step of 40 h and actual value of 0.309,
the IHEPC dataset reached a predicted value of 0.322. In addition, with a time step of
80 h and actual value of 0.125, the IHEPC dataset obtained a predicted value of 0.139. In
addition, with a time step of 100 h and actual value of 0.406, the IHEPC dataset obtained a
predicted value of 0.420.

Table 3. System load analysis of AJODL-DSSEM technique under distinct time steps on ISO-
NE dataset.

System Load—ISO-NE Dataset

Time Steps (h) Actual Predicted

0 0.341 0.345

10 0.190 0.199

20 0.401 0.394

30 0.198 0.201

40 0.309 0.322

50 0.131 0.133

60 0.266 0.278

70 0.285 0.302

80 0.125 0.139

90 0.345 0.365

100 0.406 0.420

Figure 7. System load analysis of AJODL-DSSEM technique under ISO-NE dataset.
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5. Discussion

A comparative study of the AJODL-DSSEM model with recent models: the GRU [25],
Bi-GRU [26], LSTM [27], Bi-LSTM [28], CNN-LSTM [29], CNN-GRU [30], and energy-
net [31] models on the IHEPC dataset, is portrayed in Table 4. Figure 8 compares the MSE,
RMSE, and MAE inspections of the AJODL-DSSEM model on the IHEPC dataset. The figure
implied that the IHEPC dataset showed effectual outcomes with minimal values of MSEs,
RMSEs, and MAEs. With respect to MSE, the AJODL-DSSEM algorithm obtained a reduced
MSE of 0.092, whereas the GRU, Bi-GRU, LSTM, Bi-LSTM, CNN-LSTM, CNN-GRU, and
energy-net models obtained increased MSEs of 0.270, 0.251, 0.413, 0.422, 0.431, 0.243, and
0.125, respectively. Moreover, in terms of the RMSE, the AJODL-DSSEM methodology
obtained a lower RMSE of 0.303, whereas the GRU, Bi-GRU, LSTM, Bi-LSTM, CNN-LSTM,
CNN-GRU, and energy-net methodologies obtained improved RMSEs of 0.518, 0.501, 0.643,
0.647, 0.662, 0.493, and 0.354, respectively.

Table 4. Comparative analysis of AJODL-DSSEM technique with existing approaches under
IHEPC dataset.

IHEPC Dataset

Models MSE RMSE MAE MAPE (%)

GRU [24] 0.270 0.518 0.389 65.200

Bi-GRU [25] 0.251 0.501 0.372 63.900

LSTM [26] 0.413 0.643 0.409 67.800

Bi-LSTM [27] 0.422 0.647 0.392 65.300

CNN-LSTM [28] 0.431 0.662 0.403 50.900

CNN-GRU [29] 0.243 0.493 0.348 46.400

Energy-Net [30] 0.125 0.354 0.287 39.200

AJODL-DSSEM 0.092 0.303 0.262 32.900

Figure 8. Comparative analysis of AJODL-DSSEM algorithm under IHEPC dataset.
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Figure 9 demonstrates the MAPE analysis of the AJODL-DSSEM method on the
IHEPC dataset. The figure exposed that the IHEPC dataset showed effectual outcomes with
minimal values of MAPE. In terms of the MAPE, the AJODL-DSSEM technique obtained a
lower MAPE of 32.9%, whereas the GRU, Bi-GRU, LSTM, Bi-LSTM, CNN-LSTM, CNN-
GRU, and energy-net systems reached improved MAPEs of 65.2%, 63.9%, 67.8%, 65.3%,
50.9%, 46.4%, and 39.2%, respectively.

Figure 9. MAPE analysis of AJODL-DSSEM algorithm under IHEPC dataset.

A comparative study of the AJODL-DSSEM algorithm with recent approaches to the
ISO-NE dataset is depicted in Table 5. Figure 10 illustrates the MSE, RMSE, and MAE
examinations of the AJODL-DSSEM approach on the ISO-NE dataset. The figure exposed
that the IHEPC dataset obtained effectual outcomes with lesser values of MSEs, RMSEs,
and MAEs. In terms of the MSE, the AJODL-DSSEM algorithm obtained a decreased
MSE of 0.208, whereas the GRU, Bi-GRU, LSTM, Bi-LSTM, CNN-LSTM, CNN-GRU, and
energy-net approaches obtained increased MSEs of 0.619, 0.501, 0.792, 0.557, 0.456, 0.379,
and 0.286, respectively.

Table 5. Comparative analysis of AJODL-DSSEM algorithm with recent methodologies under ISO-
NE dataset.

ISO-NE Dataset

Models MSE RMSE MAE MAPE (%)

GRU [24] 0.619 0.794 0.513 49.200

Bi-GRU [25] 0.501 0.713 0.461 60.900

LSTM [26] 0.792 0.891 0.552 65.400

Bi-LSTM [27] 0.557 0.746 0.534 62.300

CNN-LSTM [28] 0.456 0.681 0.434 40.900

CNN-GRU [29] 0.379 0.617 0.488 34.100

Energy-Net [30] 0.286 0.535 0.414 29.300

AJODL-DSSEM 0.208 0.456 0.384 23.700
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Figure 10. Comparative analysis of AJODL-DSSEM technique under ISO-NE dataset.

With respect to the RMSE, the AJODL-DSSEM system obtained an RMSE of 0.384, whereas
the GRU, Bi-GRU, LSTM, Bi-LSTM, CNN-LSTM, CNN-GRU, and energy-net techniques ob-
tained improved RMSEs of 0.794, 0.713, 0.891, 0.746, 0.681, 0.617, and 0.535, respectively.

Figure 11 illustrates the MAPE inspection of the AJODL-DSSEM approach on the ISO-
NE dataset. The figure showed that the IHEPC dataset outperformed effectual outcomes
with minimal values of MAPEs. In terms of the MAPE, the AJODL-DSSEM system obtained
a decreased MAPE of 23.7%, whereas the GRU, Bi-GRU, LSTM, Bi-LSTM, CNN-LSTM,
CNN-GRU, and energy-net methodologies obtained enhanced MAPEs of 49.2%, 60.9%,
65.4%, 62.3%, 40.9%, 34.1%, and 29.3%, respectively.

Figure 11. MAPE analysis of AJODL-DSSEM technique under ISO-NE dataset.

From the detailed results and discussion, the AJODL-DSSEM model resulted in en-
hanced prediction outcomes over existing models.
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6. Conclusions

In this study, a novel AJODL-DSSEM model was established for the prediction of
energy in the smart city environment. The proposed AJODL-DSSEM model mainly ac-
complished data preprocessing at the initial stage to normalize the data. Further, the
AJODL-DSSEM model involved a CNN-ABLSTM model for the prediction of energy.
Lastly, the AJO algorithm was applied for the hyperparameter adjustment of the CNN-
ABLSTM model. The experimental validation of the proposed AJODL-DSSEM model was
tested using two open access datasets, namely the IHEPC and ISO-NE datasets. The com-
parative study reported the enhanced outcomes of the AJODL-DSSEM model over recent
approaches. Thus, the AJODL-DSSEM model can be employed for energy-management-
related decision making in the real-time smart city environment. The proposed model
can be useful for optimal resource allocation in the smart city environment. It can also
assist stakeholders and policymakers in the design of energy solutions for smart cities by
providing strategies for the effective modeling and management of energy systems. It is
helpful for the stakeholders to understand urban dynamics and evaluate the influence of
energy policy alternatives. In the future, feature selection and outlier detection approaches
can be integrated into the proposed model to boost the predictive performance. Moreover,
the proposed model can be tested on real-time large-scale datasets in the future.
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