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Featured Application: This proposed method is suitable for the cooperative consensus control of
various homogeneous Multiple Autonomous Unmanned linear systems, such as an underwater
robot swarm and aerial UAV swarm.

Abstract: This paper addresses the distributed optimal decoupling synchronous control of multiple
autonomous unmanned linear systems (MAUS) subject to complex network dynamic coupling. The
leader–follower mechanism based on neighborhood error dynamics is established and the network
coupling term is regarded as the external disturbance to realize the decoupling cooperative control
of each agent. The Bounded L2-Gain problem for the network coupling term is formulated into a
multi-player zero-sum differential game. It is shown that the solution to the multi-player zero-sum
differential game requires the solution to coupled Hamilton–Jacobi (HJ) equations. The coupled
HJ equations are transformed into an algebraic Riccati equation (ARE), which can be solved to
obtain the Nash equilibrium of a multi-player zero-sum game. It is shown that the bounded L2-Gain
for coupling attenuation can be realized by applying the zero-sum game solution as the control
protocol and the ultimately uniform boundedness (UUB) of a local neighborhood error vector under
conservative conditions is proved. A simulation example is provided to show the effectiveness of the
proposed method.

Keywords: synchronous control; multiple autonomous unmanned linear systems; bounded L2-gain;
multi-player zero-sum game; coupling attenuation; coupled Hamilton–Jacobi equation; nash equilib-
rium; algebraic Riccati equation

1. Introduction

In the field of multi-agent distributed control, synchronous cooperative control is one
of the most popular research topics because of its wide application prospects in many
engineering systems, such as the cooperative control of autonomous underwater vehicles,
wind farm and unmanned aerial vehicles. A great deal of research has been developed
on the distributed control methods for multi-agent synchronization [1–4]. The purpose of
distributed synchronous control is to design a control protocol for each agent, depending
only on the states of neighboring agents, to ensure that the states of all agents in the
communication digraph finally achieve synchronization. A leader–follower mechanism
is the most popular one for distributed synchronous control because of its simplicity and
scalability. The basic idea is that a leader agent is set as the reference node, and other
agents are set as the follower nodes whose goal is to track the reference node to achieve the
ultimate synchronization of the entire communication network.

On the basis of this mechanism, ref. [5] defines the local neighborhood error of each
agent and deduces that this is a dynamical system with multiple control inputs, from itself
and all of its neighbors. This means that the local neighborhood error of each agent is the
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result of coupling from adjacent node agents, which brings considerable complexity to the
design of the control protocol. Ref. [6] formulated this intricate relationship as a differential
game, namely, a multi-agent differential graphical game, by defining a local performance
index for each agent. Optimal control and game theory [7,8] has been successful utilized
to formulate strategic behavior, where the dynamic of each agent relies on the actions of
itself and its neighbors. In an optimal control and differential graphical game, each agent
minimizes the performance objective (cost value function) by adjusting its control strategy
to optimal. In [9], the finite-time optimal coordination problem of multi-agent systems
(MASs) is investigated. The authors in [10] addressed the centralized optimal coordination
problem under tree formation constraints. In [11], the robust optimal formation control
of heterogeneous MASs is studied. These published graphical games and optimal control
methods for consensus and synchronization are achieved based on the solution of coupled
Hamilton–Jacobi–Isaacs (HJI) equations and Hamilton–Jacobi–Bellman (HJB) equations,
respectively. In practice, coupled HJI and coupled HJB equation are difficult to be solved
by analytical methods due to their inherent nonlinearity and uncertainty.

The reinforcement learning (RL) method is often regarded as the effective method to
solve the coupled HJI and coupled HJB equation. RL is the branch of machine learning
concerned with how to methodically adjust the control strategy of agents based on the
rewards from the environment [12–15]. In [16], an online distributed optimal adaptive
algorithm is proposed for a differential graphical game, the intelligent identifier is designed
to find the unknown dynamic and the neural actor–critic network structure is introduced
to find the solutions of the Nash equilibrium. In [17], the bounded L2-gain consensus
problem for the MASs with external disturbance is formulated into the zero-sum differential
game by introducing a specific performance index and a policy iteration (PI) algorithm-
based RL is provided to find the solution to the coupled HJI equations. In [18], the
optimal synchronization control problem is studied for homogeneous MASs with input
saturation by using the RL methods. This research utilizes the neural network as an
approximator and a design-specific update law so that the neural network approximates
the optimal value function and optimal control strategy with certain precision. However,
the strict asymptotic convergence proof of the neural network is not given in these works,
and only the boundedness of approximate errors is guaranteed. In addition, the neural
network approximator-based RL needs to satisfy the persistence of the excitation condition
(PE) [19–23], which also limits the practical engineering application of these methods.

The quadratic optimal control problem of a linear single system can be solved by
solving an algebraic Riccati equation (ARE) [24], but the optimal control problem of MASs
is far more complicated than that of a single system owing to the state coupling in the
control design. At present, some optimal control methods of MASs are accompanied by a
huge amount of calculations and strong assumptions.

Motivated by the above discussion, this paper focuses on the optimal cooperative con-
trol of Multiple Autonomous Unmanned linear systems (MAUS) from a new perspective,
i.e., the adjacent nodes’ input coupling part is regarded as the external disturbance. Thus,
the complex distributed multi-agent error dynamics are decoupled into centralized multi-
input dynamics. Inspired by the idea of a zero-sum game in [17], this paper formulates
these centralized multi-input dynamics into multiple independent multi-player zero-sum
differential games. The motivation is to realize the decoupled optimal synchronous control
of MASs and the main contributions of this paper are listed in the following:

(1) The coupling among the distributed multi-agents is equivalent to the disturbance
from different channels, and the local neighborhood error dynamics of each agent are
modeled as an independent centralized multi-player game.

(2) The bounded L2-gain problem for coupling attenuation is introduced and is formu-
lated into a multi-player zero-sum game by defining a modified performance index.
Different from the L2-gain problem of [17], concerning disturbance rejection, the mo-
tive of the bounded L2-gain for the coupling attenuation studied here is to suppress
the coupling effect on the performance.
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(3) It is proved that the solution of the zero-sum game requires the solution of the
coupled Hamilton–Jacobi (HJ) equation. The coupled HJ equation of each agent
is transformed into an independent equivalent algebraic Riccati equation, which
simplifies the solution process effectively.

This paper is organized as follows. Section 2 provides the mathematical background
and derives the local error dynamics of each node that is coupled by its own control
protocol and those of its neighbors. Section 3 proposes the problem formulation of the
bounded L2-gain for coupling attenuation and its equivalent multi-player zero-sum dif-
ferential game. Section 4 transforms this zero-sum differential game into the solution of
an algebraic Riccati equation and proves the ultimately uniform boundedness of the local
neighborhood error, conservatively. The simulation results and conclusion is presented in
Sections 5 and 6, respectively.

2. Preliminaries and Problem Formulation
2.1. Graph Theory

In this paper, the multi-agent directed communication network is depicted. A directed
connected graph is defined as G(V, E, A), where V = {v1, v2, · · · , vn} represents a finite
non-empty set of nodes, E ⊆ V × V is the ordered set of nodes pairs and A = [aij] is
the adjacency matrix. If node vi can receive the information from node vj, then the node
pairs vij = (vi, vj) ∈ E, and node vj is called a neighbor of node vi. The neighbor set of
node vi is represented by Ni =

{
vj
∣∣(vi, vj) ∈ E

}
. Correspondingly, the adjacency matrix

element aij = 1 when vj ∈ Ni, otherwise aij = 0. The graph Laplacian matrix is defined as
L = D− A, whose row sums are equal to zero [25]. Diagonal matrix D = diag(di) is the
in-degree matrix, where di = ∑j∈Ni

aij is the in-degree of node vi.

Definition 1. A directed graph is called as strongly connected if there is a directed path for any a pair
of distinct nodes (vi, vj), where the directed path is the edge sequence (vi1, vi2), (vi2, vi3),..., (vik, vj).

Definition 2 [17]. A directed tree is a connected graph where every node except the root node, has
an in-degree equal to one. The graph is called to have a spanning tree if a subset of the node pairs
constructs a directed tree.

In this paper, λ(B) and λ(B) represent the maximum and minimum singular values
of the matrix B, respectively.

2.2. Problem Formulation

Considering the Multiple Autonomous Unmanned linear systems (MAUS) constructed
by the directed communication graph G(V, E, A) having N agents, the dynamics of each
agent is described in the following:

.
xi = Axi + Bui (1)

where xi ∈ Rn, ui ∈ Rmi are states and control inputs of node i, respectively. The cooper-
ative control of homogeneous systems is investigated in this paper and the leader node
x0 ∈ Rn is set to satisfy the following dynamic

.
x0 = Ax0 (2)

The problem of MAUS synchronization is designing control protocols ui for each agent
so that states of each node track the leader node, i.e., ‖x0 − xi‖ → 0, ∀i .

The neighborhood error for each node is defined as [26]

δi = ∑
j∈Ni

aij(xi − xj) + gi(xi − x0) (3)
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where gi ≥ 0 denotes the pinning gain and there is at least one node that has a link to the
leader node.

For the neighborhood error (3), the overall neighborhood error vector of graph
G(V, E, A) is given by

δ = ((L + G)⊗ In)(xi − x0) (4)

where x = [xT
1 xT

2 · · · xT
N ]

T and δ = [δT
1 δT

2 · · · δT
N ]

T denote the global state vector and global
error vector, respectively. Moreover, for x0 = Ix0 ∈ RnN with I = 1N ⊗ In ∈ RnN×n,
In denotes the n dimensional identity matrix and 1N denotes the N-vector of ones. The
symbol ⊗ is the Kronecker product [27]. G = diag(g1, g2, · · · ,gN) as a diagonal matrix
represents the connection between all agents and the leader node.

The overall synchronization error is

ε = (x− x0) ∈ RnN (5)

Assumption 1. The communication graph is strongly connected, i.e., there is a directed path for
any a pair of distinct nodes.

On the basis of Assumption 1, if G 6= 0, then gi 6= 0 for at least one. In this case, the
matrix L + G is non-singular and the real parts of all eigenvalues are positive [26]. The
following lemma can be obtained, which shows that the overall neighborhood error vector
δ is positively correlated with the overall synchronization error ε.

Lemma 1. If the communication graph is strongly connected and G 6= 0, the synchronization
errors are bounded, as follows

δ/λ(L + G) ≤ ‖ε‖ ≤ δ/λ(L + G) (6)

Furthermore, δ ≡ 0 if and only if all nodes are synchronized, i.e.,

ε = (x− x0) = 0 (7)

The dynamics of the local neighborhood tracking errors are given as

.
δi = ∑

j∈Ni

aij(
.
xi −

.
xj) + gi(

.
xi −

.
x0) (8)

Substituting (1) and (2) into the above equation, it can be obtained that

.
δi = Aδi + (di + gi)Biui − ∑

j∈Ni

aijBjuj (9)

It can be seen that the dynamics of the local neighborhood error of each agent i is affected
by multiple control inputs from node i and its adjacent nodes. The whole MAUS with the
communication graph G(V, E, A) presents a complex coupling relationship. It is quite intricate
to solve the optimal control problem of dynamic (9) affected by multi-coupling.

3. Multi-Player Zero-Sum Differential Game for Decoupled Multi-Agent System
3.1. The Bounded L2-Gain Problem for Coupling Attenuation of Multi-Agent System

For decoupling, the inputs from adjacent nodes in the dynamics (9) are replaced by the

virtual coupling actions wi(t) = [
_
u

T
j ]

T

j∈Nj
which is regarded as the external disturbances.

The performance output is defined as zi(t) = [δT
i uT

i ]
T . It is desired to designed the
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control protocol ui to achieve synchronization while satisfying the follow bounded L2-gain
condition for the coupling actions with a given γi > 0∫ T

0 ‖zi(t)‖2 dt =
∫ T

0 (δT
i Qiδi + uT

i Riiui) dt

≤ γ2
i
∫ T

0 ∑
j∈Ni

_
u

T
j Rij

_
u j dt + β(δi(0))

(10)

where, β(·) is a bounded function such that β(0) = 0, Qi > 0, Rii > 0, Rij > 0. γ∗i is defined
as the minimum value of γi while the bounded L2-gain condition (10) is satisfied.

3.2. Multi-Player Zero-Sum Differential Game

The following equation is used to define the following performance index function for
each agent.

Ji(δi(0) , ui ,
_
u−i) =

1
2

∫ ∞

0
δT

i Qiδi + uT
i Riiui− γ2

i ∑
j∈Ni

_
u

T
j Rij

_
u jdt (11)

where
_
u−i denotes the virtual coupling control inputs from neighboring nodes, i.e.,

_
u−i =

{
_
u j| j ∈ Ni

}
. It should be noted that the main difference from [17] is that the

coupling control inputs from neighboring nodes are regarded as the virtual external distur-
bances directly, which greatly simplifies the design of the control protocol ui.

The solution for the bounded L2-gain problem for coupling attenuation depicted in
Section 3.1 can be equivalent to the Nash equilibrium solution of the multi-player zero-sum
game-base on the performance index function (11). That is

Vi(δi(0)) = min
ui

max
_
u−i

Ji(δi(0) , ui ,
_
u−i) (12)

In this multi-player zero-sum game, the goal of ui is to minimize the value Vi(δi(0)).
On the contrary, the virtual coupling inputs

_
u−i are assumed to maximize the value. This

game has a unique solution if a game-theoretic saddle point (u∗i ,
_
u
∗
−i) exists, i.e.,

V∗i (δi(0)) = min
ui

max
_
u−i

Ji(δi(0) , ui ,
_
u−i) = max

_
u−i

min
ui

Ji(δi(0) , ui ,
_
u−i) (13)

Accordingly, the value V∗i (δi(0)) in the above equation is the value of the zero-sum
game and satisfies the following Nash equilibrium condition for all policies ui ,

_
u−i

Ji(δi(0) , u∗i ,
_
u−i) ≤ Ji(δi(0) , ui ,

_
u−i) ≤ Ji(δi(0) , ui ,

_
u
∗
−i) (14)

When the policies ui ,
_
u−i are selected, the value function of node i can yield

Vi(δi(t) , ui ,
_
u−i) =

1
2

∫ ∞

t
δT

i Qiδi + uT
i Riiui− γ2

i ∑
j∈Ni

_
u

T
j Rij

_
u jdt (15)

Differential equivalents to each value function are given as

0 = 1
2

(
δT

i Qiδi + uT
i Riiui− γ2

i ∑
j∈Ni

_
u

T
j Rij

_
u j

)
+∇VT

i (Aδi + (di + gi)Biui − ∑
j∈Ni

aijBj
_
u j) , Vi(0) = 0 , i ∈ N

(16)
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where ∇Vi =
∂Vi
∂δi
∈ Rn denotes the gradient vector. The Hamiltonian functions are defined

as follows,

Hi(δi,∇Vi, ui,
_
u−i) ≡ 1

2

(
δT

i Qiδi + uT
i Riiui− γ2

i ∑
j∈Ni

_
u

T
j Rij

_
u j

)
+∇VT

i (Aδi + (di + gi)Biui − ∑
j∈Ni

aijBj
_
u j)

(17)

Under certain policies ui ,
_
u−i, the partial differential equation Hi(δi,∇Vi, ui,

_
u−i) = 0

has a unique solution Vi(δi). The principle of optimality gives

∂Hi(δi ,∇Vi ,ui ,
_
u−i)

∂ui
= 0⇒ ui = −(di + gi)R−1

ii
BT

i ∇Vi
∂Hi(δi ,∇Vi ,ui ,

_
u−i)

∂
_
u j

= 0⇒ _
u j = − 1

γ2
i

aijR−1
ij

BT
j ∇Vi, j ∈ Ni

(18)

If the V∗i is the Nash equilibrium solution of the multi-player zero-sum game, that is

V∗i (δi) = min
ui

max
_
u−i

Ji(δi , ui ,
_
u−i) (19)

we can obtain
min

ui
max
_
u−i

Hi(δi,∇V∗i , ui,
_
u−i) = 0 (20)

Substituting the optimal strategy determined by (18) into (20), the coupled Hamilton–
Jacobi (HJ) equations yield

0 = 1
2 δT

i Qiδi +
1
2 (di + gi)

2∇VT
i BiR−1

ii BT
i ∇Vi − 1

2γ2
i

∑
j∈Ni

a2
ij∇VT

i BjR−1
ij BT

j ∇Vi

+∇VT
i
(Aδi − (di + gi)

2BiR−1
ii BT

i ∇Vi +
1

γ2
i

∑
j∈Ni

a2
ijBjR−1

ij BT
j ∇Vi) , Vi(0) = 0 , i ∈ N

(21)

For a given solution V∗i , in order to define u∗i = ui(V∗i ) and
_
u
∗
j =

_
u j(V∗i ) in the same

way as (18), (21) can be written as

Hi(δi,∇V∗i , u∗i ,
_
u
∗
−i) = 0, V∗i (0) = 0 (22)

Lemma 2. For any policies ui,
_
u−i, the following equation holds

Hi(δi,∇V∗i , ui,
_
u−i) =

1
2
(ui − u∗i )

T Rii(ui − u∗i )− ∑
j∈Ni

γi
2
(
_
u j −

_
u
∗
j )

T
Rij(

_
u j −

_
u
∗
j ) (23)

Proof of Lemma 2. Substituting ui,
_
u−i for u∗i ,

_
u
∗
−i in (22)

Hi(δi,∇V∗i , ui,
_
u−i) = ∇V∗Ti (Aδi + (di + gi)Biui − ∑

j∈Ni

aijBj
_
u j

+(di + gi)Biu∗i − (di + gi)Biu∗i − ∑
j∈Ni

aijBj
_
u
∗
j + ∑

j∈Ni

aijBj
_
u
∗
j )

+ 1
2

(
δT

i Qiδi + uT
i Riiui − γ2

i ∑
j∈Ni

_
u

T
j Rij

_
u j

)

+ 1
2

(
u∗Ti Riiu∗i − u∗Ti Riiu∗i − γ2

i ∑
j∈Ni

_
u
∗T
j Rij

_
u
∗
j + γ2

i ∑
j∈Ni

_
u
∗T
j Rij

_
u
∗
j

)
(24)
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Substituting Hi(δi,∇V∗i , u∗i ,
_
u
∗
−i) = 0 into (24), we can obtain

Hi(δi,∇V∗
i

, ui,
_
u−i) = ∇V∗Ti ((di + gi)Bi(ui − u∗i )− ∑

j∈Ni

aijBj(
_
u j −

_
u
∗
j ))

+ 1
2
(
uT

i Riiui − u∗Ti Riiu∗i
)
− 1

2

(
γ2

i ∑
j∈Ni

_
u

T
j Rij

_
u j − γ2

i ∑
j∈Ni

_
u
∗T
j Rij

_
u
∗
j

) (25)

Completing the squares in (25) gives (23) upon the relationship between u∗i ,
_
u
∗
−i

and ∇V∗i . �

Remark 1. The polices
_
u−i in Section 3 are not the real policies of neighboring nodes. These are

only defined as the virtual coupling input from neighboring nodes, which are regarded as the external
disturbances and have the same channels as the control inputs of neighboring nodes. In this way, the
bounded L2-gain attenuation for the real coupling inputs from neighboring nodes can be realized. In
addition, the complex relationships among agents are decoupled virtually during the control protocol
design process, and the solving process of zero-sum game is effectively simplified. The coupled HJ
equation of each agent is independent of each other.

4. Solution to Bounded L2-Gain Problem for the Coupling Attenuation and the
Equivalent Algebraic Riccati Equation
4.1. Solution to Bounded L2-Gain Problem for Coupling Attenuation

In this subsection, the control policy ui is found to guarantee the condition (10) holds
for a prescribed γi > 0 and

_
u−i ∈ L2[0, ∞). The following Theorem 1 shows that the

solution of a coupled HJ equation (22) is actually the solution to the bounded L2-gain
problem for coupling attenuation.

Theorem 1. Let γi ≥ γ∗i . Suppose the coupled HJ equation (22) has a smooth positive definite
solution V∗i > 0, i ∈ N. The control policy is selected as u∗i = ui(V∗i ), given by (18) in terms of
V∗i . The bounded L2-gain condition (10) holds for all

_
u−i ∈ L2[0, ∞).

Proof of Theorem 1. According to Lemma 2

Hi(δi,∇V∗i , ui,
_
u−i)

= 1
2

(
δT

i Qiδi + uT
i Riiui − γ2

i ∑
j∈Ni

_
u

T
j Rij

_
u j

)
+

dV∗i
dt

= 1
2 (ui − u∗i )

T Rii(ui − u∗i )− ∑
j∈Ni

γi
2 (

_
u j −

_
u
∗
j )

T
Rij(

_
u j −

_
u
∗
j )

(26)

Selecting ui = u∗i , we can obtain that

1
2

(
δT

i Qiδi + uT
i Riiui − γ2

i ∑
j∈Ni

_
u

T
j Rij

_
u j

)
+

dV∗i
dt

= − ∑
j∈Ni

γi
2 (

_
u j −

_
u
∗
j )

T
Rii(

_
u j −

_
u
∗
j ) ≤ 0

(27)

Integrating (27) yields,

1
2

∫ T
0

(
δT

i Qiδi + uT
i Riiui − γ2

i ∑
j∈Ni

_
u

T
j Rij

_
u j

)
dt

+V∗i (δi(T))−V∗i (δi(0)) ≤ 0
(28)
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V∗i is a smooth positive definite solution, i.e., V∗i (δi(T)) ≥ 0, one has

∫ T

0

(
δT

i Qiδi + uT
i Riiui

)
dt ≤ γ2

i

∫ T

0
∑

j∈Ni

_
u

T
j Rij

_
u j dt + V∗i (δi(0)) (29)

Hence, the bounded L2-gain condition (10) for coupling attenuation is satisfied. �

4.2. The Equivalent Algebraic Riccati Equation

It can be seen from the above results that the Nash equilibrium solution can be obtained
by solving the coupled HJ equation (22). In this subsection, it will be shown that the coupled
HJ equation (22) can be equivalent to an Algebraic Riccati equation (ARE).

Defining the optimal value function V∗i = δT
i Piδi, the corresponding optimal u∗i and

_
u
∗
−i can be obtained as

u∗i = −2(di + gi)R−1
ii BT

i Piδi
_
u
∗
j = − 2

γ2
i

aijR−1
ij BT

j Piδi , j ∈ Ni
(30)

Substituting (30) and V∗i = δT
i Pδi into (21) yields

δT
i (Pi A + AT Pi)δi +

1
2 δT

i Qiδi −2(di + gi)
2δT

i PiBiR−1
ii BT

i Piδi
+ 2

γ2
ij

δT
i ( ∑

j∈Ni

a2
ijPiBjR−1

ij BT
j Pi)δi = 0 (31)

The above equation can be equivalent to

Pi A + AT Pi +
1
2 Qi − 2(di + gi)

2PiBiR−1
ii BT

i Pi
+ 2

γ2
ij

∑
j∈Ni

a2
ijPiBjR−1

ij BT
j Pi = 0 (32)

Defining the integrated matrix as

R = diag( Rii
2(di+gi)

2 ,− γ2
i Rij1
2aij1

,− γ2
i Rij2
2aij2

, · · · ,−
γ2

i Rijdi
2aijdi

)

B = [BiBj1 Bj2 · · · Bjdi
], j1, j2, · · · , jdi

∈ Ni

Then, (32) can be rewritten as the ARE

Pi A + AT Pi +
1
2

Qi − PiBR−1BT Pi = 0 (33)

Theorem 2. Assume that all the real control policies u−i =
{

uj| j ∈ Ni
}

of neighboring agents
satisfy the bounded condition as follows,

‖uj‖2 = uT
j uj ≤ ξ, j ∈ Ni (34)

Selecting the first equation of (30) as the control policies ui, based on the solution of ARE (34).
The local neighborhood error vector will ultimately and uniformly enter the following bounded
invariant set

Ωi = { δi|‖δi‖2 ≤
γ2

i ξ ∑
j∈Ni

λ(Rij)

2λ(Qi)
} (35)

where ‖δi‖2 denotes the Euclidean norm of δi and Qi is the positive definite matrix as
Qi =

1
2 Qi + 2(di + gi)

2PiBiR−1
ii

BT
i Pi.
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Proof of Theorem 2. Selecting the optimal positive value function V∗i = δT
i Piδi ≥ 0, in

terms of the solution of the coupled HJ equation (21), as the Lyapunov function. According
to Lemma 2, the derivative of V∗i is

dV∗i
dt = − 1

2

(
δT

i Qiδi + uT
i Riiui − γ2

i ∑
j∈Ni

uT
j Rijuj

)
+ 1

2 (ui − u∗i )
T Rii(ui − u∗i )− ∑

j∈Ni

γi
2 (uj −

_
u
∗
j )

T
Rij(uj −

_
u
∗
j )

(36)

Selecting ui = u∗i as the first equation of (30) yields

dV∗i
dt = − 1

2 δT
i Qiδi − 2(di + gi)

2δT
i PiBiR−1

ii BT
i Piδi

+
γ2

i
2 ∑

j∈Ni

uT
j Rijuj − ∑

j∈Ni

γi
2 (uj −

_
u
∗
j )

T
Rij(uj −

_
u
∗
j )

≤ −δT
i (

1
2 Qi + 2(di + gi)

2PiBiR−1
ii BT

i Pi)δi +

γ2
i ξ ∑

j∈Ni
λ(Rij)

2

(37)

Let dV∗i
dt ≤ 0 , we can realize that

δT
i δi = ‖δi‖2 ≥

γ2
i ξ ∑

j∈Ni

λ(Rij)

2λ( 1
2 Qi + 2(di + gi)

2PiBiR−1
ii BT

i Pi)
(38)

Defining Qi =
1
2 Qi + 2(di + gi)

2PiBiR−1
ii BT

i Pi yields the bounded invariant set (35). �

Remark 2. Theorem 2 shows the ultimately uniform boundedness (UUB) of the local neighborhood
error vector δi. According to the bounded invariant sets Ωi, the bound of δi can be arbitrarily small
by presetting the matrix Qi, Rii and Rij in the performance index function (11). In fact, this result

is conservative because the term − ∑
j∈Ni

γi
2 (uj −

_
u
∗
j )

T
Rij(uj −

_
u
∗
j ) in dV∗i

dt is omitted. The real

control inputs uj of adjacent agents differ greatly from
_
u
∗
j in fact, which guarantees the negative

characterization of dV∗i
dt . Therefore, the simulation results in the next section show that the local

neighborhood error vector can converge asymptotically and uniformly to the origin.

Remark 3. In a practical application, matrix Qi, Rii and Rij and parameter γi can be selected
according to engineering performance requirements. If a high convergence speed and synchronization
accuracy are required, Qi can be selected to make its eigenvalues large; if a low control energy
consumption is required, Rii can be selected to make its eigenvalues large; the coupling attenuation
level can be adjusted by adjusting matrix Rij and γi. It should be noted that, Qi, Rii, Rij and γi
must satisfy the condition in Theorem 1, so that the coupled HJ equation (22) has a smooth positive
definite solution V∗i > 0. That is, (33) has a positive definite solution Pi.

5. Simulation Results

This section shows the effectiveness of the equivalent ARE approach described in
Section 4 and Theorem 2. The simulation is realized in MATLAB/Simulink. Consider a
class of Multiple Autonomous Unmanned homogeneous linear systems referring to [5]
which is shown as follows

.
xi = Axi + Biui

where A =

[
0 1
−1 0

]
, B1 =

[
2
1

]
, B2 =

[
2
3

]
, B3 =

[
2
2

]
and B3 =

[
1
1

]
, with the Leader

dynamics
.
x0 = Ax0. The communication digraph structure is shown in Figure 1. The edge

weights and the pinning gains are taken equal to 1.
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Figure 1. The communication digraph structure.

The selected the weight matrices in (11) are R11 = 9, R14 = 1, R22 = 9, R21 = 1,

R33 = 9, R32 = 1, R44 = 9, R43 = 1 and Q1 = Q2 = Q3 = Q4 =

[
8 0
0 8

]
. The bounded

L2-gain coefficient in (11) for each agent are preset as γ1 = 1.75, γ2 = 3.75, γ3 = 4.5 and
γ4 = 6.25. The cooperative control protocol of each agent is implemented, as in Section 4.2,
where the solution of ARE (33) is

P1 =

[
4.8954 −5.6084
−5.6084 9.4934

]
, P2 =

[
41.9228 −7.3129
−7.3129 2.6742

]
, P3 =

[
14.4257 −9.363
−9.363 10.4565

]
,P4 =

[
17.4696 −0.5066
−0.5066 13.6

]
.

Remark 4. In the process of a simulation design, the γi should be gradually reduced to search for
a feasible and high coupling attenuation level under the premise that (33) has a positive definite
solution Pi. Using the ARE solver in MATLAB, it is very convenient to solve (33) and obtain Pi .
Then, the design of the coupling attenuation controller can be completed according to (30).

To elevate the Bounded L2-gain problem for the coupling attenuation, the following
variable Cγ is introduced based on (29)

Cγ =
∫ T

0

(
δT

i Qiδi + uT
i Riiui

)
dt− γ2

i

∫ T

0
∑

j∈Ni

uT
j Rijuj dt−V∗i (δi(0)) (39)

That is, Cγ ≤ 0, which means that the Bounded L2-gain condition (10) is satisfied.
The local neighborhood error vector of each agent is shown in Figure 2. Figure 3

is the 3-D phase plane plot of the system’s evolution for agents 1, 2, 3, 4 and leader 0.
The Cγ of the node 1 agent is shown in Figure 4. As can be seen from Figures 2 and 3, the
neighborhood error vector can converge asymptotically and uniformly to the origin and all
agents in the communication digraph are eventually synchronized, which is also consistent
with Remark 2. Figure 4 shows that Cγ is always negative, which is equivalent to that
the node 1 agent satisfies the bounded L2-gain condition with γ1 = 1.75 for the coupling
attenuation. The effectiveness of the proposed method is thus verified.
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6. Conclusions

This paper provides a novel idea for the synchronization control of Multiple Au-
tonomous Unmanned linear systems, in which the local neighborhood error dynamic’s
coupling part is considered as the virtual external disturbance, so as to decouple the multi-
agent cooperative control problem into a relatively independent bounded L2-gain problem
for coupling attenuation. The optimal control theory and differential game theory is uti-
lized to formulate the bounded L2-gain problem into a centralized multi-player zero-sum
game. It is shown that the solution to the multi-player zero-sum game is equivalent to
the solution of a coupled HJ equation. It is also shown that the coupled HJ equation
can be transformed into an algebraic Riccati equation (ARE) and the solution guarantees
the ultimately uniform boundedness (UUB) of the local neighborhood error vector under
conservative conditions. The law of parameters selection is summarized. The simulation
results show that the proposed method can ensure that the local neighborhood error vectors
converge asymptotically to the origin, that is, the multiple autonomous unmanned linear
systems can achieve final synchronization, which demonstrates that the UUB of errors is
conservative. Meanwhile, the bounded L2-gain condition for the coupling attenuation can
be guaranteed.

This proposed method is suitable for the cooperative consensus control of various
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