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Abstract: Sleep disorders pose serious cardiovascular threats if not treated effectively. However,
adherence to Continuous Positive Airway Pressure (CPAP), the most recommended therapy, is
known to be challenging to monitor. Telemonitored CPAP equipment has improved the follow-up
of CPAP adherence (hours of use per night) by producing far larger amounts of data collected daily.
The analysis of such data have relied on averaging the entire therapeutic history and interpreting
it without a proper reference concerning the level of adherence. By contrast, we contribute with
an unsupervised machine-learning methodology that (i) translates the adherence data to a scale of
discrete numbers that hold correspondence to the most usual 30-day-long patterns as observed in a
real-word database; (ii) avoids the loss of information aggregation problem by creating summaries of
the time series that capture the dynamic nature of the everyday-use CPAP. Our experiments have
detected eight particular adherence behaviors validated with information-oriented statistical criteria;
we successfully applied them to the time series of a French hospital to produce summaries that reflect
the adherence of any 30 days of interest. Our method can aid physicians in more precisely evaluating
the therapy adherence, as well as fostering systems to alert of problems in the treatment automatically.

Keywords: CPAP; machine learning; time series; gaussian mixture; clustering; motif

1. Introduction

Obstructive Sleep Apnea (OSA) is a disorder that appears due to obstructions of the
upper airway while the patient is sleeping; the obstruction occurs as the dilator muscles
and soft tissues of the pharyngeal wall collapse. OSA is characterized by at least five of
these obstructive events per hour, followed by consequential symptoms, including daytime
sleepiness, snoring, and choking arousals [1]. In the US alone, it is estimated that OSA
afflicts nearly 30 million adults with a cost of diagnosing and treating of approximately
US$12.4 billion in 2015 [2,3]. This condition can potentially reduce the quality of life
and increase the risks of cardiovascular comorbidities [4]. Hence, it must be addressed
by an effective treatment—Continuous Positive Airway Pressure (CPAP) therapy is the
recommended course of action. However, adherence to CPAP is a medical concern; in
a large study, ref. [5] investigated the adherence to treatment over 50 years considering
569 studies; the author found that sleep disorder therapies have the poorest adherence
rate of nearly 65.5%. In this sense, Ref. [6] argued that the lack of adherence to CPAP
might be justified by the development of alternative treatments, including surgery of the
palate, which allows selected subjects to obtain excellent results even at the expense of
initial suture extrusion. By contrast, the effect of non-benzodiazepine sedative hypnotics
on CPAP adherence in patients with OSA has been evaluated in a systematic review and
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meta-analysis [7]. In another work, Ref. [8] mention that the acceptance of the CPAP
therapy might be as low as 50%, with up to 25% of the patients giving up the treatment
by the third year; these facts are signs of the importance of constantly monitoring how the
patients adhere to the therapy.

Assessing adherence to CPAP is itself a challenge. The latest approach for evaluating
CPAP use adherence comes from monitoring technologies wirelessly connected or telemon-
itoring. The potential for remote telemonitoring to restructure current care management
paradigms is immense; it can be used to provide sleep-specialist care to patients in under-
served areas, delivering more efficient, cost-effective, and accessible health care services
beyond traditional office settings [9]. In the case of CPAP use, there is potential for reducing
the number of clinic visits, improving home care, and early detection of problems [10].
Furthermore, such devices generate data to support the integrated care of comorbidities
and self-management of sleep apnea [11].

The evaluation of CPAP adherence has been based on the average number of hours
or minutes of use [12–14], which yields a rate of hours per night and a standard deviation.
Such analysis considers entire periods of use, which are aggregated to one single value.
However, CPAP use time series might carry much more information than a single value
can express; as depicted in Figure 1, the patient behavior is complex. CPAP use time series
present a high frequency of oscillations in the number of hours, and they are prone to events
dictated by external facts that influence the sleep quality, leading the series to different
tendencies along time. These facts make the use of simple aggregations ineffective and
potentially misleading as they do not capture the dynamic natures of such data. Ref. [15]
discuss the loss of information due to aggregation operations in series data, which they
argue to be more critical in long-term series. In another work, Ref. [16] discusses the
implications of the loss of effective estimation and testing power due to the discarded
information after aggregation. For example, for Figure 1, the mean is 7.1 h +/−1.6, which
is not able to express the struggling period of adaptation at the beginning, some ups and
downs along with the series, and the latest crisis at the end of the series.

Figure 1. Sample of a CPAP use time series obtained by means of telemonitoring. One-year-long
times series of CPAP use (#hours) of a real anonymized patient. The number of hours ranges from 0
(the patient did not use, or was not able to use the CPAP) up to 10 h of use.

In this work, we propose an analytical process to characterize periods of CPAP use
tackling two problems simultaneously: (i) we reduce the complexity of the time series by
translating the adherence behavior to a scale of discrete numbers that hold correspondence
to the most usual behaviors as observed in a real-word database; (ii) we avoid the loss of
information aggregation problem by creating summaries of the time series that capture the
dynamic nature of the everyday-use CPAP therapy. We focused only on CPAP adherence
values (hours of use), independently of other attributes that can be collected by daily
telemonitoring, such as leak, residual Apnea–Hypopnea Index (AHI), and/or baseline
clinical markers. The methodology, nevertheless, applies directly to other attributes and
should be the topic of future research.
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2. Related Work

According to the work of [9], sleep medicine will look forward to big data as a
means to massive health management, increased automated care delivery, patient self-
care capabilities, predictive analytics for providing clinical decision support, peer-to-peer
support opportunities, and effective real-time patient monitoring. Accordingly, remote
monitoring of CPAP allows one to follow the progress of apnea and detect acute events,
providing confidence to the patient and reducing the number of follow-up visits. Fulfilling
these expectations requires efficient analytical methods; in the case of apnea monitoring, the
challenge is to digest long series of telemonitoring signals. For this reason, it is arguable that
physicians must consult patient data daily and react to alarms. However, according to [9]
this is infeasible in countries such as the USA due to the busy work schedule of physicians.

In the context of assessing CPAP-based therapies, ref. [17] affirms the existence of het-
erogeneity between patients with OSA concerning comorbidities and symptoms. Following
this hypothesis, ref. [18] used clustering techniques to detect OSA phenotypes (classes of
patients) considering 13 clinical variables; next, they compared the five classes they found
to clusters obtained with CPAP-treatment outcomes observed during 6 months of therapy.
Their results indicated a strong agreement between the two sets of clusters, suggesting
that cluster analysis is an opportunity for the clinical characterization of patients with
OSA. We pursue this diagnosis approach by introducing a characterization of patients
considering the time of CPAP use, a metric that points out how well the adherence to the
therapy has been, and that we translate into a scale of discrete numbers. The work of [18]
provides interesting insights regarding the relationship of CPAP use and clinical indicators;
similarly to them, we use clustering techniques to find meaningful characterizations of
apnea patients but, differently, we do not aggregate the CPAP outcome into one single
value, neither we analyze the whole time series of CPAP therapy at once.

In the work of [19], the authors considered a cohort containing only patients with mod-
erate to severe OSA, as indicated by the metric Apnea–Hypopnea Index (AHI) measured
by polysomnography breathing monitoring, the gold standard for OSA diagnosis. Their
goal was to detect the phenotypes in a universe of well-characterized OSA patients. Using
hierarchical clustering methods over variables related to age, sex, symptoms, obesity, co-
morbidities, and environmental risk factors, they found six clusters, each with a statistically
distinct profile. In common with our work, ref. [19] use unsupervised machine learning
to characterize patients (phenotypes); differently, while they consider a snapshot of the
patients’ clinical symptoms, we use the constant flow of telemonitoring data to characterize
the course of periods of the CPAP therapy. The innovation of our approach comes from the
dynamic nature of our method, which can capture the constant-changing circumstances of
the therapy.

Reference [20] point out that, although AHI is the most used metric for OSA severity,
it does not correlate well in all the clinical scenarios. Other signals might be useful for
detecting endotypes, so to target treatments more precisely to specific patient traits. In a
similar line of thought, we advocate that understanding other factors beyond AHI has the
potential to assist the physician in determining the necessary therapy intervention [21].
Accordingly, we proceed by inspecting the CPAP use telemonitoring signal (hours of use),
focusing on the characterization of the ups and downs, regularities, and irregularities
during the patient’s adaptation to the therapy, allowing the physician to detect problems
that require intervention.

Similar to our work, ref. [22] exploits the number of hours of CPAP use to characterize
patients with respect to therapy adherence. In their methodology, they analyzed the series of
161 patients, each with nearly 180 nights of data; from each series, they extracted the average
number of hours, level, slope, variance, and autocorrelation of the series. These features
are then fed into a clustering process based on dynamic analysis [23]. As a result, they
identified four clusters, which they named Great Users, Good Users, Low Users, and Slow
Decliners. An immediate limitation of this work, and of the work of [24] (who identified
seven clusters over only 71 patients), is the need to analyze time series of similar sizes.
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Since patients usually have different trajectories, just a few will satisfy similar temporal
constraints, severely reducing the cohort cardinality. By contrast, we identify recurrent
30-day patterns observed in the realm of a much larger cohort with over 2000 patients; this
approach allowed us to work with over 20,000 pattern instances, robust support for our
analysis. Another problem is that the methods of [22,24] disregard the dynamic aspect of
the patients when exposed to the CPAP therapy. By contrast, we assume that the efficacy of
the therapy is subject to variations over time: at the beginning of the therapy, after years
of use, during a period of stress, possibly accompanied by insomnia [25]; while treating
another infirmity; and so on. Accordingly, our method is designed to characterize shorter
periods of 30 days or any other size as the analyst desires. Lastly, using a sliding-window
method, we summarize a given patient’s time series to simplify the process of inspecting
the entire period of therapy.

In the state of the art, we found that many works have sought to characterize OSA
patients into groups, or clusters, of individuals with similar clinical signals or therapy
outcomes. Since this is an unsupervised task, the various works provide sets of groups
with different cardinalities and characterizations. This variability is explained by factors
such as cohort peculiarities, methodology specificities, and result interpretation. Although
the discrepancy is not desirable, these many works still point to an intersection of relevant
aspects: (i) the patients indeed behave in a stratified manner, (ii) the characterized behaviors
are interpretable from heterogeneous perspectives, and (iii) there is a meaningful aspect
in characterizing patients, which has motivated the very investigation of the topic. In this
work, we touch upon the same investigative line, but from the prospect of the time of CPAP
use, a straight indicator of treatment adherence. We innovate by assuming that the different
periods of CPAP therapy deserve, each one, a distinguished analysis; in contrast to former
works that aggregate the whole therapeutic history of a given patient into a single average.
With this course of action, we introduce a method able to summarize long-term CPAP
use series without resorting to aggregation methods but, instead, introducing a scale of
discrete numbers that hold, as referential, the most usual 30-day-long periods observed in
a real-world database.

3. The CPAP Use Dataset

Dataset CPAP use comes from a home care provider located in the city of Grenoble,
France. It is concerned with the treatment of sleep apnea, including the equipment (CPAP
brand and model), the telemonitoring data produced by the equipment, follow-up appoint-
ments, and corresponding readings—the CPAP use dataset is populated daily. For the rest
of this work, we analyze the daily number of hours of CPAP use automatically reported by
each piece of equipment via telemonitoring and stored at dataset CPAP use. Our instance
of the dataset comprises 3209 patients, of which we discarded those with less than 180 days
of monitoring (similar to [22]), resulting in a dataset with 2381 patients. Figure 2a presents
the dataset’s distribution concerning the number of days of monitoring. We also discarded
patients whose average number of hours is less than 2.5 h or higher than 10.0 h; that is, the
tails of the normal distribution presented in Figure 2b.
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(a) (b)

Figure 2. Basic distributions related to the CPAP use dataset. (a) Distribution of the length of the
time series (number of days of use) found in the CPAP use dataset. We discarded patients with less
than 181 days (6 months) of monitoring. (b) Distribution of the average number of hours of CPAP
use considering all the patients with, at least, 181 days of monitoring.

4. Methodology

Our goal is a method able to translate 30 days of CPAP use into one single number
that summarizes the patient adherence within a referential scale. This method can be
used over the whole time series of a given patient as a sliding window that simplifies the
interpretation of the usage history, enabling easier inspection of the data. We proceed by
extracting 30-day-long summarization snippets from the time series stored in dataset CPAP
use; we extract features from each of the snippets and perform a non-supervised clustering-
like process based on Gaussian mixture modeling. As we will present, the modeling was
able to identify the eight most characteristic types of patient adherence behavior.

Figure 3 presents the steps of our methodology as a product-process diagram. After
preprocessing the CPAP use dataset, we process each time series sequentially, extracting
summarization snippets, features, and principal components; finally, we perform a Gaus-
sian mixture modeling process to fit the data as a set of Gaussian components, each one
capable of characterizing a given 30-days period of CPAP use. In the following sections, we
explain each step of our method.

Figure 3. Our methodology to characterize the periods of CPAP use based on analytical techniques
over a real-world dataset.

4.1. Detecting Summarization Patterns

In this stage of the analysis, the aim was to detect subsequences of the patients’ time
series able to summarize their behavior. For this task, we employed method Matrix Pro-
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file [26], a recently proposed set of techniques and tools to analyze time series with respect
to subsequences of interest, such as unusual, common, or representative subsequences.
Matrix Profile is based on distance measure MPdist [27], which considers two time series
to be similar if they share many similar subsequences, regardless of the order and time
of matching. According to its authors, MPdist is robust to spikes, warping, linear trends,
dropouts, wandering baseline, and missing values. The name of the method comes from the
construction of a matrix in which each line corresponds to a pairwise time series distance
comparison. From the matrix, many patterns can be detected.

Given a time series, the method Matrix Profile produces a set of subsequences of a
predetermined length named snippets. We used the length of 30 days as it corresponds to
1 month—a temporal unit that is in accordance with the clinical practice seen in countries
such as the USA, where certain insurance companies require a face-to-face visit between
2 or 3 months after the CPAP set-up to ensure adherence, and further 12-months visits to
confirm the adherence [9]. In contrast to the more known term motif, snippets are not only
patterns of a data series but patterns that repeat; also, different from motifs, the snippets
are detected from each time series individually and not from the set of time series. The
advantage is that snippets are prime for summarizing the time series instead of just finding
unique patterns.

For each detected snippet, the more 30-day subsequences (contiguous or not) it
matches (high MPdist) in the series of interest, the more important the snippet is as ex-
pressed by a metric named fraction. For example, a sinusoidal signal and a length of interest
of 2π would be represented by one single snippet with a maximum fraction; meanwhile,
a messy signal and a non-infinitesimal length of interest would be represented by the
maximum possible number of snippets with minimum fraction. Notice that a time series
can have no relevant snippets (zero, or too low, fraction) if it is a signal with far too high
entropy. Algorithm Matrix Profile will look for the k snippets with the highest fraction; k
provided by the user. For determining k, we run the algorithm for k in the range [1, 25],
selecting the number of snippets that confers the highest variation with respect to the
summation of metric MPdist, as proposed by the author [9]. Each time series in our dataset
obtained several snippets depending on its regularity and specific patterns.

After extracting the snippets, we ended up with a set of 24,018 snippets. We kept
only the snippets whose product f raction ∗ length_o f _the_original_series was of at least
31 days, i.e., the snippets that represent at least a month of the original series.

The final set of snippets captures the most common 30-day-long series of CPAP use.
As an example, if a snippet s has a fraction of 20% with respect to a time series t, one
can say that t behaves as described by s during 20% of the days. The remaining 80% is
represented by other snippets. Figure 4 presents an example with two snippets, each one
with two matches (high MPdist similarity) over the original series; the left-most snippet
has a fraction of 34% while the right-most one has a fraction of 64%. We use these data as
the basis for characterizing the most typical behaviors of the patients concerning adherence
to the treatment.

4.2. Features Extraction and Selection

With a dataset with 24,018 snippets, an average of 10.1 snippet for each of the 2381 pa-
tients, the next step was to characterize the set of snippets, i.e., we wanted to build sets of
snippets in which the elements carried common characteristics, so to determine the most
common 30-day behaviors of the patients. This task is to be solved with proper statistical
modeling, as we explain in Section 5. However, since the snippets correspond to complex
objects in the form of time series with 30 signals, first, we extracted features from the
snippets with the aim of representing them in a lower-dimensional space that favors an
unsupervised learning approach.
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Figure 4. Example of a time series with two detected snippets along with the main matches of each
one. By exact match, we mean the snippet has maximum MPdist similarity to a subsequence in the
original time series; a partial match means the similarity is high but not maximal.

4.3. Selection

Initially, we extracted 35 features using the software Time Series Feature Extraction
Library (TSFE) [28], a comprehensive toolbox that computes temporal, statistical, and
spectral features from a given time series. Over these features, we performed a Principal
Component Analysis [29] selecting several components able to explain 99% of the variance;
we found out that only two components were sufficient to satisfy our criterion, see Figure 5.
From the construction of the principal components, we used the weights (loadings) of
the linear combination of the features as an indicator of feature importance [30]. At this
point, we iteratively excluded one by one the weakest features and recomputed the PCA-
based variance explanation, and metric Bayesian Information Criterion (BIC) [31]—refer
to Section 5.2; we stopped when the value of BIC increased while PCA did not change.
This attribute selection process demonstrated adequate for a machine-learning process that
is unsupervised.

We ended up with five features, including temporal features, absolute energy, and
autocorrelation; statistical features maximum and standard deviation; and spectral features
power bandwidth, and spectral distance—for details, refer to library TSFE [28].

Figure 5. Visualization of the two components that explain 99% of variance as identified by method
Principal Component Analysis.
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5. Gaussian Mixture Modeling

Gaussian Mixture Model (GMM) [32] refers to a probabilistic technique for represent-
ing normally distributed subpopulations that pertain to a bigger dataset. Since Gaussian
models define parametric probability distributions, finding the proper Gaussian Mixture
Model corresponds to estimating the parameters of the individual Gaussian components in
the data. The estimation is obtained with an iterative expectation-maximization process
that seeks a maximum likelihood estimation over a given number of k components; the
process fine-tunes the parameters of the model with a strict likelihood-increase-guarantee
at each iteration. GM modeling does not require knowing which subpopulation each data
point belongs to; it is the job of the model to shape this information, which constitutes a
form of unsupervised learning.

After modeling a dataset into k components, the i-th component is described by its
mean µi and its variance σi. With the model, for each sample x of the dataset, we obtain
a probability p(x is generated by component i) = φi, so that ∑k

i (φi) = 1. The final model
corresponds to:

p(x) =
k

∑
i=1

φiN (x|µi, σi) (1)

N (x|µi, σi) =
1

σi
√

2π
exp(− (x− µi)

2

2σ2
i

) (2)

5.1. Rationale for Using Gaussian Mixture Modeling

GMM has been successfully applied in problems represented as time series in other
domains, including motor current simulations, electrocardiogram recordings, and speech
waveforms [33]; in other tasks such as forecasting and interpolation [34]; structural damage
detection [35]; outliers detection in traffic data [36]; and, even on the prediction of apnea
episodes based on wireless sensor signals [37]; among many other uses. Accordingly, based
on previous prominent results, we resorted to GMM to gain a deeper understanding of
CPAP adherence.

GMMs define a superset of the, so-called, hard clustering methods such as k-means [38].
The difference is that samples closer to the centroid (mean) of a GMM component have
a probability of pertaining to that “cluster”; rather than categorically pertaining, or not.
Furthermore, a GMM model describes the data in such a way that it can generate synthetic
data similar to the original data. In our problem setting, the use of hard clustering and
density-based methods stumbled in the fact that our CPAP use dataset defines a single
continuum in the time series space; that is, there is no gap nor regions of lower density. In
such a scenario, hard clustering will detect only one big cluster and the cloud of outliers,
which is of no good use. By contrast, our approach was to fit a set of Gaussian distributions
able to reproduce the data characteristics. The number of distribution components was
defined using the method Bayesian Information Criterion, as we explain next.

5.2. Bayesian Information Criterion

The Bayesian Information Criterion (BIC) is a useful metric for choosing between two
or more alternative models [31]. Since we are modeling the data using a set of Gaussian
models, BIC is used to determine the optimal number of components to characterize the
set of time series. Given a dataset and a candidate model, BIC works by computing the
logarithm of the likelihood of this model considering the set of likelihood-maximizing
parameters θ̂ (for GMM, a set with k pairs (µ; σ)); it also penalizes the model proportionally
to the number of parameters (for GMM, the number of components), so to reduce the
chances of overfitting—refer to Equation (3).

BIC = −2 ∗ log(L(θ̂)) + k ∗ log(n) (3)
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where n is the number of samples; k is the number of components to test (we ranged from
1 through 15); L(θ̂) is the likelihood of the model, with θ̂ as the parameter values that
maximize the likelihood function.

Figure 6 depicts the value of metric BIC considering 1 through 15 Gaussian compo-
nents. We verified that using eight components, the fitting of the model, discounted the
overfitting penalization, reaches an optimal minimum value.

Figure 6. Bayesian Information Criterion test for the number of Gaussian models that fit our data.

5.3. Further Supporting Statistics

From the Bayesian Information Criterion, we decided to use eight components. For
comparison to other possible values, we present additional statistics as recommended
by [39,40]; for comparison, we consider from 1 through 8 possible components, demon-
strating that the higher the number of components, the better is the model fitting according
to all the measurements. In Table 1, we present measurements of Log-likelihood (LL),
computed for each of the n-components model; Aikake Information Criterion (AIC), based
on the log-likelihood penalized by the number of parameters; Approximate Weight of
Evidence (AWE) [41], an extension of the maximum likelihood criterion that takes the role
of the features into account for each component; Consistent Aikake Information Criterion
(CAIC), the same as AIC but adjusted by the sample size; Kullback Information Criterion
(KIC) [42], the asymptotically unbiased estimator of the Kullback symmetric divergence
measure; Sample Size-adjusted Bayesian Information Criterion (SABIC) [43], similar to BIC
but adjusted by the sample size; and Integrated Completed Likelihood (ICL) [44], a version
of BIC with improved arithmetic that more precisely approximate the integral part of the
computation. All the metrics, but LL and ICL, indicate that the model is better adequate in
accordance with how small the computed value is. For this analysis, we used R package
tidyLPA [40].
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Table 1. Additional statistics Log-likelihood (LL), Aikake Information Criterion (AIC), Approximate
Weight of Evidence (AWE) [41], Consistent Aikake Information Criterion (CAIC), Kullback Infor-
mation Criterion (KIC) [42], Sample Size-adjusted Bayesian Information Criterion (SABIC) [43], and
Integrated Completed Likelihood (ICL) [44].

#Comps LL AIC AWE CAIC KIC SABIC ICL

1 −331,566 663,173 663,594 663,355 663,196 663,271 −663,335

2 −323,953 647,988 648,855 648,361 648,032 648,189 −654,536

3 −319,721 639,567 640,878 640,130 639,632 639,871 −648,605

4 −318,231 636,627 638,383 637,381 636,713 637,035 −649,319

5 −317,349 634,907 637,108 635,852 635,014 635,417 −650,038

6 −316,502 633,254 635,899 634,390 633,382 633,867 −650,552

7 −315,985 632,261 635,351 633,588 632,410 632,978 −650,243

8 −315,801 631,936 635,470 633,453 632,106 632,756 −653,016

5.4. Gaussian Components

In Table 2, one can see the numerical properties of each Gaussian component con-
sidering each of the 30-day snippets that originated it. We sorted each component by
ratio average/standard_deviation in ascending order; as a result, the components whose
elements have a higher number of hours and higher regularity have a higher rank. This
order is fundamental to hour analysis as it carries a semantic characterization of the pa-
tients’ behavior.

According to our modeling, refer to Table 2 and Figure 7, ideally, every 30-day period
of a patient should be characterized by components 7 (Ideal) or 8 (Plain), with several
hours close to 7 h/night or above 8 h/night and a standard deviation of nearly just 1 h.
Component 6 (Good) also corresponds to a high adherence, with a time of use above
7 h/night, but with a high standard deviation of +/−1.75 h. Component 5 (Highly adapted)
indicates periods in which the patient is using the equipment regularly but with room for
improvements in the number of hours. Components 4 Adapted is similar to component
5, but with a high instability of +/−2 h. Component 3 Pre-adaptation refers to periods of
increasing adaptation, with an average below 5 h/night. However, components 1 Struggling
and 2 Unstable refer to periods characterized by failure in using the equipment, with either a
very low number of hours or a very high standard deviation, respectively. This classification
takes into account the work of [21], who states that a minimum of 4 h/night is necessary for
CPAP to be effective; and the work of [45], who verified that the prevalence of sleepiness,
around 8.7%, is lower when the CPAP use lasts for more than 6 h/night if compared to
patients who use the device for less than 4 h/night, presenting around 18.5% of sleepiness.

In Figure 7, we plot the eight Gaussian components of our model along with the
corresponding instances of each one. In the center of each plot, one can see the mean series
(prototype of the Gaussian component) along with the standard deviation and the standard
deviation times two. The Gaussian nature is visually plausible.
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Figure 7. Time series plot of the eight components that characterize the CPAP use 30-days snippets
extracted from the CPAP use dataset. Each plot presents the mean (thickest red line), the variance,
and two times the variance lines. Notice that we present the average because it is a parameter to the
Gaussian distribution; we do not depend on this computation to characterize the time series.
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Table 2. Summary of the properties of each of the eight components, including percentage of
the snippets in each component, average h/night along with standard deviation and standard
deviation*2, energy (summation of the average signal). The order of the components is given by
ratio average*1/standard_deviation; that is, the higher in the rank the more hours of use and more
regularity (lower standard deviation).

Comp % Elements avg
(h/Night)

std std*2 Energy avg/std Status

1 6.85% 3.69 1.64 3.29 110.61 2.24 Struggling
2 7.30% 6.87 3.02 6.05 206.17 2.27 Unstable
3 8.29% 4.85 1.69 3.37 145.63 2.88 Pre-adaptation
4 17.51% 6.21 1.96 3.93 186.20 3.16 Adapted

5 13.76% 5.56 1.47 2.94 166.82 3.79 Highly
adapted

6 13.15% 7.90 1.75 3.50 236.90 4.52 Good
7 20.68% 7.07 1.05 2.10 212.10 6.72 Ideal
8 12.46% 8.55 1.14 2.27 256.54 7.52 Plain

5.5. LDA-Based Visualization

In Figure 8, we present a visual description of the snippets space colored according to
the eight components detected via Gaussian Mixture Modeling. The figure is an instance
of the method Linear Discriminant Analysis (LDA) [46], used to project the CPAP use
dataset onto a 3-dimensional space. LDA, similar to Principal Component Analysis, finds
the component axes that maximize the variance of the data at the same time that it sets
axes to maximize the separation between classes. The plot illustrates the set of series as
a whole with non-evident gaps nor low-density regions, but for the outliers. The use of
GMM allowed the partitioning of the space in a way that density-oriented hard clustering
methods failed.

Figure 8. Plot 3D using technique Linear Discriminant Analysis applied over the 30-days summariza-
tion snippets.
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5.6. GMM-Based Patient Characterization

So far, we have focused on characterizing periods of 30-days of CPAP use. This is
because of our assumption that the regime of use of the equipment varies over time: at the
beginning of the therapy; after years of use; during a period of stress, possibly accompanied
by insomnia [25]; while treating another infirmity; and so on, i.e., characterizing an entire
series of use would not be precisely informative, but yet, analyzing such a historical series
is necessary, as the doctor needs to understand the evolution of the therapy and detected
periods of low efficacy.

For the task of characterizing the entire record of CPAP use of a given patient, we
propose to apply our proposed GMM analysis by means of the classic sliding-window
method. Therefore, for a time series with n time-stamped signals, we consider the i-th
signal and the following 29 signals, forming a window with 30 signals. We iterate over i,
1 ≤ i ≤ n− 30, in a total of n− 30 steps. For each iteration, we fit the 30-signals window in
our model to obtain a status number ranging from 1 through 8, corresponding to one of our
possible GMM characterizations. The result is a time series in which every point indicates
the 30-days status of the patient at any given time, as illustrated in Figure 9. In Figure 9a,
one can observe the historical CPAP use of a patient for 370 days; Figure 9c presents the
corresponding GMM characterization, which summarizes the behavior of the patient in
a time series in which the periods of high and low adherence become more explicit. In
Figure 9b, we see a patient with 1603 recordings of CPAP use; the corresponding GMM
analysis is presented in Figure 9d. In this second example, the simplification of the data
and the sharper characterization of the adherence become even more evident.

(a) Patient with 370 recordings of CPAP use. (b) Patient with 1603 records of CPAP use.

(c) GMM analysis with 330 30-day-period
characterizations.

(d) GMM analysis with 1573 30-day-period
characterizations.

Figure 9. GMM characterization of two patients from the CPAP use dataset. The first patient in plot
(a) and its corresponding sliding-window characterization in plot (c). The second patient in plot (b)
characterized in plot (d).

6. Discussion

In comparison to former works, as reviewed in the related works, one strong point of
our methodology is that we do not assume the patient to be a static entity, which might
distort the interpretation of the actual state of a patient. In the work of [22], for example,
the patient characterization will not correspond to its latest months of CPAP use but, rather,
to the most prominent patterns of use as observed in her/his, say, two years of use, i.e., a
given patient might be referred to as being fully adapted to using the equipment when
she/he just started to struggle in carrying out the therapy due to external factors that took
place in recent times, causing prejudice to the proper evaluation of adherence. We also
exceed in introducing a more granular 8-classes characterization statistically and visually
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verified; since each of our components encompassed a set of 30-day series with distinct and
similar numerical properties, as demonstrated in Section 5, we advocate that the proposed
cluster-based characterization is more comprehensive than that of previous works. This
allegation is supported by ample statistics and by our set of extracted snippets, which has a
cardinality larger than that of any dataset used in the similar analysis that we reviewed;
that is, we count on a strong support to our findings.

Another advance of our methodology is that we do not resort to aggregation to simplify
the analysis of a given patient’s series. This way, we avoid the loss of information due to
aggregation [15,16] and the misconception of providing a number holding no referential to
the most usual 30-day-long patterns found in a real database. For example, if one verifies
that the average of a patient’s series is 5 h/night, it is possible that the physician will
consider the patient to have high adherence to the treatment, which makes sense from
an initial perspective. However, if we take the classes’ average and standard deviation
presented in Table 2, it is possible that this patient is behaving in any one of classes 1
through 5, i.e., by considering a real clinical database, we found out that the average of a
time series can lead to a total misconception of what is really happening.

Furthermore, from our investigation and by inspecting the state of the art, we verified
that there is no agreement with respect to the number of characterizations (cluster/classes)
of patients in the field of OSA and CPAP therapy. As reported in the related works, existing
works report from four up to seven classes, diverging even for the same research team
over different datasets [22,24]. This variability, while not desired, does not invalidate the
investigations carried out; nevertheless, it is evidence that there is not a definitive answer
to the problem of cluster-based patient characterization. Possibly, this variability comes
from peculiarities of the cohort being studied to the specific variable considered under
each methodology, algorithmic traits, and even different interpretations of the results.
As a result, one conclusion of ours is that the methodologies are more relevant than the
presented results; and that each context in which they are to be employed must perform
specific cluster analysis in accordance with the data nature and the needs of the analytic
application. Regardless, the state of the art reinforces the importance and impact of research
in ACPA monitoring and adherence, which ranges from preventing or working towards
the prevention of cardiovascular diseases [47] to the study of improving neurocognitive
response through OSA treatment [48]. Thus, our work sets new pathways for research on
ACPA and OSA, directing further investigation with techniques beyond Gaussian mixture
modeling in future works.

7. Conclusions

We introduced an unsupervised machine-learning methodology based on a Gaussian
Mixture Modeling (GMM) employed over a set of recurrent 30-day-long patterns (snippets)
extracted from a database of CPAP use time series. We tested our methodology over a
dataset provided by a French hospital that collects CPAP telemonitored data (hours of
use per night) regarding over 2000 patients. As a result, we identified eight characteristic
patient behaviors regarding CPAP use adherence as indicated by the GMM components.
This procedure demonstrated success in classifying any 30-day-long period of CPAP use
according to a frame of eight classes that progressively indicate more efficient adherence.

Our approach is an alternative to the usually employed average-based aggregations,
which can potentially lose important information, and that provide a number holding no
referential magnitude to permit a proper interpretation. In addition, we demonstrated the
use of our GMM-based classification combined with the classic method of sliding window;
by considering 30-day-long periods, it becomes possible to simplify the entire time series
of a given patient, providing less information but more promptly understandable patient
behavior. Along with this investigation, we also collected evidence that, in the field of
OSA and CPAP therapy, there is not a consensus on the number of classes to which the
patients correspond, indicating that such unsupervised machine-learning analyses must
pass through a new data fitting whenever the dataset or goals change significantly.
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We expect our contributions to support physicians in more precisely evaluating the
adherence of patients to the CPAP therapy. This might take place as a computer-aided
diagnosis system or as full-time monitoring that issues alarms when critical situations are
detected. Such a monitoring system is highly needed as telemonitored equipment produces
larger and larger data streams overcoming the capacity of physicians to timely inspect
the conditions of the patients. As a last remark, we suggest that future work is to employ
our methodology over other attributes produced during the treatment of OSA, mainly the
Apnea–Hypopnea Index.
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