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Abstract: As the architecture of deep learning-based speech recognizers has recently changed to
the end-to-end style, increasing the effective amount of training data has become an important
issue. To tackle this issue, various data augmentation techniques to create additional training data
by transforming labeled data have been studied. We propose a method called FrameAugment to
augment data by changing the speed of speech locally for selected sections, which is different from
the conventional speed perturbation technique that changes the speed of speech uniformly for the
entire utterance. To change the speed of the selected sections of speech, the number of frames for the
randomly selected sections is adjusted through linear interpolation in the spectrogram domain. The
proposed method is shown to achieve 6.8% better performance than the baseline in the WSJ database
and 9.5% better than the baseline in the LibriSpeech database. It is also confirmed that the proposed
method further improves speech recognition performance when it is combined with the previous
data augmentation techniques.

Keywords: data augmentation; end-to-end speech recognition; frame rate

1. Introduction

Deep learning [1] has recently shown remarkable performance in many fields including
speech recognition. However, the performance of the deep learning network architecture is
greatly affected by the amount of training data. Therefore, researchers have investigated
increasing the effective size of training data by utilizing unlabeled data for learning [2–5],
or perturbing labeled data and augmenting it to training data [6,7].

As up-to-date speech recognizers have begun to be changed from a hybrid network
architecture to a deep learning network architecture [8], much effort has been made to
increase the amount of training data effectively. Due to such effort, several data augmenta-
tion techniques have been proposed. For example, the speed perturbation [9] technique
complements training data by using the data obtained to resample the labeled data at
several different speeds. The SpecAugment [10] technique adds speech data obtained by
randomly overlaying a spectrogram with binary masks. The SpecSwap [11] technique
obtains new speech data by switching two parts of the spectrogram.

We propose a data augmentation method that randomly changes the speed of ran-
domly chosen sections of an utterance. Compared with the speed perturbation technique
that changes the speed of the entire utterance at a single fixed speed, the proposed method
changes the speed of an utterance at a different speed for every section, and thus, can give
more speed variability to the augmented speech data. The speed perturbation technique
operates in the waveform domain, whereas the proposed method works in the spectrogram
domain. The sections where the speed is changed are randomly selected in a similar manner
to the SpecAugment technique, and the speed of the selected sections is changed through
linear interpolation. We validate the effectiveness of the proposed method reliably using
the WSJ database [12] and LibriSpeech [13] 100 h database.
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In Section 2, we describe the network architecture used as a baseline speech recog-
nizer, and review the previous data augmentation methods. In Section 3, we describe
the proposed method. In Section 4, we show the experimental results using the WSJ and
LibriSpeech databases, optimize hyperparameters, and provide the analysis results and
discussion. In Section 5, conclusions are drawn.

2. Related Works
2.1. Network Architecture

As speech recognizers change from a hybrid network architecture to a deep learning
network architecture, many deep learning network architectures have been proposed for
speech recognition [14,15]. Speech recognizers generally adopt an encoder–decoder net-
work architecture. In the encoder–decoder architecture, the encoder receives the entire
utterance and outputs the features of the utterance, and the decoder outputs the result
by using the feature vector input from the encoder and the previous result. As shown in
Figure 1, the Transformer [16] model is used as the baseline encoder–decoder network
architecture except that the input embedding layer is replaced by a subsampling layer to
compress the input spectrogram. The encoder of the Transformer learns the relationship
among spectrogram data in different positions through self-attention and outputs feature
vectors. Because self-attention does not perform regression as LSTM (long short-term
memory) [17] does, parallel processing is possible. The decoder of the Transformer uses
self-attention like an encoder. However, whereas the encoder’s self-attention learns the
positional relationship of the spectrogram, the decoder’s self-attention learns the relation-
ship among the output units. Because the rear part of the currently predicted unit cannot
be known, the decoder uses masked-self-attention in the learning process, which learns
by masking the rear part of the prediction unit. In the subsequent multi-head attention
sub-layer, the decoder learns the relationship between input and output.
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In the encoder–decoder network architecture, it was difficult to align at the beginning
of the learning process. To solve this problem, CTC (connectionist temporal classifica-
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tion) [15] was combined with the encoder from the MTL (multi-task learning) [18] method.
The combined architecture was shown to improve learning speed and speech recognition
performance compared to the single model by alleviating the alignment problem [19].

The total loss of the combined architecture is calculated as follows:

LMTL = τLCTC + (1 − τ)LAttention (1)

where τ is a constant greater than or equal to 0 and less than or equal to 1, LCTC is CTC
loss and LAttention is attention loss obtained from the Transformer, respectively.

2.2. Speed Perturbation

Speed perturbation [9] is a method of data augmentation that works by changing the
speed of the training data. For speed perturbation, we used Sox [20] to resample the speech
part of the training data at 90% and 110% of the original rate. The resampled training data
obtained from the existing training data were added to the original training data, and the
size of the final training data became 3 times the capacity of the original training data. That
is, we created 3 times the training data in speed perturbation experiments. Hereinafter, in
this paper, this is called 3-fold speed perturbation.

2.3. SpecAugment

SpecAugment [10] modifies a spectrogram through three kinds of deformations: time
warping, frequency masking, and time masking. Figure 2 shows a spectrogram to which
SpecAugment is applied. We assume that the spectrogram has the length of the time axis
L and the length of the frequency axis V. Time warping is a deformation that occurs by
selecting a random point in the center of the frequency axis of the spectrogram in time
(W, L − W) and warping it left or right by w chosen from the uniform distribution, from 0
to the time warp parameter W. Frequency masking is a deformation of masking frequency
channels [ f0, f0 + f ) and by selecting a frequency channel number f within the frequency
[0, V − f ]. The f is chosen from a uniform distribution from 0 to the frequency parameter
F. Time masking is a deformation of masking the frame number [t0, t0+ t) by selecting a
frame number within time [0, L− t]. The time t is chosen from a uniform distribution, from
0 to the time parameter T.
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2.4. Interpolation

We adopted the simplest interpolation method, linear interpolation [21], to change the
frame rate in the spectrogram. Linear interpolation has the advantage that it is simple and
fast to calculate. The linear interpolation method finds the interpolated value by linearly
connecting two given points. Given two points (t0, f0), (t1, f1), the linear interpolation
method calculates the interpolated value as follows:

f = f0 + ( f1 − f0)
t − t0

t1 − t0
(2)
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3. Proposed Method

The proposed method in this paper aims to increase the effective amount of learning
data by changing the labeled data in the same way as the existing data augmentation
techniques. However, unlike speed perturbation that changes the speed of the entire
speech, the proposed method has the advantage of obtaining more learning data because
data is augmented by changing the speed of a few sections of speech.

As shown in Figure 3, the proposed method consists of four steps and is described
sequentially in the next section.
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3.1. Frame Rate

Since the proposed method transforms the spectrogram, the speed of speech is changed
by changing the frame rate through linear interpolation. For example, the frame rate can be
halved by making the existing 6 frames into 3 frames, and can also be reduced to 2/3 by
making 4 frames. In informal listening tests, we found that speech is intelligible when the
frame rate is doubled or halved. Therefore, all subsequent experiments were performed by
changing the speed of speech between 1/2 and 2. In addition, the average frame rate is set
to 1 so that the average length of the augmented data is the same as the average length of
the input data. The frame rate s is determined as follows, and then it is rounded to the first
decimal place for simplicity:

s ∼ Uniform[S1, S2],
S1 + S2

2
= 1 (3)

where Uniform[a, b] is the uniform distribution from a to b, and S1 and S2 denote the lower
and upper bounds of the frame rate, respectively.

3.2. Augmentation Range

Since it does not change the speed of the entire utterance, it is necessary to determine
the range in which the speed is to be changed. When deciding the augmentation range of
the utterance, the range was randomly determined, as in SpecAugment:

n ∼ Uniform [0, N] (4)

where N is a parameter representing the maximum range which is determined later
through experiments.
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3.3. Augmentation Position

Since we also change the speed of a section of the utterance, it is necessary to determine
the augmentation range as well as the position to be augmented. The augmentation position
was determined at random, the same as for the augmentation range. The augmentation
position p is determined as:

p ∼ Uniform[0, L − n] (5)

Since the augmentation position should not exceed the end of the utterance, the start
position of the augmentation range is set by subtracting the augmentation range n from the
end of the utterance. Figure 4 is a spectrogram to which the proposed method is applied
according to the augmentation range n.
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We obtained variable positional sections through the steps outlined in Sections 3.2 and 3.3.
These methods are similar to those used in the time masking of SpecAugment. However,
unlike SpecAugment, the speed of the selected augmentation range is changed, as is
explained in Section 3.4.

3.4. Linear Interpolation

The proposed method changes the speed of speech by changing the frame rate. When
changing the frame rate, the existing frame value is used to calculate an alternate frame
value. For example, when the frame rate is changed to 0.6, in the augmentation sections,
the existing 5 frames are replaced with 3 frames calculated through linear interpolation.
The following shows the frame rate change process in the augmentation sections of the
proposed method.

The number of frames to be extracted, a is obtained for each augmentation section
as follows:

a = s × n (6)

tk = t0 +
k
s

, k = 0, 1, · · · , a − 1 (7)

where t0 is the position of the existing frame, and tk is the position of the replacement
frame. After obtaining the positions tk of the replacement frame value, the replacement
frame value is obtained by putting it into the feature v that is correlated with tk. Finally, the
existing feature frames of the feature vector v[t] is replaced by the replacement frames of
the feature vector v[tk]. Additionally, each frame feature does not affect each other, i.e., if
the number of the feature vector v is L, then features {v1, v2,· · · , vL} are independent of each
other. Figure 5 shows how replacement frames are calculated through linear interpolation.
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4. Results

In the proposed method, the degree of augmentation is determined by several param-
eters. Therefore, an experiment was conducted to find the best parameters.

For the reliability of our experiments, two English databases were used: WSJ and
LibriSpeech. The WSJ database consists of 81 h of training data, and consists of validation
data “dev93” and evaluation data “eval92”. The LibriSpeech database consists of 960 h of
training data, and consists of validation data “dev-clean” and evaluation data “test-clean”.
In this paper, when learning to use LibriSpeech, only 100 h of learning data was used to
reduce the computing resource requirement. In addition, we used the character-based
recognition unit for the WSJ database, and used the SentencePiece recognition unit [22]
obtained by using the unigram language model [23] for the LibriSpeech database.

In this paper, experiments were conducted using the ESPnet toolkit [24] and the
combined Transformer-CTC structure was used as the model. We used 12 encoder layers
and 6 decoder layers, where each multi-head attention sub-layer was configured to have
4 heads. Additionally, we set dropout [25] to 0.1, and smoothing [26] to 0.1. For training,
we set the maximum sequences in a minibatch (“batch-size”) [24] to 16 with the number of
gradient accumulation (“accum-grad”) 4 in WSJ, and set the maximum bins in a minibatch
(“batch-bins”) [24] to 2,996,000 with “accum-grad” 16 in LibriSpeech. After 100 epochs of
learning, in the WSJ database, we used the model that averaged the top 10 models with the
highest accuracy of validation data. In the LibriSpeech database, we used the model that
averaged the top five models.

4.1. Augmentation Range

Since the proposed method changes the speed of some sections of an utterance, we
used the degree of augmentation according to the range of the augmentation section.
We experimented with changing the maximum number of frames to find the parameter
showing the optimal performance. In addition, experiments were conducted when the
proposed augmentation method was repeatedly applied while the sections did not overlap.
If the augmentation range n was longer than the length of the utterance, the entire utterance
was augmented. Table 1 shows the experimental results for the WSJ database.

When the maximum augmentation range N is 500 frames, it shows the highest perfor-
mance on average in the validation data. Repetition of the augmentation method did not
significantly affect the recognition performance. Figure 6 is the graphical plot correspond-
ing to Table 1.

The average frame length of the WSJ database is about 900 frames. Performance was
best at 500 frames; thus, the performance was best when it was about 60% of the utterance
length on average. Table 2 shows the experimental results for the LibriSpeech database.
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Table 1. WER (%) results of WSJ database according to the maximum augmentation range N when
s ∼ Uniform[0.9, 1.1].

N Number of Repetitions Dev93 Eval92

0 0 7.88 5.02

100
1 7.81 4.78
2 7.35 4.86

200
1 7.27 4.45
2 7.51 4.91

300
1 7.66 5.07
2 7.27 4.43

400
1 7.55 4.27
2 7.20 5.05

500
1 7.03 4.75
2 6.97 5.00

600
1 7.25 4.73
2 7.31 5.12

700
1 7.49 4.50
2 7.26 4.92
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Figure 6. WER results of WSJ database according to augmented frame range. The horizontal axis
denotes the maximum augmentation range and the vertical axis denotes WER.

Table 2. WER (%) results of LibriSpeech database according to the maximum augmentation range N
when s ∼ Uniform[0.9, 1.1].

N Dev-Clean Test-Clean

0 6.62 7.33
200 6.71 7.44
400 6.74 7.37
600 6.28 7.01
800 6.46 7.12

1000 6.31 6.95
1200 6.26 6.96
1400 6.61 7.16

The average frame length of the LibriSpeech database is about 1500 frames. Perfor-
mance was best at 1200 frame; thus, the performance was best when it was about 80% of
the utterance length on average.
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Through the results of the LibriSpeech and the WSJ database, the recognition result
did not change according to the absolute number of frames, but according to the ratio of
the augmentation section in the utterance.

4.2. Frame Rate

The proposed method changes the degree of augmentation by changing the speed
in the augmentation section. As described above, the method of changing the speed uses
linear interpolation to change the number of frames. In addition, we experimented with
the maximum frame rate range of 0.5–1.5 in order to transform at an audible speed. Speed
s is rounded to the first digit after the decimal point. Tables 3 and 4 show the performance
comparison according to frame rate. Even if the frame rate is randomly selected from a set
of the values consisting of the minimum range, 1.0, and the maximum range, there is no sig-
nificant performance difference. For example, comparing s = 0.5–1.5 and s = 0.5, 1.0, 1.5,
we observed no consistent WER changes.

Table 3. WER (%) results of WSJ database according to frame rate s when n = 500.

s Dev93 Eval92

0 7.88 5.02
0.9–1.1 7.03 4.75
0.7–1.3 7.38 4.82

0.7, 1.0, 1.3 7.07 4.87
0.5–1.5 7.24 4.94

0.5, 1.0, 1.5 7.04 4.70

Table 4. WER (%) results of LibriSpeech database according to frame rate s when n = 1200.

s Dev-Clean Test-Clean

0.9–1.1 6.26 6.96
0.7–1.3 5.95 6.60

0.7, 1.0, 1.3 6.15 6.62
0.5–1.5 6.06 6.68

0.5, 1.0, 1.5 5.93 6.74

In the WSJ database, there was no significant difference in performance even by
changing the range of the frame rate, but in the case of the LibriSpeech database, changing
the range of the frame rate showed significant performance improvement. Different results
were obtained for the two databases, and additional confirmation was performed through
validation loss in Figure 7. In the WSJ database, there was no difference in the validation
loss between 0.9–1.1 and 0.5–1.5 for the frame rate, but in the LibriSpeech database, the
larger the range of the frame rate, the lower the validation loss value.

Optimal parameters of s and n were tested through experiments. The best parameters s
were 0.5–1.5 and the best parameter N was 500 in the WSJ database and 1200 in the
LibriSpeech database.
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4.3. Determining the Maximum Augmentation Range

Through the experiment, it was confirmed that the speech recognition performance
of the proposed method depends on the ratio of the augmentation section in the entire
utterance. The main reason for the difference in the optimal N for the WSJ and LibriSpeech
databases is that the average utterance length of the databases is different.

Therefore, we redefined the value of N considering the length of each utterance. For
example, if it is assumed that the length of the utterance is 100 and the predefined ratio is 0.8,
then the maximum augmentation range becomes N = 80. That is, N changes according to
the length of each utterance as follows:

N = L × ratio (8)

where ratio is a rational number less than 1.
Table 5 shows the experimental results in which the augmentation sections were deter-

mined to be proportional to the utterance length. In the flexible N case, the augmentation
ratio was set to 70%, the average of 60% and 80%, which performed best in the WSJ and
LibriSpeech databases.

The experimental results thus far imply that the augmentation range and speed in
FrameAugment control the degree of augmentation and, consequently, improve recognition
performance. Therefore, as in SpecAugment, the tuning of augmentation parameters is
important. In order to cope with diverse kinds of databases as far as possible and not just a
specific database, the augmentation range was set at random, the maximum augmentation
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range was also decided considering the utterance length, and the speed was also set at
random within a given range.

Table 5. WER (%) results according to the maximum augmentation range. For the flexible N case, the
ratio was 0.7 and the frame rate range was 0.5–1.5 in the proposed method.

Database N Dev93/Dev-Clean Eval92/Test-Clean

WSJ
0 7.88 5.02

Fixed (N = 500) 7.24 4.94
Flexible (N = L × 0.7) 6.89 4.68

LibriSpeech
0 6.62 7.33

Fixed ( N = 1200) 6.06 6.68
Flexible (N = L × 0.7) 6.14 6.63

4.4. Comparison with the Existing Data Augmentation Methods

SpecAugment and speed perturbation are widely used as a data augmentation method.
We compared the performance of the previous data augmentation and the proposed method.
For SpecAugment, we set the parameters to W = 5, F = 30, T = 40, and n_mask = 2.
Tables 6 and 7 show the performance of the existing data augmentation methods and the
proposed method in WSJ and LibriSpeech, respectively.

Table 6. WER (%) results of WSJ database according to data augmentation methods.

Data Augmentation Dev93 Eval92

None 7.88 5.02
SpecAugment 7.23 4.87

Speed perturbation 7.24 4.93
Proposed method 6.89 4.68

Table 7. WER (%) results of LibriSpeech database according to data augmentation methods.

Data Augmentation Dev-Clean Test-Clean

None 6.62 7.33
SpecAugment 6.23 6.96

Speed perturbation 6.10 6.74
Proposed method 6.14 6.63

Table 8 shows the performance of incrementally combining the existing data augmenta-
tion methods and the proposed method in LibriSpeech. The combination of SpecAugment
and speed perturbation with the proposed method of 6.01% improved performance by up
to 13.6% over the baseline of 6.96%. In addition, the proposed method was shown to further
reduce WER from 6.26 to 6.01% compared with the combination of the two previous data
augmentation methods (SpecAugment and speed perturbation), which means a relative
performance improvement of 4%.

Table 8. WER (%) results of LibriSpeech database when incrementally combined with the previous
data augmentation methods.

Data Augmentation Dev-Clean Test-Clean

SpecAugment 6.23 6.96
+Speed perturbation 5.83 6.26
+Proposed method 5.53 6.01
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4.5. Discussion

Figure 8 shows the attention alignment after learning. When speed perturbation
is applied as shown in Figure 8b, the overall slope increases compared to the attention
alignment of the original utterance shown in Figure 8a. However, since FrameAugment
changes the speed of selected random sections of the original utterance, the slope of non-
augmented sections remains unchanged, but the slope of the selected random section is
changed, as shown in Figure 8c,d. The selected random section is marked with a box with
red lines. We can notice that the slope increases because the frame rate is decreased in
Figure 8c, and the slope decreases because the frame rate is increased in Figure 8d.
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Figure 9 shows the original spectrogram and the augmented spectrogram when
FrameAugment is applied.
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Figure 9. Comparison of the spectrograms with frame index on x-axis and feature index on y-axis. The
length of the utterance increases due to FrameAugment. (a) Original spectrogram; (b) spectrogram
with FrameAugment (s = 1.3, n = 500, p = 100).

Figure 10 shows the attention loss on the training data and the validation data of the
LibriSpeech database using FrameAugment and other existing data augmentation methods.
Figure 10a shows the loss graph for the training data. If the amount of training data for
each epoch is scaled to be equal in the baseline and the speed perturbation method (i.e.,
90 epochs in the baseline is scaled to 30 epochs in the speed perturbation method), the
training loss curve of every data augmentation method shows convergence slower than
that of the baseline.

Figure 10b shows the loss graph for the validation data, where the loss graph of
every data augmentation method converged to a lower loss value than that of the baseline.
SpecAugment, which augments data by masking on a random section of the spectrogram,
converged to the lowest validation loss. Between the two data augmentation methods that
change speed, FrameAugment converges to a lower loss value than speed perturbation.
It can be expected that FrameAugment performs worse than SpecAugment but better
than speed perturbation. In the experiments of the previous subsection, it was shown that
FrameAugment can be constructively combined with SpecAugment and speed perturbation
for the best performance.
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Figure 10. Attention loss LAttention of the training data (a) and validation data (b) of the LibriSpeech
database. The horizontal axis denotes the number of epochs, and the vertical axis denotes LAttention .
We note that 3-fold speed perturbation means 3 times the original training data.

5. Conclusions

We proposed a new data augmentation method that changes the speed of some
sections of speech. The proposed method was shown to achieve the best performance on
average when the frame rate of 70% of utterances was changed to be 0.5–1.5. Performance
was improved by about 13.6% relatively over the baseline when combined with both
SpecAugment and speed perturbation in the LibriSpeech 100 h database. The proposed
FrameAugment method can provide the labeled data with various speech lengths by
simply changing the frame rate and can be combined with the previous data augmentation
methods to achieve better results.

Further study is needed to evaluate the performance when the proposed method is
used in the waveform domain or applied to other kinds of speech databases.
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