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Abstract: Computing the similarity between graphs is a longstanding and challenging problem with
many real-world applications. Recent years have witnessed a rapid increase in neural-network-based
methods, which project graphs into embedding space and devise end-to-end frameworks to learn
to estimate graph similarity. Nevertheless, these solutions usually design complicated networks to
capture the fine-grained interactions between graphs, and hence have low efficiency. Additionally,
they rely on labeled data for training the neural networks and overlook the useful information
hidden in the graphs themselves. To address the aforementioned issues, in this work, we put forward
a contrastive neural graph similarity learning framework, Conga. Specifically, we utilize vanilla
graph convolutional networks to generate the graph representations and capture the cross-graph
interactions via a simple multilayer perceptron. We further devise an unsupervised contrastive loss
to discriminate the graph embeddings and guide the training process by learning more expressive
entity representations. Extensive experiment results on public datasets validate that our proposal has
more robust performance and higher efficiency compared with state-of-the-art methods.

Keywords: graph similarity learning; graph neural network; contrastive learning; graph edit distance

1. Introduction

Graph similarity computation aims to calculate the similarity between graphs, which
is essential to a number of downstream applications such as biological molecular similarity
search [1], malware detection [2] and knowledge graph fusion [3,4]. Graph edit distance
(GED) [5] and maximum common subgraph (MCS) [6] are frequently used metrics for
evaluating graph similarity (these two metrics are inter-related [5], and we mainly discuss
GED in this paper.). Specifically, GED is defined as the minimum cost taken to transform one
graph to the other via a sequence of graph edit operations of nodes or edges [7]. Figure 1a
depicts a simple example of GED computation, where the graph G1 is transformed into
G2 via edge deletion, node addition, and edge addition, resulting in the GED value of 3.
Usually, a lower GED value between two graphs implies a higher similarity [7].

Traditional methods design either exact or approximate algorithms to calculate the
GED values [8–10]. Nevertheless, computing GED is widely known to be a NP-complete
problem [9]. Hence, these algorithms usually consume high computation resources and
have poor scalability. To mitigate the aforementioned issues, graph neural networks
(GNNs) [11,12] are utilized to calculate the approximate graph similarity scores [7,13]. As
shown in Figure 1b, the main idea is to project the symbolic graph representations into
the embedding space via GNNs, where similar graphs (i.e., graphs with low GED values)
are placed close in the embedding space. To this end, state-of-the-art solutions first embed
the graphs, and then aggregate the node-level and graph-level interactions between the
embeddings to generate the final similarity scores [7,14].
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Figure 1. Illustration of graph similarity computation. (a) An example of GED computation process.
(b) An example of neural methods for calculating graph similarity, where similar graphs are projected
into the adjacent area in the embedding space.

Nonetheless, we still observe several issues from existing schemes:

• Existing neural methods still require excessive running time and memory space due
to the intricate neural network structure design, which might fail to work in real-life
settings;

• They heavily rely on the labeled data for training an effective model and neglect the
information hidden in the vast unlabeled data. Practically, the labeled data are difficult
to obtain.

To address these issues, we put forward a contrastive neural graph matching network,
i.e., Conga, to compute graph similarity scores in an effective and efficient manner. The
backbone of Conga is a vanilla multilayer graph convolutional network (GCN), followed
by attention-based pooling layers, which generate the representations for the two graphs,
respectively. The graph representations generated by each layer are concatenated and
sent to a multilayer perceptron to produce the similarity score between two graphs. To
further mine useful signals from the graphs, we use an unsupervised contrastive loss
to discriminate the graph embeddings and guide the training process by learning more
expressive entity representations. Our proposed model is lightweight, as the complicated
multilevel interaction modeling process is removed. That being said, it achieves state-of-
the-art performance in existing graph similarity evaluation benchmarks.

Contribution. The contribution of this work can be summarized into three ingredients:

• To the best of our knowledge, we are among the first attempts to utilize contrastive
learning to facilitate the neural graph similarity computation process.

• We propose to simplify the graph similarity prediction network, and the resultant
model attains higher efficiency and maintains competitive performance.

• We compare our proposed model, Conga, against state-of-the-art methods on existing
benchmarks, and the results demonstrate that our proposed model attains superior
performance.

Organization. Section 2 overviews related works. Section 3 introduces the graph simi-
larity prediction network and the contrastive learning module. Section 4 introduces the
experimental results, followed by discussion in Section 5.

2. Related Works

In this section, we first present existing solutions to graph similarity computation.
Next, we briefly mention contrastive learning and its applications. Finally, we introduce
the graph matching task, which is closely related to graph similarity computation.
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Graph similarity computation. Computing the similarity between graphs is a long-
standing and challenging problem with many real-world applications [15–18]. Graph
similarity is usually defined based on structural similarity measures such as GED or
MCS [19]. Traditional exact GED calculation is known to be NP-complete and cannot
scale to graphs with more than tens of nodes. Thus, classic approximation algorithms are
proposed to mitigate this issue. They essentially estimate the minimum cost (i.e., a set of
edit operation) of transforming one graph to another, and the resultant edit operations can
be used to explain the similarity score [20]. Nevertheless, the computation and storage
costs of these algorithms are still very high [10,15,21,22].

To fill in this gap, recently, an increasing number of studies employ end-to-end GNNs
to calculate the graph similarities in the embedding space [23–25]. The goal is to learn
the parameters that can model graph similarity from empirical data, which are then used
to predict graph similarity scores given new graphs. Specifically, SimGNN models node-
level and graph-level cross-graph interactions using histogram features and neural tensor
networks [7], while GraphSim instead utilizes convolutional neural networks to capture
the node-level interactions [13]. GMN computes the similarity score through a cross-graph
attention mechanism to associate nodes across graphs [26]. MGMN devises a multilevel
graph matching network for computing graph similarity, including global-level graph–
graph interactions, local-level node–node interactions, and cross-level interactions [14].
H2MN models substructure similarities across the graphs by introducing the concept of
hypergraphs [27]. Different from these studies, in this work, we remove the node-level and
substructure-level interactions (whose complexity can grow sharply given larger graphs)
and merely model the graph-level interactions. The resultant framework can achieve both
high effectiveness and efficiency, which is demonstrated in the experiment section.

Additionally, a few works aim to increase the interpretability of the graph similarity
learning process. GOTSim formulates graph similarity as the minimal transformation from
one graph to another in the node embedding space, where an efficient differentiable model
training strategy is offered [20]. Wang et al. present a hybrid approach that combines the
interpretability of traditional search-based techniques for generating the edit path and
the efficiency and adaptivity of neural models to reduce the cost of the GED solver [28].
Yang and Zhou propose to combine the A∗ search algorithm and graph neural networks to
compute approximate GED [29]. Specifically, the estimated cost function and the elastic
beam size are learned through the neural networks.

A summary of existing methods can be found in Table 1.

Table 1. Summary of existing graph similarity computation methods. The Type column represents
the type of the method, which can be classical, neural, or hybrid. Year refers to the publication year,
and Ref. provides the reference.

Methods Type Year Ref. Methods Type Year Ref.

A∗ Classical 1968 [8] SimGNN Neural 2019 [7]
Beam Classical 2006 [15] GMN Neural 2019 [26]

Hungarian Classical 2009 [21] GraphSim Neural 2020 [13]
VJ Classical 2011 [22] MGMN Neural 2021 [14]
HED Classical 2015 [10] H2MN Neural 2021 [27]
Noah Hybrid 2021 [29] GOTSim Neural 2021 [20]

GENN-A∗ Hybrid 2021 [28]

Contrastive learning. Contrastive learning is a machine learning paradigm where un-
labeled data points are juxtaposed against each other to teach a model which points are
similar and which are different. The key is to create positive and negative samples, and
samples that belong to the same distribution are pushed towards each other in the em-
bedding space, while those belonging to different distributions are pulled against each
other. By learning to encode the similarities or dissimilarities among a set of unlabeled
examples, more expressive data representations can be learned [30]. Following a recent
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trend that uses contrastive learning to facilitate graph-related tasks [31,32], in this work,
we also devise an unsupervised contrastive loss to guide graph similarity learning.

Graph matching. Discovering the equivalent nodes among graphs, i.e., graph matching,
has been intensively studied by different domains, such as social networks [33,34], computer
vision [35,36] and knowledge graphs [37–39]. Since the graphs are usually in a large scale,
state-of-the-art solutions utilize GNN embeddings to approximate the matching results.
To learn the parameters of neural models, either node-level or graph-level matching label
is used, and graph matching approximates the GED when GED is used as a graph-level
annotation [20]. However, it should be noted that the goal of neural graph matching is to
generate the fine-grained node matching result, while graph similarity learning merely
needs to predict the similarity score.

There are also some other related works [40–46].

3. Methodology

In this section, we first describe the outline of our proposed framework. Next, we
elaborate on the components.

3.1. Model Overview

We proposed a contrastive neural graph matching network, i.e., Conga. As shown
in Figure 2, our proposal comprises two main modules, i.e., graph similarity prediction
network for calculating the mean square error (MSE) loss and the contrastive learning
network for computing the unsupervised contrastive loss. These losses are then combined
and used for training our proposed framework. Next, we introduce these modules in detail.
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Figure 2. The framework of our proposed model. Given two graphs, they are first fed to the graph
similarity prediction network to predict similarity score, which is contrasted with the ground-truth
label to produced the MSE loss. Additionally, each graph is processed by the contrastive learning
model to produce the unsupervised contrastive loss. These losses are aggregated and used to train
the proposed framework.
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3.2. Graph Similarity Prediction Network

As shown in the middle of the figure, the graph similarity prediction network is
composed of three graph convolutional layers. After each convolution, an attention-
based pooling strategy is used to generate the graph-level embeddings. Finally, the graph
embeddings from all layers are concatenated and forwarded to a multilayer perceptron
(MLP) to generate the graph similarity scores, which are compared with the ground-truth
values to produce the MSE loss. Next, we elaborate on these components.

3.2.1. Graph Convolutional Layer

The input to each graph convolutional layer l is the embedding matrix X l for all nodes.
The message passing process can be expressed as:

X l+1 = σ(D̃−
1
2 ÃD̃−

1
2 X lW l), (1)

where W l is the learnable weight matrix in the l-th layer, σ is the activation function, A
is the adjacency matrix of the graph and Ã is the adjacency matrix with self-loops. D̃ is
the diagonal matrix that contains node degree information, i.e., D̃ii = ∑j Ãij. As thus,

D̃−
1
2 ÃD̃−

1
2 refers to the normalized matrix of Ã based on the degree information. The

output node embedding matrix is denoted as X l+1, which also serves as the input matrix
to layer l + 1. The node embedding matrix sent to the first layer is usually randomly
initialized or set to the original features of the nodes.

3.2.2. Attention-Based Graph Pooling

The node-level embeddings generated by each convolutional layer are then aggregated
to produce the graph-level embedding. Common approaches include the mean pooling
or degree-aware pooling. To better characterize the weight of each node, we adopt the
attention-based pooling strategy to generate the graph embedding [7].

Specifically, given the node embedding matrix X l generated by the l-th convolution
layer, we first calculate the global context embedding cl using mean pooling operation
mean_pool, followed by a nonlinear transformation:

cl = σp(mean_pool(X l)W l
p), (2)

where W l
p is the learnable weight matrix in the pooling layer, and σp is the activation

function. The global context embedding captures the graph structure information, which is
then used to calculate the attention of each node, as nodes with more similar embeddings
to the global context embedding theoretically should receive higher attention weights.
Formally, the attention weight atti assigned to node i is calculated as sigmoid(cᵀX l

i), where
X l

i is the node embedding, c refers to cl and ᵀ is the transpose function. Finally, the graph-
level embedding produced by the attention-based pooling is denoted as gl = ∑i attiX l

i .

3.2.3. Graph–Graph Interaction and Similarity Prediction

After obtaining the node-level and graph-level embeddings generated by convolution
and pooling modules, we aim to model the interactions between two graphs and compute
the graph similarity. Specifically, we adopt a simple approach, i.e., concatenating the em-
beddings of the two graphs generated by each layer and feeding to a multilayer perceptron
MLP to produce the similarity score. Formally, the similarity score s is calculated as:

s = MLP(g1
1||g

1
2||...g

n
1 ||g

n
2 ), (3)

where || denotes the concatenation of embeddings, g1
1, g1

2, . . . , g1
n represent the set of graph-

level embeddings of G1 and g2
1, g2

2, . . . , g2
n represent the set of graph-level embeddings

of G2.
Note that we do not follow state-of-the-art approaches that leverage the node-level (or

substructure-level) interactions to achieve more accurate graph similarity modeling [13,27].
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This is because capturing the fine-grained interactions would become both resource- and
time-consuming given a relatively larger graph. We believe that graph-level embeddings
are enough for computing the graph similarity, considering that the node information
has already been encoded into the graph representations. In the experiment, we also
empirically validate the effectiveness and efficiency of our proposed graph similarity
prediction network.

3.2.4. Loss Function

Finally, to train a network that can accurately compute the similarity between two
graphs, we utilize the mean squared error (MSE) loss to minimize the difference between
the predicted similarity score s and the ground-truth one st. The loss function is denoted
as Ls.

3.3. Contrastive Learning

To obtain the labels for learning graph similarity, existing works adopt traditional
exact algorithms to compute the GED distance between two graphs [7]. Nevertheless, as
mentioned above, these algorithms tend to require extremely longer running time given
larger graphs. Consequently, the ground-truth labels are actually lacking and difficult
to obtain.

To mitigate this issue, we propose an unsupervised contrastive loss to learn expres-
sive graph representations and help predict more accurate similarity scores. Contrastive
learning aims to make graph representations agree with each other under proper transfor-
mations [47]. Hence, by maximizing the agreement between two augmented views of the
same graph via a contrastive loss in the latent space, more expressive and generalizable
graph embeddings can be learned in the absence of labeled data. The learned embeddings
can further facilitate downstream applications, such as the graph similarity computation
task in this work. Next, we first introduce the graph augmentation strategy and then
present the unsupervised contrastive loss.

3.3.1. Graph Augmentations

Data augmentation is the prerequisite for contrastive learning, which creates new data
without hurting the semantics. In the context of graphs, typical augmentation strategies
include the modifications of nodes, edges, and node/edge labels [48]. In this work, inspired
by previous works [47], given a graph G, we make augmentations by randomly removing
nodes with probability pr, randomly adding or removing edges with probability pe and
masking node and edge labels with probability pm, resulting in two augmented graphs, i.e.,
Ĝa and Ĝb.

3.3.2. Unsupervised Contrastive Loss

After obtaining the augmented graphs for G, i.e., Ĝa and Ĝb, we first process them
with graph convolutional layers and the attention-based pooling function, generating the
graph representations ga and gb. Note that we adopt the same convolutional layers and
pooling functions as in the graph similarity prediction network, and the graph embeddings
generated by all layers are concatenated to produce ga and gb.

Then, we use another multiplayer perceptron to project the graph embeddings to
another latent space, i.e., ha = MLP(ga), hb = MLP(gb), where MLP is different from the
one used in Equation (3). Finally, we devise a contrastive loss to maximize the agreement
between positive pairs and increase the disagreement between negative ones. Specifically,
we consider (Ĝa, Ĝb) as the positive pair and Ĝa/Ĝb with other augmented graphs in the
same training batch as negative pairs. The contrastive loss can be formally written as:

Lc = −
1
M

M

∑
i=1

log
exp(cos(hi,a, hi,b))

∑N
j=1,j 6=i exp(cos(hi,a, hj,b))

, (4)



Appl. Sci. 2022, 12, 7668 7 of 15

where cos(·, ·) denotes the cosine similarity between two embeddings, exp(·, ·) refers to
the exponential function and M represents the number of graphs in the training batch.

3.4. Training

We combine the MSE loss generated by the graph similarity prediction network and
the unsupervised contrastive losses to train our proposed neural network. The overall loss
function is written as:

L = Ls + β(L1
c + L2

c ), (5)

where β is the hyperparameter that controls the contribution of the two loss functions. L1
c

and L2
c represent the contrastive loss functions for the two graphs, respectively, and Ls

refers to the alignment loss.

3.5. Algorithmic Descriptions

We provide the algorithm of the graph similarity prediction network in Algorithm 1
and present the general algorithm of Conga in Algorithm 2.

Algorithm 1: Graph similarity prediction network.
Input : Two input graphs: G1 and G2
Output : Similarity score: s

1 Generate the node embeddings via graph convolutional layer, i.e., Equation (1);
2 Generate the graph embeddings via attention-based pooling, i.e., Equation (2);
3 Calculate the graph–graph similarity score s, i.e., Equation (3);
4 return s;

Algorithm 2: Algorithmic description of Conga.
Input : Training graph pairs U ; Testing graph pairs T
Output : Similarity scores for T
// Training

1 foreach u ∈ U do
2 Calculate the similarity score s using Algorithm 1;
3 Calculate the MSE loss Ls between the predicted and the ground-truth scores;
4 Augment the graphs according to Section 3.3.1;
5 Calculate the unsupervised contrastive loss Lc using Equation (4);
6 Obtain the overall loss using Equation (5) and train the network;

// Testing
7 foreach t ∈ T do
8 Predict the similarity score s using the trained network;
9 return s;

4. Experiments and Results

In this section, we first introduce the experimental settings. Next, we provide the
empirical results and discuss the performance. Finally, we conduct further experiments.

4.1. Experimental Settings

In this subsection, we introduce the experimental settings, including the datasets,
evaluation metrics, parameter settings and the baseline models.

4.1.1. Datasets

Following the state-of-the-art works [27], we adopt three real-world datasets for
evaluation, including:
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• AIDS [49], a dataset consisting of molecular compounds from the antiviral screen
database of active compounds. The molecular compounds are converted to graphs,
where atoms are represented as nodes and covalent bonds are regarded as edges. It
comprises 42,687 chemical compound structures, where 700 graphs were selected and
used for evaluating graph similarity search;

• LINUX [50], a dataset consisting of program dependence graphs in the Linux kernel.
Each graph represents a function, where statements are represented as nodes and the
dependence between two statements are represented as edges. A total of 1000 graphs
were selected and used for evaluation;

• IMDB [51], a dataset consisting of ego-networks of film stars, where nodes are peo-
ple and edges represent that two people appear in the same movie. It consists of
1500 networks.

More statistics of the dataset can be found in Table 2 (The datasets can be obtained from
https://github.com/yunshengb/SimGNN, (accessed on 1 September 2021).) For each
dataset, we create the training, validation and testing sets by following the 60%:20%:20%
ratio. For AIDS and LINUX, the ground-truth GED distance is obtained by using the A∗

algorithm [8]. Since the IMDB dataset contains larger graphs and the exact algorithms fail
to work, approximate algorithms, i.e., HED [10], Hungarian [21] and VJ [22] are used to
calculate the GEDs, where the minimum value is regarded as the ground-truth label [7].

Table 2. Dataset statistics. # denotes the number of objects. A. N. and A. E. represent the average
number of nodes and edges, respectively. Label denotes whether the graphs are labeled.

Dataset Contents #Graphs #Pairs #A. N. # A. E. Label

AIDS Molecular Compounds 700 490 K 8.9 8.8 Yes

LINUX
Program Dependence

Graph 1000 1 M 7.53 6.94 No

IMDB Film Star Ego-Networks 1500 2.25 M 13 65.94 No

4.1.2. Evaluation Metrics

We follow previous works and use mean squared error (mse), Spearman’s rank cor-
relation coefficient (ρ) and precision@10 (p@10) as the evaluation metrics. Among them,
mse measures the average squared difference between the ground-truth and the predicted
graph similarity scores. The remaining two are used to evaluate the ranking results, where
database graphs are ranked according to the similarities to the query graph. Graphs with
higher similarities are assigned with lower ranks. ρ characterizes the correlations between
the ground-truth and predicted ranking results, and p@10 is computed by dividing the
intersection of ground-truth and predicted top-10 results by 10.

4.1.3. Parameter Settings

Regarding the graph similarity prediction network, we use three convolutional layers
and use ReLU as the activation function σ. The dimension of node embeddings generated
by all layers is set to 100. For attention-based pooling, σp is set to the sigmoid function, and
the dimension of graph-level embedding is set to 100. MLP consists of four fully connected
layers with ReLU activation function, which reduces the dimensions from 600 to 200, 200
to 100, 100 to 50 and 50 to 1, which is then processed by a sigmoid function to predict the
similarity score. As to the contrastive learning module, we set pr, pe and pm to 0.1 and
randomly choose one of the three methods when augmenting the original graph. MLP
consists of two fully connected layers with ReLU activation function, where the dimension
of embeddings is kept as 300. β is set to 0.5. We set the batch size to 1024 and the learning
rate to 0.001. All the hyperparameters are tuned on the validation set. The experiments are
conducted on a personal computer with the Ubuntu system, an Intel Core i7-4790 CPU, an
NVIDIA GeForce GTX TITAN X GPU and 32 GB memory.

https://github.com/yunshengb/SimGNN
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It is noteworthy that, since the nodes in AIDS are labeled, we use one-hot embeddings
as the initial node embeddings. For LINUX and IMDB, where nodes are unlabeled, we use a
constant encoding scheme [7].

4.1.4. Baseline Models

We compare with three categories of methods. The first one includes the classical meth-
ods, including A∗ [8], which computes exact GED distance, and Beam [15], Hungarian [21],
VJ [22] and HED [10], which calculate approximate GED values.

The second one comprises state-of-the-art GNN-based methods, including:

• SimGNN [7], which uses a histogram function to model the node–node interactions and
supplement with the graph-level interactions for predicting the graph similarity;

• GMN [26], which computes the similarity score through a cross-graph attention mecha-
nism to associate nodes across graphs;

• GraphSim [13], which estimates the graph similarity by applying a convolutional
neural network (CNN) on the node–node similarity matrix of the two graphs;

• GOTSim [20], which formulates graph similarity as the minimal transformation from
one graph to another in the node embedding space, where an efficient differentiable
model training strategy is designed;

• MGMN [14], which models global-level graph–graph interactions, local-level node–node
interactions, and cross-level interactions, constituting a multilevel graph matching
network for computing graph similarity. It has two variants, i.e., SGNN, a siamese graph
neural network to learn global-level interactions and NGMN, a node–graph matching
network for effectively learning cross-level interactions;

• H2MN [27], which learns the graph representations from the perspective of hypergraphs,
and thus captures rich substructure similarities across the graph. It has two variants,
i.e., H2MNRW, which uses random walks to construct the hypergraphs and H2MNNE, which
uses node neighborhood information to build the hypergraphs.

The third category combines traditional and neural models for computing the graph simi-
larity:

• GENN-A∗ [28], which uses dynamic node embeddings to improve the branching process
of the traditional A* algorithm;

• Noah [29], which combines A* search algorithm and graph neural networks to compute
approximate GED, where the estimated cost function and the elastic beam size are
learned through the neural networks.

4.2. Experimental Results

In this subsection, we first report the main results. Then, we conduct the ablation
study. Finally, we compare the efficiency of algorithms.

4.2.1. Main Results

The main experimental results are presented in Table 3. As the classical A∗ algorithm
can calculate the exact GED on smaller datasets, i.e., AIDS and LINUX, it attains perfect
results on these two datasets. However, it cannot scale to the IMDB dataset. The classical
algorithms that compute the approximate GED values, i.e., Beam, Hungarian, VJ and HED,
attain relatively poorer results compared with methods involving neural networks. Nev-
ertheless, it should be noted that these classical methods can explicitly predict the edit
distance, while the pure neural methods cannot. Additionally, the solutions generated by
these methods are upper bounds of the optimal GED values, while neural models predict
the values at both sides of the optimal ones.

As for the GNN-based regression methods, i.e., SimGNN, GMN, GraphSim, GOTSim, SGNN,
NGMN, MGMN and H2MN, they achieve better results than the traditional ones. Among them,
H2MN is the best performing solution, validating the usefulness of modeling substructure
interactions. After combining the classical and neural models, the ranking performance



Appl. Sci. 2022, 12, 7668 10 of 15

of Noah and GENN-A∗ increases, while the mse drops slightly. Additionally, both Noah and
GENN-A∗ cannot effectively handle the IMDB dataset.

Our proposed method, Conga, attains the best overall performance, especially on the
larger dataset IMDB. On smaller datasets, it also attains leading results. Its ranking results
on AIDS is lower than GENN-A∗ and GOTSim, which can be partially attributed to the fact
that it focuses more on estimating the correct GED distance. Additionally, its mse results is
slightly inferior to H2MNNE on the LINUX dataset. That being said, its performance is more
robust and consistent across all datasets/metrics.

Table 3. Main experimental results (mse is in the scale of the 10−3). ↓ means lower values are
preferred, while ↑ means higher values are preferred. / represents that the results cannot be obtained
due to excessive running time or are not provided in the original work (and cannot be reproduced).

Datasets AIDS LINUX IMDB

Metrics mse(↓) ρ(↑) p@10(↑) mse(↓) ρ(↑) p@10(↑) mse(↓) ρ(↑) p@10(↑)

A∗ 0.000 1.000 1.000 0.000 1.000 1.000 / / /
Beam 12.090 0.609 0.481 9.268 0.827 0.973 2.413 0.905 0.813

Hungarian 25.296 0.510 0.360 29.805 0.638 0.913 1.845 0.932 0.825
VJ 29.157 0.517 0.310 63.863 0.581 0.287 1.831 0.934 0.815
HED 28.925 0.621 0.386 19.553 0.897 0.982 19.400 0.751 0.801

SimGNN 1.376 0.824 0.400 2.479 0.912 0.635 1.264 0.878 0.759
GMN 4.610 0.672 0.200 2.571 0.906 0.888 4.422 0.725 0.604

GraphSim 1.919 0.849 0.446 0.471 0.976 0.956 0.743 0.926 0.828
GOTSim 1.180 0.860 0.870 2.125 0.920 0.860 2.960 0.850 0.730
SGNN 2.822 0.765 0.289 11.830 0.566 0.226 1.430 0.870 0.748
NGMN 1.191 0.904 0.465 1.561 0.945 0.743 1.331 0.889 0.805
MGMN 1.169 0.905 0.456 0.439 0.985 0.955 0.335 0.919 0.837
H2MNRW 0.957 0.877 0.517 0.227 0.984 0.953 0.308 0.912 0.861
H2MNNE 0.913 0.881 0.521 0.105 0.990 0.975 0.589 0.913 0.889

Noah 1.545 0.734 0.809 / / / 27.818 0.810 0.354
GENN-A∗ 0.839 0.953 0.866 0.324 0.991 0.962 / / /

Conga 0.823 0.892 0.550 0.121 0.992 0.987 0.288 0.948 0.871
w/o CL 0.840 0.890 0.544 0.126 0.992 0.994 0.315 0.947 0.866

4.2.2. Ablation Results

We further conduct an ablation study to validate the effectiveness of our proposed
modules. Specifically, we remove the contrastive learning module and report the results
of the graph similarity prediction network, i.e., Conga w/o CL in Table 3. It is evident
that without the contrastive learning, the results of most metrics drop across all datasets,
especially on the larger dataset IMDB. This can be ascribed to the more expressive entity
representations induced by the unsupervised contrastive loss.

Furthermore, we can observe that even without the contrastive learning module, the
vanilla graph similarity prediction network can also attain state-of-the art performance
compared with existing methods. This shows that merely modeling the graph-level interac-
tions can already achieve superior prediction results, despite that the intricate node-level
and substructure-level information is discarded. Additinally, we reveal in the following
section that our design is much more efficient than present methods that aim to capture
fine-grained information. It is noteworthy that, instead of claiming that node–node and
substructure–substructure are useless, we aim to demonstrate that only modeling the
graph-level interaction can already achieve both high effectiveness and efficiency.

4.2.3. Efficiency Comparison

We further compare the efficiency of these approaches. It can be seen from Table 4 that
our proposed framework, Conga, requires the least running time, which is over 30× faster
than the classic methods and 3× faster than the neural methods. This is due to its simple
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architecture that merely comprises convolutional layers and pooling functions, where the
resource-consuming fine-grained interactions between graphs are abandoned. In addition,
it shows that the contrastive learning module brings extra running time.

From the table, we can also observe that, on average, the neural methods (on the left)
are faster than the traditional ones or the ones that build upon traditional frameworks (on
the right).

Table 4. Efficiency comparison. The values denote average time consumption on one pair of graphs
in milliseconds. / represents that the results cannot be obtained due to excessive running time or are
not provided in the original work (and cannot be reproduced).

Methods AIDS LINUX IMDB Methods AIDS LINUX IMDB

SimGNN 5.3 5 6.6 A∗ 1324.7 896.3 /
GMN 7 7.1 9.1 Beam 13.2 9.5 119.4

GraphSim 7.5 7.5 8.1 Hungarian 8.2 6.8 105.6
MGMN 5.2 5.6 7.1 VJ 9 7.4 109.1
H2MN 0.9 0.8 1.2 Noah >10.0 / >100.0
Conga 0.3 0.3 0.3 GENN-A∗ >10.0 >10.0 /
w/o CL 0.2 0.2 0.2

4.3. Further Analysis

We conduct further experiments to validate the effectiveness of our proposed components.

4.3.1. On GNN Layers

First, we test the influence of the number of GNN layers on the results. We change the
number of GNN layers from 1 to 4 and report the mse values generated by our proposed
graph similarity prediction network. As shown in Figure 3a, the number of layers does
affect the overall performance. Specially, fewer layers cannot extract useful information
from the graphs, leading to larger mse values on AIDS and LINUX, while too many lay-
ers would cause the overfitting issue, as pointed out by previous study, which in turn
results in a higher mse on IMDB. Hence, the number of GNN layers should be set to an
appropriate value.

4.3.2. On Graph Augmentation in Contrastive Learning

Next, we examine the influence of different data augmentation strategies in contrastive
learning on the results. Specifically, we aim to compare with two variants, i.e., CL1, which
combines two augmentation strategies to augment the graph at each time, and CL2, which
additionally introduces an augmentation strategy (that samples a subgraph from the
original graph using random walk) [47].

It is observed from Figure 3b that our proposed augmentation strategy can generate
the lowest mse value. This demonstrates that, for the graph similarity computation task,
the augmented graph should not deviate too much from the original graph (Ours vs. CL1),
and the subgraph sampling augmentation strategy does not align with the goal of GED
computation (Ours vs. CL2), since a subgraph might significantly modify the original
graph’s GED distance to another graph.

4.3.3. On Loss Function

Furthermore, we analyze the hyperparameter β in Equation (5), which controls the
contribution of supervised similarity prediction loss and the unsupervised contrastive loss.
As shown in Figure 3c, generally speaking, a lower β is preferred, since the contrastive
learning module mainly helps to learn more expressive embeddings and does not directly
influence the similarity computation. Hence, importance should still be placed on the
similarity prediction. Nevertheless, setting β to 0.25 brings higher mse compared with
0.5 on IMDB, showing that contrastive learning still plays a significant role in the overall
loss function.
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4.3.4. On Learning Rate

Finally, we investigate the influence of the learning rate of the training process. It is
observed from Figure 3d that the learning rate is critical to the overall performance. As
thus, in our experiment, we carefully tune the hyperparameter on the validation set and set
the learning rate to 0.001.

0 0.2 0.4 0.6 0.8 1

AIDS

LINUX

IMDB

4 3 2 1

0 0.2 0.4 0.6 0.8 1

AIDS

LINUX

IMDB

CL2 CL1 Ours

0 0.2 0.4 0.6 0.8 1

AIDS

LINUX

IMDB

0.002 0.001 0.0005 0.0001

0 0.2 0.4 0.6 0.8 1

AIDS

LINUX

IMDB

1 0.75 0.5 0.25

(a) (b)

(c) (d)

Figure 3. Mse results of the further analysis (in the scale of the 10−3). Lower values are preferred.
(a) Experiment on GNN layers. (b) Experiment on graph augmentation in contrastive learning.
(c) Experiment on loss function. (d) Experiment on learning rate.

5. Conclusions and Future Works

In this work, we put forward a contrastive neural graph similarity calculation frame-
work, i.e., Conga, so as to mitigate the reliance on labeled data and meanwhile enhance the
computation efficiency. Experimental results on three public datasets validate that Conga
can attain the best overall performance across different evaluation metrics. In the meantime,
Conga largely speeds up the graph similarity computation process. This reveals that our
proposed strategy can be a competitive candidate for real-world applications that involve
graph similarity computation.

For future works, we plan to explore more useful augmentation strategies for con-
trastive learning. Additionally, how to make the prediction results explainable is also
worthy of investigation.
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