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Abstract: This study validated the CO2 distribution predicted by a computational fluid dynamics
model considering CO2 absorption by photosynthesis in a chamber and greenhouse. The effect of
photosynthesis with CO2 emission from a perforated tube remains not fully understood, although
previous studies on CO2 distribution in greenhouses have been conducted. Moreover, comparisons
between CO2 concentration measurement and simulation were obtained in the chamber and green-
house model. Cases with open and closed side vents of the greenhouse showed that closed side
vents have slightly more even of CO2 concentration than those with open side vents inside the
greenhouse. In contrast, the coefficient of variance (CV) of CO2 inside the plant, open (8.8%) and
closed (8.7%) side vents, induced almost no significant improvement. Additionally, cases of a rainy-
and sunny-day model showed that photosynthetically active radiation possibly compensated CO2

absorption through photosynthesis to be low at low light (rainy day) and higher at high light (sunny
day). Nonetheless, the variability of CO2 concentration inside the plant between rainy and sunny
days determined almost no significant difference. Thus, this research shows characteristics of CO2

distribution, assessing photosynthesis and the variability of CO2 concentration that leads to the
efficiency of CO2 enrichment in the greenhouse.

Keywords: photosynthesis chamber; computational fluid dynamics; model validation; CO2 enrichment;
greenhouse

1. Introduction

Extending the farmland and improving production inside the greenhouse are two
strategies expected to boost agricultural productivity. Many researchers have studied the
microclimate phenomena of greenhouses because of the increasing demand for value-added
agricultural products and the efficacy area of the greenhouse [1–3]. However, previous stud-
ies focused on the relationship between climatic factors that affect crop development [4–7].
In contrast, only a few studies have investigated the CO2 distribution [8–11].

CO2 enrichment is one of methods used to increase and distribute the CO2 concen-
tration near to the plant. This method is conducted by controlling and maintain CO2
concentration inside the greenhouse [11]. It is challenging to maintain an optimal CO2
concentration inside a greenhouse because CO2 is affected by temperature, humidity,
and light intensity, resulting in ambient CO2 concentrations that are either suboptimal or
excessive [12].

For example, Kuroyanagi et al. [13] investigated the amount of CO2 that leaked from
an unventilated greenhouse enriched with CO2 on short-term (hourly) and medium-term
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investigation. The average short-term CO2 efficiency by crop absorption was 57.3% during
the four days of daylight. For the medium term, more than 27 days, the efficiency of CO2
enrichment was 45.5% on an average. The investigation demonstrated that the efficiency
was not solely caused by the low levels of solar radiation or strong wind. In comparison,
higher efficiency was achieved by higher solar radiation and weaker external wind.

Since CO2 could not be homogeneously spread far from the CO2 tube (CO2 source),
CO2 distribution depends on air circulation inside the greenhouse. Thus, the delivery
system (air circulation and ventilation) must be designed to ensure an even distribution
throughout the greenhouse. Additionally, Kim et al. [14] showed that unequal distribution
of CO2 depends on temperature and location. A comparison showed that temperature is
inversely proportional to the change in CO2 distribution. As mentioned above, CO2 enrich-
ment plays a significant role in stable crop yield. Nevertheless, the detailed spatiotemporal
distribution of CO2 in foliage remains unknown.

Most of time, chambers are used in experiments to readily regulate environmental
conditions because of their comparatively simple design. In this study, the performance
of a recently constructed photosynthesis model for CO2 distribution was assessed using a
photosynthetic chamber with exhaust fans on top of the chamber. The new chamber is a
semi-closed hanging type chamber covering the entire plant and monitoring the real-time
photosynthetic rate.

The new chamber is shaped vertically because it is intended to completely cover
plants, such as tomatoes. Shimomoto et al. [15] successfully tracked the time courses of
tomato plants, the net photosynthetic rate, transpiration rate, and total conductance inside
a monitoring system using a similar chamber. However, since measurement was conducted
only for the photosynthetic rate and related environmental factors, the CO2 distribution in
the chamber was not well known.

Computational fluid dynamics (CFD) has been applied in various research areas to
predict and simulate a similar process close to the actual condition. Many researchers
have analyze greenhouse designs, airflow, temperature, and radiation distribution in the
agricultural field using CFD [16–21]. Analysis of the detailed CO2 distribution is rarely
implemented and is still ongoing to date. Zhang et al. [11] showed that the efficiency of
CO2 distribution using CO2 supplement/tube could save half of the fuel and achieve a
higher CO2 concentration compared with a CO2 generator.

CFD is a powerful tool for describing greenhouse microclimate, plant behavior [22],
and photosynthesis. Molina-Aiz et al. [9] reported that photosynthesis could be simulated
accurately using CFD in each cell of the domain corresponding to the crop. In their
study, photosynthesis was computed as a function of the CO2 concentration estimated by
the CFD software. The CFD model made it possible to reveal airflow details above and
within the canopy, effects of the different structures on water irrigation, and predicted crop
transpiration [23–25].

The validity of the CFD results has been a perennial problem. However, the con-
tinuous development of computer and numerical methods enhances the accuracy of the
simulation prediction and shows outstanding potential for analyzing complex airflow in
a greenhouse [20]. Although photosynthesis has been considered in a recent CFD model,
analysis of CO2 distribution by CO2 enrichment and emitted by CO2 supplement/tube is
insufficient. Since this research is rarely conducted, this study focuses on finding detailed
CO2 distribution concerning the increased efficiency of photosynthesis.

The objective of this study is to reveal the detailed CO2 distribution using a CFD model
considering photosynthesis with CO2 enrichment using CO2 supplement/tube inside the
greenhouse. First, the effectiveness of the model is assessed by comparing numerical
simulations and measuring the CO2 levels in the new chamber.

In the chamber simulation, the photosynthesis model is considered to simulate CO2
absorption, and reasonable results for the model performance are obtained. Finally, the
simulated CO2 content is verified, and the photosynthesis model is used to calculate the
precise CO2 distribution with CO2 enrichment inside the greenhouse. A few greenhouse
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simulations are conducted to determine the impact of various environmental factors on
the distribution of CO2 inside of the greenhouse, including side vents that can be open or
closed and weather conditions that can be sunny or rainy.

2. Materials and Methods
2.1. Experimental Set-Up
2.1.1. Chamber Description

The experiment was conducted in a chamber inside the greenhouse with a CO2
concentration of approximately 420 ppm. The chamber is a semi closed hanging type that is
1 m in length, 0.52 m in width, 1.64 m in height, and an area of the bottom opening: 0.52 m2

(1 m in length × 0.52 m in width) (Figure 1). The air inside the chamber flows out through
an exhaust fan (9BMB24P2H01, Sanyo Denki, Philippines) at the left ceiling of the chamber.
The air velocity of the fan is 18.7 m s−1, applied to determine the volumetric flow rate of
the fan in this research and used in the simulation as shown below (Equation (1)):

Q = uout × Aout (1)

where uout is the air velocity at the exhaust fan boundary (m s−1), Q is the outlet volumetric
flow rate (m3 s−1), and Aout is the outlet opening area (m2).
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Figure 1. Chamber inside the greenhouse.

Two whole-grown tomatoes were placed inside the chamber in the substrate with a
drip nutrient and irrigation system. The tomatoes had heights of 1.63 and 1.4 m, respectively,
from the chamber bottom; leaf area index (LAI) of 4 m2 m−2; and leaf area density (LAD)
of 2.67 m2 m−3. Later, in the chamber model validation, the average height of 1.5 m was
used to represent the height of the plant.
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2.1.2. CO2 Distribution Measurement in the Chamber

CO2 concentrations were measured using a handheld CO2 m (GM70, probe type GMP
222, range 0–5000 ppm, accuracy: ±1.5% of range +2% of reading, Vaisala, Finland). The
measurements of CO2 concentration without CO2 enrichment were conducted in three
positions: top (0.15 m from the chamber ceiling), middle (0.815 m from the chamber ceiling),
and bottom (at the bottom opening of the chamber) to obtain CO2 distribution data for
model validation. CO2 concentration at each position was measured in three horizontal
points (left, middle, and right) in the exact distance between the point is 0.25 m.

The CO2 concentration at each point were measured with the CO2 m held by hand
and recorded manually to a sheet when the value displayed on the CO2 m was stable.
However, the CO2 concentration of the top positions were measured at the left and right
because of difficulty reaching the middle point while avoiding human breath exhaling CO2.
Air velocities were measured at the bottom of the chamber (0.83 m from the ground) and
0.2, 0.4, and 0.815 m from the ceiling of the chamber, using a hot wire anemometer (WGT
10, Hario, Japan) to determine the airflow and CO2 distribution (Figure 2).
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2.1.3. Greenhouse Description

This study was conducted in a vinyl greenhouse of 120 m2 (length: 12 m; width:
10 m; height: 6.03 m) located at Toyohashi University of Technology, Japan (Figure 3). The
greenhouse was equipped with air conditioning, air circulators, roof and side vents, water
and nutrient solution drip-irrigation system, and a perforated tube of airflow system placed
above the bed of plants shelves. Additionally, the greenhouse’s roof and side vents were
covered with insect-proof nets.
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Figure 3. The greenhouse for CO2 measurement.

Tomatoes were grown on four shelves inside the greenhouse: tomato seedlings
(Solanum lycopersicum), cv. ‘Momotaro hope’, was planted on 4 November 2020, in
greenhouse. Tomatoes grow in the cultivated bed (0.23 m in width and 8 m in length),
mounting 0.83 m from the ground floor. The water and nutrient solution supply are con-
trolled using monitoring instruments (Aqua beat, Inochio, Japan). The solar radiation
data were acquired from the NEDO database (New Energy and Industrial Technology
Development Organization, Japan) to calculate PAR (Photosynthetically Active Radiation).

2.1.4. Measurement of CO2 Concentration in Greenhouse

CO2 enrichment was conducted during the daytime on a sunny day (on 30 August
2021, at 1.30 p.m.). The initial CO2 concentration injection was 1160 ppm. Pure CO2 gas
was supplied through a perforated tube airflow system placed in the middle of the bed of
plants for each shelf. The perforated tube has a length of 8 m, a diameter of 0.10 m, and
16 holes with a diameter of 0.006 m, and the distance between the hole is 0.52 m.

The average air velocity of the outlet perforated tube airflow system was 6.21 m s−1.
CO2 gas was flowing from north to south in the perforated tube. CO2 gas from the
perforated tube hole was measured after less than 5 min of injection of CO2 gas. CO2
concentrations were measured using a handheld CO2 m (GM70 probe type GMP 222, range
0–5000 ppm, accuracy: ±1.5% of range +2% of reading, Vaisala, Finland) within a 30 s
average. This measurement data will be used for greenhouse simulation cases.

2.1.5. Brief Description of CO2 Enrichment on CO2 Distribution in a Greenhouse

Kumazaki et al. [26] studied influential positions of CO2 supply in tomato plants inside
the greenhouse. The tomato plants have LAI 1.1 m2 m−2. The CO2 was supplied in two
positions: (i) at the base of the canopy plant (0.6 m above the ground) and (ii) the middle
canopy (1.2 m above the ground). CO2 supply started when the CO2 concentration average
was below 400 ppm and stopped when it achieved 450 ppm. CO2 concentrations were
measured at 0.6, 1.2, 1.8, 2.4, and 4.2 m above the ground. As the CO2 distribution in the
entire greenhouse remains unclear, this study conducted a numerical simulation to predict
the CO2 distribution using CO2 concentration measurement data. This measurement data
obtained at 1.2 m height of CO2 supply will be used for greenhouse model validation.
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2.2. Numerical Modelling

CFD simulations were conducted using a commercial CFD software (PHOENICS,
v.2020, CHAM Ltd., London, UK). The software solves the steady-state three-dimensional
simulations using the finite volume method. Benni, et al. [2] explained that the finite volume
method reduces the governing partial differential equations to a set of algebraic equations,
resulting in algebraic equations for the dependent variable at nodes on every element.
PHOENICS solves a finite volume formulation of the balance equation, which is unsolved
in differential form [27]. The numerical simulation imposed the boundary conditions at the
calculation domain to conduct airflow, CO2 distribution, and photosynthesis processes.

2.2.1. Governing Equations

The continuity equations model (Equation (2)), momentum equations, and the energy
equation applied to calculate airflow and heat transfer in this research are shown below:

∂ρ

∂t
+

∂(ρu)
∂x

+
∂(ρv)

∂y
+

∂(ρw)

∂z
= 0 (2)

where ρ is the fluid density (kg m−3); t is time (s); and u, v, and w are the air velocity
components of the x, y, and z directions. The transport equation (Equation (3)), where φ
represents the concentration of the transport variables, mass (air and CO2 mass fraction),
momentum, and energy [28].

∂

∂t
(ρφ) + div(ρuφ) = div

(
Ѓφgradφ

)
+ Sφ (3)

where ρ is the density, u is the component of directional air velocity, Ѓφ is the diffusivity
coefficient for φ, and Sφ is the source term.

Managing the meshing grid to obtain accurate simulation results was challenging.
Hong et al. [20] discussed that finer meshes might not improve the accuracy anymore,
whereas coarser meshes might still give accurate results for some cases.

2.2.2. Photosynthesis Model

PHOENICS automatically computes the mass fractions of CO2 in the air. The net
photosynthesis was calculated using the equation below (Equation (4)) as the difference
between canopy photosynthesis and crop respiration.

The formula of net photosynthesis (kg s−1 m−3
row) was given as follows [9]:

SCO2 = −PcCFD =
LADr

LAI·1000·3600
(

R‘ − Pcg
)

(4)

where LAD is the leaf area density (m2 m−3), LAI is the leaf area index (m2 m−2), Pcg
is canopy photosynthesis rate (g CO2 h−1 m−2 ground area), R‘ is the crop respiration
(g h−1 m−2), and SCO2 is the source or sink term.

Canopy photosynthesis rate of Acock’s model modified by Nederhoff and Vegter [29]
(Equation (5)):

Pcg =
αc joτcC‘·3600

αc jo+τcC‘
(5)

where αc is the initial light use efficiency of the plant canopy (or light utilization or photo-
synthetic efficiency) (g CO2 J−1), jo is the incident light flux, PAR at the top of the canopy
(W m−2), τc conductance to CO2 transfer (m s−1), C‘ is the concentration of CO2 in the air
which is calculated from the mass fraction of CO2, YCO2 (kg kg−1), and the air density ρ
(kg m−3) [9].

In the chamber simulation, a simple rectangular plant object with a length of 0.4 m, a
width of 0.9, and a height of 1.5 m were considered, respectively. The LAI and LAD were
4 m2 m−2 and 2.67 m2 m−3. This study used LAI to calculate air velocity’s deceleration in



Appl. Sci. 2022, 12, 7756 7 of 20

the plant canopy. The deceleration is often represented as momentum sink (Equation (6))
in source term of Equation (3):

Sϕ = CDαu2 (6)

where CD is a drag coefficient of the crop (0.3), α denotes LAD (m2 m−3), and α is obtained
from LAI (Equation (7)):

α =
LAI

h
(7)

where h is the plant canopy’s height.

2.3. Model Settings and Validation
2.3.1. Chamber Model

The chamber model replicated the bottom open chamber. A similar chamber has been
used to investigate photosynthetic rate, related environmental factors [15], and airflow
uniformity [30]. Chamber dimensions of length, width, and height were 1, 0.52, and 1.64 m,
respectively (Figure 4). In the calculation of chamber simulation, the scale of the domain
was small and consisted of two plants and one fan as outlet and inlet at the bottom part of
the chamber.
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represents the fan).
The rectangular shape inside of the chamber represent the plant.

The CO2 distribution model used in chamber simulation was the laminar flow model.
In the calculation of chamber simulation, the scale of the domain was compact but sufficient
to calculate canopy photosynthesis for the whole body of the tomato plant. The mesh
numbers in the computational domain had 5940 cells inside the chamber (Figure 5). Cham-
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ber simulation has been conducted to investigate CO2 distribution and photosynthesis,
particularly net photosynthesis rate. The initial CO2 concentration for the simulation was
set at 450 ppm, which is same as the measured from the outlet of bottom chamber.
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2.3.2. Validation Chamber Model

This study conducted a chamber simulation, compared the measurement data, and
analyzed the CO2 concentration in three measurement positions in the chamber. The model
validation was performed using three positions of CO2 concentration: (i) above the plant
and near the fan, (ii) in the middle of the plant, and (iii) at the bottom of the chamber
near the area of inflow air from the outer chamber. Those positions were chosen to be
representative of the characteristics of airflow in the whole chamber, including plants with
photosynthesis process.

A validated chamber model will be applied to simulate the actual greenhouse. The
root-mean-square error (RMSE) and mean absolute percentage errors (MAPE) for each
point between the measured and simulated data were used to assess the simulation model’s
accuracy [1]. The computational configuration for the three-dimensional CFD simulation is
presented in Table 1.



Appl. Sci. 2022, 12, 7756 9 of 20

Table 1. Computational conditions used for the chamber model.

Parameter Symbol Unit Value

Canopy photosynthesis rate Pcg g CO2 h−1 m−2
ground area

CO2 density Cc g m−3 1839

Conductance of CO2 τc m s−1 12.168 × 10−4

Crop respiration R‘ g h−1m−2 2.84 × 10−2

Initial CO2 - ppm 450

Leaf area density LAD/α m2
leaf m−3

row 2.67

Leaf area index LAI m2 m−2 4

The light use efficiency of the plant canopy αc g CO2 J−1 3.705 × 10−6

The incident light flux PAR Jo W m−2
leaf 379.9

2.3.3. Greenhouse Model

The computational model greenhouse has dimensions of length 12 m, width 10 m, and
height 6 m. The greenhouse model has four circulating fans, four shelves of cultivating bed
for tomato, and four CO2 perforated tubes on each shelf (Figure 6). Leakage paths were
managed in the door area and for tiny gaps across the greenhouse rib structure between
the wall and the roof [31].
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plants, the circles represent CO2 perforated tube, and the thick lines and dots represent outlet).

Several turbulence models were tested to adopt suitable turbulence models in the
greenhouse [5,32]. Natural ventilation of the greenhouse simulation was validated by
different mesh sizes and different turbulence models to determine the accuracy of CFD
simulation [20]. This study tested different turbulence models to simulate CO2 distribution
while considering CO2 absorption by the photosynthesis process and found that the opti-
mum convergence was achieved in the standard k − ε turbulence model. Accordingly, the
standard k − ε turbulence model was applied in the greenhouse simulation.
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2.3.4. Validation of the Greenhouse Model

The greenhouse simulation was conducted and compared with the measurement data
of CO2 enrichment. Model validation calculated the CO2 distribution from CO2 perforated
tubes in the whole greenhouse. The number of meshes in the computational domain
had 739,350 cells inside the greenhouse (Figure 7). The simulation model’s accuracy was
assessed using RMSE and MAPE by comparing the percentage errors of each measured
and simulated point. Table 2 presents the computational conditions used for the three-
dimensional CFD simulation.
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Table 2. Computational conditions used for greenhouse model.

Parameter Symbol Unit Value

Canopy photosynthesis rate Pcg g CO2 h−1 m−2
ground area

CO2 density Cc g m−3 1839

Conductance of CO2 τc m s−1 12.168 × 10−4

Crop respiration R‘ g h−1 m−2 2.84 × 10−2

Initial CO2 - ppm 450

Leaf area density LAD/α m2
leaf m−3

row 0.67

Leaf area index LAI m2 m−2 1.1

The light use efficiency of the plant canopy αc g CO2 J−1 3.705 × 10−6

The incident light flux PAR Jo W m−2
leaf 355

Using a coefficient of variation (CV), the variability of CO2 distribution inside the
greenhouse was examined for two types of scenario cases, open and closed side ventilation
and weather (rainy and sunny days). The 7070 points of CO2 concentration were taken
to measure the variability inside the greenhouse and 8484 points of CO2 concentration
for plants.
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Note that the measurements of CO2 concentration for chamber and greenhouse have
been carried out at different date (4 August 2021, for CO2 concentration measurement at
chamber and 30 August 2021, for CO2 concentration measurement at greenhouse that will
be used for simulation cases). The data of LAI and some parameters that used in model
were the data at the date of CO2 measurement. Due to this, some parameters are different
between the chamber and greenhouse.

3. Results and Discussion
3.1. Model Validation
3.1.1. CO2 Distribution Inside the Chamber

The measured CO2 concentrations were compared with the simulated CO2 distribution
inside the chamber. Model simulation accuracy was evaluated by comparing each measured
and simulated point’s percentage errors of Table 3. The MAPE of the left, middle, and right
parts of the chamber were 1.85%, 3.43%, and 0.43%, respectively, and the RMSE of left,
middle, and right parts were 11.20, 16.99, and 2.17 ppm, respectively, according to the CFD
model for CO2 distribution.

Table 3. Comparison of CO2 concentration between measured and simulated data for model valida-
tion in the chamber.

Canopy Layer
Measured Simulation Percentage error (%)

Left Middle Right Left Middle Right Left Middle Right

Top 420 – 440 439 442 442 4.53 – 0.36
Middle 440 420 440 444 443 443 0.84 5.59 0.76
Bottom 450 455 450 449 449 449 0.17 1.27 0.17

MAPE (%) 1.85 3.43 0.43

RMSE (ppm) 11.20 16.99 2.17

The results showed that employing a tomato plant as a porous medium considered
the photosynthetic process could reasonably predict CO2 distribution. In comparison to
the actual canopy of the tomato plant, the model tomato plant has been simpler. That
is, the dense leaves were considered homogenous for the entire plant. Thus, the CO2
concentration shows a decrease inside the porous medium (corresponding to tomato plant),
where the air, including CO2, may go through the canopy of the tomato plant; then, the
CO2 is absorbed by the process of photosynthesis (Figure 8).
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The CO2 concentration distribution according to the chamber measurement and
simulation for each height were compared to evaluate numerical simulation properties
(Figures 8 and 9). These figures showed the simulation results of CO2 concentration at
the left and middle part were slightly overestimated. However, the simulation was still
reasonable and can be used for greenhouse numerical simulation.
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Figure 9. Measured and simulated data of CO2 concentration inside the chamber.

3.1.2. CO2 Distribution Inside the Greenhouse

The greenhouse model validation was conducted according to the measurement data
of Kumazaki, et al. [26], who studied influential positions of CO2 supply in tomato plants
inside the same greenhouse as the present study. In the present study, the simulation
results were compared with the measurement data of CO2 concentration in the condition
20 min after 1 h of CO2 being supplied at the middle canopy (1.2 m above the ground, see
Figure 10).
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The CO2 concentrations were measured at two sides of 3.4 m from the north and
south wall with 0.6, 1.2, 1.8, 2.4, and 4.2 m above the ground. The initial simulation value
of CO2 concentration was assumed to be constant in every mesh inside the greenhouse,
whereas the actual condition has various CO2 concentrations. In contrast, model simulation
accuracy was also evaluated by comparing the percentage errors of each measured and
simulated point (Table 4).

Table 4. Comparison of CO2 concentration between measured and simulated data for model valida-
tion in greenhouse.

Height (m)
Measured (ppm) Simulation (ppm) Percentage Error (%)

North South North South North South

4.2 391 418 435 435 11.15 3.96
2.4 411 439 433 432 5.28 1.53
1.8 418 431 432 432 3.34 0.14
1.2 432 443 432 432 0.03 2.55

MAPE (%) 4.95 2.04

RMSE (ppm) 25.33 10.57

According to the results of the CO2 distribution using the CFD model within the
greenhouse, the MAPE of north and south were 4.95% and 2.04%, respectively, whereas
the RMSE of north and south were 25.33 and 10.57 ppm, respectively, compared with the
measured values. However, the simulation results in this study may be reasonable to predict
the CO2 distribution considering CO2 absorption through the process of photosynthesis of
the plant inside the greenhouse (Figure 11).
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3.2. Simulation Cases for Greenhouse Model

Several simulations were conducted to analyze CO2 distribution under the CO2 en-
richment described below. The cases were trial scenarios to determine the detailed CO2
distribution while considering the photosynthesis process inside the greenhouse.

3.2.1. CO2 Distribution toward Open and Closed Side Ventilation Inside the Greenhouse

Figure 11 shows the simulation of CO2 distribution inside the greenhouse when
1160 ppm CO2 concentration was supplied through perforated tubes inside the plants. The
appearance of CO2 emissions from the perforated tube was confirmed with the degradation
colors inside of the plants. CO2 distribution in case open and closed side vents were showed
a slight difference in CO2 concentration (Figure 12).
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(image taken at cross-section 6 m from south wall).

When the sidewall was opened (ventilated), the inflow wind from outside the green-
house was continually updated to match the current wind velocity in each mesh [33]. The
CO2 concentration outside of the greenhouse (400 ppm) is lower than the initial CO2 con-
centration inside the greenhouse (450 ppm), which may cause the CO2 concentration near
the ventilated wall to be lower. Furthermore, the position of the plants in the greenhouse
was asymmetric (tend to the right side).

The effects of open side vents on CO2 distribution were slightly significant, especially
near the wall. In comparison to the case of open side vents, the case with closed side vents
showed a slightly more uniform CO2 concentration within the greenhouse. Although the
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side vents are closed, air circulators supported moving large volumes of air to provide
even distribution. The quantitative evaluation of these results using CV shown in Table 5 is
18.2% for the open and 15.6% for the closed side vents case for the whole greenhouse.

Table 5. Coefficient of variations of CO2 concentration in the case of side vents open and closed.

Parameter

Greenhouse Plants

Side Vent

Open Closed Open Closed

SD (ppm) 1 80 71 41 41
Mean (ppm) 438 457 464 476

CV (%) 2 18.2 15.6 8.8 8.7
1 SD = Standard Deviation; 2 CV = Coefficient of variation.

However, focusing on the variability of CO2 concentration inside the plant, open
(8.8%) and closed (8.7%) side vents produced essentially no substantial contribution to even
the variation of CO2 concentration in the plant canopy because no initial wind velocity was
considered at both side vents in our case. Therefore, virtually no air exchange occurred
between outside and inside the greenhouse.

Figure 12 (side ventilation open) showed the CO2 concentration around the plant
(rectangular shapes) was still maintained higher than ambient CO2 concentration (approxi-
mately 400 ppm). This suggests that practical CO2 enrichment was still effective even if
side vent was open (in case, no outside wind).

3.2.2. CO2 Distribution toward on Sunny and Rainy Day Inside the Greenhouse

Simulations under treatment of 1000 ppm of CO2 concentration, that had been done
in the previous study [34,35] were conducted on a rainy day condition with PAR of
95 W m−2 [36] and sunny day condition with PAR of 355 W m−2 (based on NEDO so-
lar radiation database).

There was a minor change in the CO2 concentration between sunny and rainy days,
according to the CO2 distribution (Figure 13). The effects of solar radiation on CO2 distri-
bution were slightly significant. The case of rainy day showed a slightly more even of CO2
distribution inside the greenhouse than the case of sunny day. For the entire greenhouse,
the quantitative evaluation of these results using CV shown in Table 6 is 18.1% for the
sunny-day case and 15.6% for the rainy-day case. However, when it comes to the vari-
ability of CO2 concentration inside the plant, sunny day (8.1%) and rainy day (8.7%) had
essentially no effect on even the fluctuation of CO2 concentration in the plant canopy.

Table 6. Coefficient of variations of CO2 concentration in the case of sunny and rainy day.

Parameter

Greenhouse Plants

Weather

Sunny Rainy Sunny Rainy

SD (ppm) 81 71 38 41
Mean (ppm) 446 457 467 476

CV (%) 18.1 15.6 8.1 8.7

Figure 14 shows the net photosynthesis estimations of the greenhouse model under
treatment of 1000 ppm of CO2 enrichment on a sunny and rainy day. The simulation results
of a rainy and sunny days revealed the mean values of net photosynthesis (PCFD) of 3.82
and 9.69 µmol m−3 s−1, respectively. The value of the net photosynthesis results seemed
reasonable according to the study of Nederhoof and Vegter [29] and Xu et al. [37].



Appl. Sci. 2022, 12, 7756 16 of 20

Appl. Sci. 2022, 12, 7756 16 of 20 
 

There was a minor change in the CO2 concentration between sunny and rainy days, 

according to the CO2 distribution (Figure 13). The effects of solar radiation on CO2 distri-

bution were slightly significant. The case of rainy day showed a slightly more even of CO2 

distribution inside the greenhouse than the case of sunny day. For the entire greenhouse, 

the quantitative evaluation of these results using CV shown in Table 6 is 18.1% for the 

sunny-day case and 15.6% for the rainy-day case. However, when it comes to the varia-

bility of CO2 concentration inside the plant, sunny day (8.1%) and rainy day (8.7%) had 

essentially no effect on even the fluctuation of CO2 concentration in the plant canopy. 

 

Figure 13. The CO2 distribution inside of the greenhouse in case the sunny and rainy day (image 

taken at cross-section 6 m from south wall). 

Table 6. Coefficient of variations of CO2 concentration in the case of sunny and rainy day. 

Parameter 

Greenhouse Plants 

Weather 

Sunny Rainy Sunny Rainy 

SD (ppm) 81 71 38 41 

Mean (ppm) 446 457 467 476 

CV (%) 18.1 15.6 8.1 8.7 

Figure 14 shows the net photosynthesis estimations of the greenhouse model under 

treatment of 1000 ppm of CO2 enrichment on a sunny and rainy day. The simulation re-

sults of a rainy and sunny days revealed the mean values of net photosynthesis (PCFD) 

of 3.82 and 9.69 µmol m−3 s−1, respectively. The value of the net photosynthesis results 

seemed reasonable according to the study of Nederhoof and Vegter [29] and Xu et al. [37].  

Figure 13. The CO2 distribution inside of the greenhouse in case the sunny and rainy day (image
taken at cross-section 6 m from south wall).

Appl. Sci. 2022, 12, 7756 17 of 20 
 

The PAR possibly compensated the CO2 absorption through the photosynthesis pro-

cess to be low at low light (rainy day) and was higher at high light (sunny day). Never-

theless, the different canopy layers such as the top layer (64%), middle layer (28%), and 

bottom layer (8%) were not assigned to the net photosynthesis as mentioned in the study 

by Reichrath et al. [38] because in this simulation the dense of leaves were assumed to be 

homogenous for the whole plant. Thus, the net photosynthesis results were almost con-

stant for the entire plant. However, according to the simulation results, this model may 

be appropriate to estimate the net photosynthesis average. 

The variability of CO2 concentration inside the plant between a rainy and a sunny 

day determined practically no significant difference. Furthermore, these models revealed 

no significant connection PAR and even the variation in CO2 content at the plants. 

 

Figure 14. Net photosynthetic (PCFD) inside the greenhouse: 1000 ppm of CO2 enrichment cases on 

sunny and rainy day. 

3.3. Discussion 

The study presented numerically the details of CO2 distribution inside the chamber 

and the greenhouse. The performance of model was validated by comparing measure-

ment and simulation results obtained from CFD model considering photosynthesis 

model. The model reproduced the distribution of measured CO2 concentration in the mid-

dle of plant, decreasing due to CO2 absorption by photosynthesis. As proven by Molina-

Aiz et al. [9], the CFD model could simulate photosynthesis accurately.  

The chamber simulation results at the bottom of plant showed good agreement with 

the measurement results. The middle and upper left cross sections of the canopy showed 

that the simulation results were overestimated. This is likely due to the fact that the tur-

bulence intensity near the fan located at the top of the chamber tends to be stronger than 

in other parts of the chamber, and thus the CO2 concentration near the fan tends to be 

lower due to turbulent mixing.  

Figure 14. Net photosynthetic (PCFD) inside the greenhouse: 1000 ppm of CO2 enrichment cases on
sunny and rainy day.



Appl. Sci. 2022, 12, 7756 17 of 20

The PAR possibly compensated the CO2 absorption through the photosynthesis pro-
cess to be low at low light (rainy day) and was higher at high light (sunny day). Never-
theless, the different canopy layers such as the top layer (64%), middle layer (28%), and
bottom layer (8%) were not assigned to the net photosynthesis as mentioned in the study
by Reichrath et al. [38] because in this simulation the dense of leaves were assumed to
be homogenous for the whole plant. Thus, the net photosynthesis results were almost
constant for the entire plant. However, according to the simulation results, this model may
be appropriate to estimate the net photosynthesis average.

The variability of CO2 concentration inside the plant between a rainy and a sunny day
determined practically no significant difference. Furthermore, these models revealed no
significant connection PAR and even the variation in CO2 content at the plants.

3.3. Discussion

The study presented numerically the details of CO2 distribution inside the chamber
and the greenhouse. The performance of model was validated by comparing measurement
and simulation results obtained from CFD model considering photosynthesis model. The
model reproduced the distribution of measured CO2 concentration in the middle of plant,
decreasing due to CO2 absorption by photosynthesis. As proven by Molina-Aiz et al. [9],
the CFD model could simulate photosynthesis accurately.

The chamber simulation results at the bottom of plant showed good agreement with
the measurement results. The middle and upper left cross sections of the canopy showed
that the simulation results were overestimated. This is likely due to the fact that the
turbulence intensity near the fan located at the top of the chamber tends to be stronger
than in other parts of the chamber, and thus the CO2 concentration near the fan tends to be
lower due to turbulent mixing.

Otherwise, turbulence at the right side of the chamber is small (laminar), and because
the simulation adopted a laminar model, the simulation achieved a better agreement with
measurement for right side of the chamber.

The greenhouse simulation results at the bottom of canopy showed good agreement
with the measurement results. In position of 3.4 m from north wall showed simulation
results were overestimated. The position of 3.4 m from the south wall showed simulation
results that were slightly underestimated for heights of 1.2 and 2.4 m from the ground,
while the results for heights of 1.8 and 4.2 m from the ground were overestimated.

This may be because the temperature condition was neglected in the simulation. As
reported by Kim et al. [14] that unequal distribution of CO2 depends on temperature and
location. However, the simulation was still able to predict the detailed of CO2 distribution
considering CO2 absorption at the plant by photosynthesis and the error values were still
reasonable compared to previous study [9,11].

A few simulations of greenhouse were conducted to know the effect of various envi-
ronmental conditions to the CO2 distribution inside of the greenhouse. Cases with open
and closed side vents showed that closed side vents have slightly more even of CO2 concen-
tration than those with open side vents inside the greenhouse. In contrast, the variability
of CO2 inside the plant, open (8.8%) and closed (8.7%) side vents, induced almost no
significant improvement.

Additionally, cases of a rainy- and sunny-day model showed that photosynthetically
active radiation possibly compensated CO2 absorption through photosynthesis to be lower
at low light (rainy day) and higher at high light (sunny day). Nonetheless, we found that
there was almost no significant difference in the variation of CO2 concentration in the plant
between rainy and sunny days.

4. Conclusions

The distribution of CO2 in the chamber and greenhouse was studied to understand
the details of CO2 concentration while considering the net photosynthesis. Consequently,
the measurement and simulation values of the CO2 concentration were well-validated. We
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determined that there would be no discernible difference in the CO2 distribution between
models with open and closed side vents of the greenhouse if there was no interference of
air exchange for side vents. This study enables the prediction of net photosynthetic value
concerning different PARs (rainy and sunny days).

The results showed that the average of net photosynthesis on a sunny day (9.69 µmol m−3 s−1)
was higher than on a rainy day (3.82 µmol m−3 s−1). The link between the variability of
CO2 concentration at the plants and the weather (sunny and rainy days), particularly PAR,
did not appear to be significant. We determined that light and CO2 distribution have an
impact on the processes involved in photosynthesis. Thus, this research could take a role
supporting agriculture technology.

In further research, an increase in the number of measurements would elucidate the
CO2 distribution considering photosynthesis. These could lead to a more accurate CFD
model. Applying more parameters leads to simulation close to reality. To evaluate the
photosynthetic model, consider the light distribution is based on the density of the canopy
plant’s leaves. Therefore, expanding the experiments on greenhouse microclimate, which
includes photosynthesis and transpiration in different crops in the greenhouse would be
of importance.
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